1
|
Ajami Yazdi A, Ebrahimian Pirbazari A, Esmaeili Khalil Saraei F, Esmaeili A, Ebrahimian Pirbazari A, Akbari Kohnehsari A, Derakhshesh A. Design of 2D/2D β-Ni(OH) 2/ZnO heterostructures via photocatalytic deposition of nickel for sonophotocatalytic degradation of tetracycline and modeling with three supervised machine learning algorithms. CHEMOSPHERE 2024; 352:141328. [PMID: 38296215 DOI: 10.1016/j.chemosphere.2024.141328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/29/2023] [Accepted: 01/27/2024] [Indexed: 03/10/2024]
Abstract
Due to the expansive use of tetracycline antibiotics (TCs) to treat various infectious diseases in humans and animals, their presence in the environment has created many challenges for human societies. Therefore, providing green and cost-effective solutions for their effective removal has become an urgent need. Here, we will introduce 2D/2D p-n heterostructures that exhibit excellent sonophotocatalytic/photocatalytic properties for water-soluble pollutant removal. In this contribution, for the first time, β- Ni(OH)2 nanosheets were synthesized through visible-light-induced photodeposition of different amounts of nickel on ZnO nanosheets (β-Ni(x)/ZNs) to fabricate 2D/2D p-n heterostructures. The PXRD patterns confirmed the formation of wurtzite phase for ZNs and the hexagonal crystal structure of β-Ni(OH)2. The FESEM and TEM micrographs showed that the β-Ni(OH)2 sheets were dispersed on the surface of ZNs and formed 2D/2D p-n heterojunction in β-Ni(x)/ZNs samples. With the photodeposition of β-Ni(OH)2 nanosheets on ZNs, the surface area, pore volume, and pore diameter of β-Ni(x)/ZNs heterostructures have increased compared to ZNs, which can have a positive effect on the sonophotocatalytic/photocatalytic performance of ZNs. The degradation experiments showed that β-Ni(0.1)/ZNs and β-Ni(0.4)/ZNs have the highest degradation percentage in photocatalytic (51 %) and sonophotocatalytic (71 %) degradation of TC, respectively. Finally, the sonophotocatalytic/photocatalytic degradation process of TC was systematically validated through modeling with three powerful and supervised machine learning algorithms, including Support Vector Regression (SVR), Artificial Neural Networks (ANNs), and Stochastic Gradient Boosting (SGB). Five statistical criteria including R2, SAE, MSE, SSE, and RMSE were calculated for model validation. It was observed that the developed SGB algorithm was the most reliable model for predicting the degradation percent of TC. The results revealed that using fabricated 2D/2D p-n heterojunctions (β-Ni(x)/ZNs) is more sustainable than the conventional ZnO photocatalytic systems in practical applications.
Collapse
Affiliation(s)
- Aghil Ajami Yazdi
- Hybrid Nanomaterials & Environment Lab, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, 43581- 39115, Iran; Data Mining Research Group, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, 43581-39115, Iran
| | - Azadeh Ebrahimian Pirbazari
- Hybrid Nanomaterials & Environment Lab, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, 43581- 39115, Iran.
| | - Fatemeh Esmaeili Khalil Saraei
- Data Mining Research Group, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, 43581-39115, Iran.
| | - Amin Esmaeili
- Department of Chemical Engineering, College of Engineering Technology, University of Doha for Science and Technology, 24449, Arab League St, Doha, Qatar
| | | | - Atena Akbari Kohnehsari
- Hybrid Nanomaterials & Environment Lab, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, 43581- 39115, Iran; Data Mining Research Group, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, 43581-39115, Iran
| | - Ali Derakhshesh
- Data Mining Research Group, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, 43581-39115, Iran
| |
Collapse
|
2
|
Wang G, Xu Z, Li Z, Ding Y, Ge R, Xiang M, Wang G, Yan Z. Ni(OH)2/CoS heterostructure grown on carbon cloth for robust supercapacitor and methanol electrocatalytic oxidation. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
3
|
Zhu Y, Xu H, Chen P, Bao Y, Jiang X, Chen Y. Electrochemical performance of polyaniline-coated γ-MnO2 on carbon cloth as flexible electrode for supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Cheng PW, Chen CY, Ichibayashi T, Chang TFM, Sone M, Nishimura S. Supercritical carbon dioxide-assisted functionalization of polyethylene terephthalate (PET) toward flexible catalytic electrodes. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Azeredo NFB, Gonçalves JM, Lima IS, Araki K, Wang J, Angnes L. Screen‐printed Nickel‐Cerium Hydroxide Sensor for Acetaminophen Determination in Body Fluids. ChemElectroChem 2021. [DOI: 10.1002/celc.202100417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nathália F. B. Azeredo
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo Brazil
- Department of Nanoengineering University of California San Diego La Jolla USA
| | - Josué M. Gonçalves
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo Brazil
| | - Irlan S. Lima
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo Brazil
| | - Joseph Wang
- Department of Nanoengineering University of California San Diego La Jolla USA
| | - Lúcio Angnes
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo Brazil
| |
Collapse
|
6
|
Khalafallah D, Miao J, Zhi M, Hong Z. Structuring graphene quantum dots anchored CuO for high-performance hybrid supercapacitors. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Khalafallah D, Ouyang C, Zhi M, Hong Z. Synthesis of porous Ag 2S-NiCo 2S 4 hollow architecture as effective electrode material with high capacitive performances. NANOTECHNOLOGY 2020; 31:475401. [PMID: 32531765 DOI: 10.1088/1361-6528/ab9c54] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fabrication of highly reactive and cost-effective electrode materials is a key to efficient functioning of green energy technologies. Decorating redox-active metal sulfides with conductive dopants is one of the most effective approaches to enhance electric conductivity and consequently boost capacitive properties. Herein, hierarchically hollow Ag2S-NiCo2S4 architectures are designed with an enhanced conductivity by a simple solvothermal approach. With the favorable porous characteristics and composition, the optimized Ag2S-NiCo2S4-5 electrode exhibits higher specific capacitance (276.5 mAh g-1 at a current density of 1 A g-1), a good rate performance (56.3% capacity retention at 50 A g-1), and an improved cycling stability (92.4% retention after 2000 cycles). This finding originates from the enhanced charge transportation ability within the hierarchical structure, abundant electroactive sites, and low contact resistance. In addition, a battery supercapacitor device constructed with the Ag2S-NiCo2S4-5 as a positive electrode displays a maximum energy density of 63.3Wh kg-1 at an energy density of 821.8 W kg-1 with an excellent cycling stability (89.4% capacity retention after 10 000 cycles). Therefore, the present work puts forward new possibility to develop composite electrodes for energy storage battery-supercapacitor.
