1
|
Balasubramaniyan NG, Perumal P. Highly efficient electrochemical detection of H 2O 2 utilizing an innovative copper porphyrinic nanosheet decorated bismuth metal-organic framework modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:624-638. [PMID: 38198128 DOI: 10.1039/d3ay01804k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The ability to detect hydrogen peroxide is important due to the presence in biological systems. Researchers are highly interested in developing efficient electrochemical hydrogen peroxide sensors. Metal-organic frameworks (MOFs) with their composites, an emerging class of porous materials, are ideal candidates for heterogeneous catalysts because of their versatile functionalities. Using a facile solvothermal reaction, we fabricated a 2D Cu-TCPP nanosheet uniformly grown on a 3D Bi-MOF. The process takes advantage of the large surface area and pore volume of the Bi-MOF while maintaining the crystallinity of Bi-BTC when Cu-TCPP is added to the surface. The sensor was fabricated by depositing the Bi-BTC-Cu-TCPP nanocomposites on a glassy carbon electrode to conduct electrochemical measurements such as cyclic voltammetry and electrochemical impedance spectroscopy. Finally, differential pulse voltammetry was utilized to investigate the effect of hydrogen peroxide on the electrochemical activity of Bi-BTC-Cu-TCPP deposited on a glassy carbon electrode. This electrode showed high electrochemical performance activity for the reduction of hydrogen peroxide. The sensor showed a linear response to H2O2 in the 10-120 μM concentration range, with a detection limit of 0.20 μM. The sensor was also stable and selective for H2O2 in the presence of other interfering species. This work demonstrates the potential of nanocomposite-based electrochemical sensors for sensitive and selective detection of H2O2. Besides, the modified electrode has many advantages, including remarkable catalytic activity, long-term stability, good reproducibility, and a good signal response during H2O2 reduction.
Collapse
Affiliation(s)
- Nandha Gopal Balasubramaniyan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603 203, India.
| | - Panneerselvam Perumal
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603 203, India.
| |
Collapse
|
2
|
Fandzloch M, Bodylska W, Trzcińska-Wencel J, Golińska P, Roszek K, Wiśniewska J, Bartmański M, Lewińska A, Jaromin A. Cu-HKUST-1 and Hydroxyapatite-The Interface of Two Worlds toward the Design of Functional Materials Dedicated to Bone Tissue Regeneration. ACS Biomater Sci Eng 2023; 9:4646-4653. [PMID: 37526989 PMCID: PMC10428089 DOI: 10.1021/acsbiomaterials.3c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
A novel composite based on biocompatible hydroxyapatite (HA) nanoparticles and Cu-HKUST-1 (Cu-HKUST-1@HA) has been prepared following a layer-by-layer strategy. Cu-HKUST-1 was carefully selected from a group of four Cu-based metal-organic frameworks as the material with the most promising antimicrobial activity. The formation of a colloidal Cu-HKUST-1 layer on HA nanoparticles was confirmed by various techniques, e.g., infrared spectroscopy, powder X-ray diffraction, N2 sorption, transmission electron microscopy imaging, electron paramagnetic resonance, and X-ray absorption spectroscopy. Importantly, such a Cu-HKUST-1 layer significantly improved the nanomechanical properties of the composite, with Young's modulus equal to that of human cortical bone (13.76 GPa). At the same time, Cu-HKUST-1@HA has maintained the negative zeta potential (-16.3 mV in pH 7.4) and revealed biocompatibility toward human dermal fibroblasts up to a concentration of 1000 μg/mL, without inducing ex vivo hemolysis. Chemical stability studies of the composite over 21 days in a buffer-simulated physiological fluid allowed a detailed understanding of the transformations that the Cu-HKUST-1@HA undergoes over time. Finally, it has been confirmed that the Cu-HKUST-1 layer provides antibacterial properties to HA, and the synergism reached in this way makes it promising for bone tissue regeneration.
