1
|
Li J, Ye G, Wang J, Gong T, Wang J, Zeng D, Cifuentes A, Ibañez E, Zhao H, Lu W. Recent advances in pressurized hot water extraction/modification of polysaccharides: Structure, physicochemical properties, bioactivities, and applications. Compr Rev Food Sci Food Saf 2025; 24:e70104. [PMID: 39812161 DOI: 10.1111/1541-4337.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Pressurized hot water, as a green and efficient physical treatment technology, has been widely utilized for the extraction and modification of polysaccharides, with the objective of enhancing the physicochemical properties and biological activities of polysaccharides applied in food systems. This article reviews the recent advances regarding the effects of pressurized hot water treatment (extraction and modification) on polysaccharide extraction rates, structure, physicochemical properties, and bioactivities. The potential modes and mechanisms of polysaccharides subjected to pressurized hot water treatment and the relevant applications of these treated polysaccharides are also thoroughly discussed. Finally, the challenges that it may encounter in commercial applications are analyzed, and the future trends in this field are envisioned. This article will be of great value for the scientific elucidation of polysaccharides treated with pressurized hot water and their potential food applications.
Collapse
Affiliation(s)
- Jiangfei Li
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT, Harbin Institute of Technology, Chongqing, China
| | - Guanjun Ye
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Junwen Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Ting Gong
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Jianlong Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT, Harbin Institute of Technology, Chongqing, China
| | - Deyong Zeng
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT, Harbin Institute of Technology, Chongqing, China
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Elena Ibañez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Haitian Zhao
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT, Harbin Institute of Technology, Chongqing, China
| | - Weihong Lu
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT, Harbin Institute of Technology, Chongqing, China
| |
Collapse
|
2
|
Chen SK, Wang X, Guo YQ, Song XX, Yin JY, Nie SP. Exploring the partial degradation of polysaccharides: Structure, mechanism, bioactivities, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4831-4870. [PMID: 37755239 DOI: 10.1111/1541-4337.13244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Polysaccharides are promising biomolecules with lowtoxicity and diverse bioactivities in food processing and clinical drug development. However, an essential prerequisite for their applications is the fine structure characterization. Due to the complexity of polysaccharide structure, partial degradation is a powerful tool for fine structure analysis, which can effectively provide valid information on the structure of backbone and branching glycosidic fragments of complex polysaccharides. This review aims to conclude current methods of partial degradation employed for polysaccharide structural characterization, discuss the molecular mechanisms, and describe the molecular structure and solution properties of degraded polysaccharides. In addition, the effects of polysaccharide degradation on the conformational relationships between the molecular structure and bioactivities, such as antioxidant, antitumor, and immunomodulatory activities, are also discussed. Finally, we summarize the prospects and current challenges for the partial degradation of polysaccharides. This review will be of great value for the scientific elucidation of polysaccharide fine structures and potential applications.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Qing Guo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
4
|
Jiao X, Li F, Zhao J, Wei Y, Zhang L, Yu W, Li Q. The Preparation and Potential Bioactivities of Modified Pectins: A Review. Foods 2023; 12:1016. [PMID: 36900531 PMCID: PMC10001417 DOI: 10.3390/foods12051016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Pectins are complex polysaccharides that are widely found in plant cells and have a variety of bioactivities. However, the high molecular weights (Mw) and complex structures of natural pectins mean that they are difficult for organisms to absorb and utilize, limiting their beneficial effects. The modification of pectins is considered to be an effective method for improving the structural characteristics and promoting the bioactivities of pectins, and even adding new bioactivities to natural pectins. This article reviews the modification methods, including chemical, physical, and enzymatic methods, for natural pectins from the perspective of their basic information, influencing factors, and product identification. Furthermore, the changes caused by modifications to the bioactivities of pectins are elucidated, including their anti-coagulant, anti-oxidant, anti-tumor, immunomodulatory, anti-inflammatory, hypoglycemic, and anti-bacterial activities and the ability to regulate the intestinal environment. Finally, suggestions and perspectives regarding the development of pectin modification are provided.
Collapse
Affiliation(s)
- Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Fei Li
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Luyao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Wenjun Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| |
Collapse
|
6
|
One-Step Synthesis of Iron and Titanium-Based Compounds Using Black Mineral Sands and Oxalic Acid under Subcritical Water Conditions. MINERALS 2022. [DOI: 10.3390/min12030306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Black mineral sands are widely used to obtain titanium dioxide, titanium, and, more recently, a variety of iron–titanium oxide nanostructures. Highly corrosive mineral acids or alkalis are commonly employed for this purpose. Hence, it is desirable to find eco-friendly ways to process these minerals, deriving high-added value materials. In this study, an Ecuadorian mineral sand precursor (0.6FeTiO3∙0.4Fe2O3 solid solution) was treated with oxalic acid aqueous solutions under subcritical water conditions. The synthesis was conducted in a batch reactor operating at 155 °C, 50 bar, and 700 rpm for 12 h, varying the oxalic acid concentration (0.1, 0.5 to 1.0 M). The as-obtained compounds were physically separated, dried, and analyzed by X-ray powder diffraction, scanning electron microscopy, and Raman spectroscopy. The characterization showed that the precursor was completely converted into two main products, ferrous oxalate, and titanium dioxide polymorphs. Rutile was always found in the as-synthesized products, while anatase only crystallized with high oxalic acid concentrations (0.5 and 1.0 M). These results open the possibility to develop more sustainable routes to synthesize iron and titanium-based materials with promising applications.
Collapse
|