Collapse
Affiliation(s)
- Diab Khalafallah
- State Key Laboratory of Silicon Material, School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People's Republic of China. Mechanical Design and Materials Department, Faculty of Energy Engineering, Aswan University, P.O. Box 81521, Aswan, Egypt
| | | | | | | |
Collapse
|
8
|
Khalafallah D, Zhi M, Hong Z. Development Trends on Nickel‐Based Electrocatalysts for Direct Hydrazine Fuel Cells. ChemCatChem 2020. [DOI: 10.1002/cctc.202001018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Diab Khalafallah
- State Key Laboratory of Silicon Material School of Materials Science and Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P.R. China
- Mechanical Design and Materials Department Faculty of Energy Engineering Aswan University P.O. Box 81521 Aswan Egypt
| | - Mingjia Zhi
- State Key Laboratory of Silicon Material School of Materials Science and Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P.R. China
| | - Zhanglian Hong
- State Key Laboratory of Silicon Material School of Materials Science and Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P.R. China
| |
Collapse
|
9
|
Abstract
The advanced electrochemical properties, such as high energy density, fast charge–discharge rates, excellent cyclic stability, and specific capacitance, make supercapacitor a fascinating electronic device. During recent decades, a significant amount of research has been dedicated to enhancing the electrochemical performance of the supercapacitors through the development of novel electrode materials. In addition to highlighting the charge storage mechanism of the three main categories of supercapacitors, including the electric double-layer capacitors (EDLCs), pseudocapacitors, and the hybrid supercapacitors, this review describes the insights of the recent electrode materials (including, carbon-based materials, metal oxide/hydroxide-based materials, and conducting polymer-based materials, 2D materials). The nanocomposites offer larger SSA, shorter ion/electron diffusion paths, thus improving the specific capacitance of supercapacitors (SCs). Besides, the incorporation of the redox-active small molecules and bio-derived functional groups displayed a significant effect on the electrochemical properties of electrode materials. These advanced properties provide a vast range of potential for the electrode materials to be utilized in different applications such as in wearable/portable/electronic devices such as all-solid-state supercapacitors, transparent/flexible supercapacitors, and asymmetric hybrid supercapacitors.
Collapse
|
10
|
High performance flexible hybrid supercapacitors based on nickel hydroxide deposited on copper oxide supported by copper foam for a sunlight-powered rechargeable energy storage system. J Colloid Interface Sci 2020; 579:520-530. [PMID: 32623118 DOI: 10.1016/j.jcis.2020.06.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
Herein, an integrated system combining solar cells with a hybrid supercapacitor for operating a homemade windmill device was assembled, achieving energy conversion, storage and utilization. As a candidate for positive electrode of hybrid supercapacitor devices, battery-like Ni(OH)2@CuO@Cu binder-free electrode was fabricated by a two-step process at ambient temperature. CuO@Cu was prepared by chemical oxidation method to act as the supporting electrode for electrochemical deposition of Ni(OH)2. Various deposition times (30, 50, 90, 150 and 200 s) were investigated to optimize the energy storage characteristics of the resulting Ni(OH)2@CuO@Cu electrode materials. Among all the samples, Ni(OH)2@CuO@Cu-150 exhibited the largest areal capacity of 7063 mC cm-2 at 20 mA cm-2, and was therefore chosen as the positive electrode in a hybrid supercapacitor device. Using N-doped reduced graphene oxide on nickel foam (N-rGO/NF) as the negative electrode, a hybrid supercapacitor was assembled. It displayed good flexibility, cycling stability and high areal energy density of 130.4 μWh cm-2 at a power density of 1.6 mW cm-2. Two hybrid supercapacitor devices were connected in series to successfully lighten up a red LED for 12 min 39 s, while three devices assembled in series were able to successfully power a three-digit digital display for 1 min 28 s. Interestingly, the hybrid supercapacitor device, charged by solar cells, further operated a homemade windmill device for 59 s, achieving sunlight-powered integration system. All of the findings suggested the practical application potential of the hybrid supercapacitor based on Ni(OH)2@CuO@Cu composite as energy storage device.
Collapse
|