Collapse
Affiliation(s)
- Marzena Fandzloch
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| | - Weronika Bodylska
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| | - Joanna Trzcińska-Wencel
- Faculty
of Biological and Veterinary Sciences, Nicolaus
Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Patrycja Golińska
- Faculty
of Biological and Veterinary Sciences, Nicolaus
Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Katarzyna Roszek
- Faculty
of Biological and Veterinary Sciences, Nicolaus
Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Joanna Wiśniewska
- Faculty
of Chemistry, Nicolaus Copernicus University
in Toruń, Gagarina
7, 87-100 Toruń, Poland
| | - Michał Bartmański
- Faculty
of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Agnieszka Lewińska
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Anna Jaromin
- Department
of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
3
|
García-Casas I, Montes A, de los Santos DM, Valor D, Pereyra C, de la Ossa EM. Generation of high-porosity cerium oxide nanoparticles and their functionalization with caryophyllene oxide using supercritical carbon dioxide. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
4
|
Preparation of Hierarchically Porous PVP/ZIF-8 in Supercritical CO2 by PVP-Induced Defect-Formation Method for High-Efficiency Gas Adsorption. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
5
|
Kubovics M, Careta O, Vallcorba O, Romo-Islas G, Rodríguez L, Ayllón JA, Domingo C, Nogués C, López-Periago AM. Supercritical CO 2 Synthesis of Porous Metalloporphyrin Frameworks: Application in Photodynamic Therapy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:1080-1093. [PMID: 36818591 PMCID: PMC9933429 DOI: 10.1021/acs.chemmater.2c03018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
A series of porous metalloporphyrin frameworks prepared from the 5,10,15,20-tetra(4-pyridyl)porphyrin (H2TPyP) linker and four metal complexes, M(hfac)2 M = Cu(II), Zn(II), Co(II), and Ni(II) (hfac: 1,1,1,5,5,5-hexafluoroacetylacetonate), were obtained using supercritical CO2 (scCO2) as a solvent. All the materials, named generically as [M-TPyP] n , formed porous metal-organic frameworks (MOFs), with surface areas of ∼450 m2 g-1. All MOFs were formed through the coordination of the metal to the exocyclic pyridine moieties in the porphyrin linker. For Cu(II), Zn(II), and Co(II), incomplete metal coordination of the inner pyrrole ring throughout the structure was observed, giving place to MOFs with substitutional defects and leading to a certain level of disorder and limited crystallinity. These samples, prepared using scCO2, were precipitated as nano- to micrometric powders. Separately, a layering technique from a mixture of organic solvents was used to crystallize high-quality crystals of the Co(II) based MOF, obtained with the formula [{Co(hfac)2}2H2TPyP] n . The crystal structure of this MOF was elucidated by single-crystal synchrotron X-ray diffraction. The Zn(II)-based MOF was selected as a potential photodynamic therapy drug in the SKBR-3 tumoral cell line showing outstanding performance. This MOF resulted to be nontoxic, but after 15 min of irradiation at 630 nm, using either 1 or 5 μM concentration of the product, almost 70% of tumor cells died after 72 h.
Collapse
Affiliation(s)
- Márta Kubovics
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB s/n, 08193Bellaterra, Spain
| | - Oriol Careta
- Department
de Biologia Cel·lular, Fisiologia i Immunologia. Universtitat Autònoma de Barcelona (UAB), Campus UAB s/n, 08193Bellaterra, Spain
| | - Oriol Vallcorba
- ALBA
Synchrotron Light Source, 08290Cerdanyola del Vallés, Spain
| | - Guillermo Romo-Islas
- Department
of Inorganic and Organic Chemistry, Barcelona
University, Martí
i Franquès 1-11, 08028Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), Barcelona University, Campus UB s/n, 08028Barcelona, Spain
| | - Laura Rodríguez
- Department
of Inorganic and Organic Chemistry, Barcelona
University, Martí
i Franquès 1-11, 08028Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), Barcelona University, Campus UB s/n, 08028Barcelona, Spain
| | - Jose A. Ayllón
- Department
de Química, Universtitat Autònoma
de Barcelona (UAB), Campus
UAB s/n, 08193Bellaterra, Spain
| | - Concepción Domingo
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB s/n, 08193Bellaterra, Spain
| | - Carme Nogués
- Department
de Biologia Cel·lular, Fisiologia i Immunologia. Universtitat Autònoma de Barcelona (UAB), Campus UAB s/n, 08193Bellaterra, Spain
| | - Ana M. López-Periago
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB s/n, 08193Bellaterra, Spain
| |
Collapse
|
6
|
Recent Advances in Metal-Organic Framework (MOF) Asymmetric Membranes/Composites for Biomedical Applications. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a new class of porous crystalline materials composed of metal and organic material. MOFs have fascinating properties, such as fine tunability, large specific surface area, and high porosity. MOFs are widely used for environmental protection, biosensors, regenerative medicine, medical engineering, cell therapy, catalysts, and drug delivery. Recent studies have reported various significant properties of MOFs for biomedical applications, such as drug detection and delivery. In contrast, MOFs have limitations such as low stability and low specificity in binding to the target. MOF-based membranes improve the stability and specificity of conventional MOFs by increasing the surface area and developing the possibility of MOF-ligand binding, while conjugated membranes dramatically increase the area of active functional groups. This special property makes them attractive for drug and biosensor fabrication, as both the spreading and solubility components of the porosity can be changed. Asymmetric membranes are a structure with high potential in the biomedical field, due to the different characteristics on its two surfaces, the possibility of adjusting various properties such as the size of porosity, transfer rate and selectivity, and surface properties such as hydrophilicity and hydrophobicity. MOF assisted asymmetric membranes can provide a platform with different properties and characteristics in the biomedical field. The latest version of MOF materials/membranes has several potential applications, especially in medical engineering, cell therapy, drug delivery, and regenerative medicine, which will be discussed in this review, along with their advantages, disadvantages, and challenges.
Collapse
|
7
|
Cruz Reina LJ, López GD, Durán-Aranguren DD, Quiroga I, Carazzone C, Sierra R. Compressed fluids and Soxhlet extraction for the valorization of compounds from Colombian cashew (Anacardium occidentale) nut shells aimed at a cosmetic application. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Supercritical CO2-assisted Impregnation/Deposition of Polymeric Materials With Pharmaceutical, Nutraceutical, and Biomedical Applications: A Review (2015-2021). J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Baldino L, Reverchon E. Continuous supercritical CO2 assisted process for the production of nano-niosomes loaded with a second-generation antibiotic for ocular therapy. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|