1
|
Zhou R, Liu Y, Li M, Cao J, Cheng J, Wei D, Li B, Wang Y, Jia D, Jiang B, Valiev RZ, Zhou Y. Electrical Responsive Coating with a Multilayered TiO 2-SnO 2-RuO 2 Heterostructure on Ti for Controlling Antibacterial Ability and Improving Osseointegration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39064-39078. [PMID: 39028896 DOI: 10.1021/acsami.4c07114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The bacterial infection and poor osseointegration of Ti implants could significantly compromise their applications in bone repair and replacement. Based on the carrier separation ability of the heterojunction and the redox reaction of pseudocapacitive metal oxides, we report an electrically responsive TiO2-SnO2-RuO2 coating with a multilayered heterostructure on a Ti implant. Owing to the band gap structure of the TiO2-SnO2-RuO2 coating, electron carriers are easily enriched at the coating surface, enabling a response to the endogenous electrical stimulation of the bone. With the formation of SnO2-RuO2 pseudocapacitance on the modified surface, the postcharging mode can significantly change the surface chemical state of the coating due to the redox reaction, enhancing the antibacterial ability and osteogenesis-related gene expression of the human bone marrow mesenchymal stem cells. Owing to the attraction for Ca2+, only the negatively postcharged SnO2@RuO2 can promote apatite deposition. The in vivo experiment reveals that the S-SnO2@RuO2-NP could effectively kill the bacteria colonized on the surface and promote osseointegration with the synostosis bonding interface. Thus, negatively charging the electrically responsive coating of TiO2-SnO2-RuO2 is a good strategy to endow modified Ti implants with excellent antibacterial ability and osseointegration.
Collapse
Affiliation(s)
- Rui Zhou
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ming Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, PR China
| | - Jianyun Cao
- Key Laboratory of LCR Materials and Devices of Yunnan Province, School of Materials and Energy, Yunnan University, Kunming 650500, PR China
| | - Jiahui Cheng
- The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an 710004, PR China
| | - Daqing Wei
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Baoqiang Li
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Yaming Wang
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Dechang Jia
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Bailing Jiang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Ruslan Z Valiev
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Institute of Physics of Advanced Materials, Ufa University of Science and Technology, Ufa 450076, Russia
| | - Yu Zhou
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| |
Collapse
|
2
|
Zhao X, Zhang X, Zhou Z, Meng F, Liu R, Zhang M, Hao Y, Xie Q, Sun X, Zhang B, Wang X. Atomic layer deposited TiO 2 nanofilm on titanium implant for reduced the release of particles. Front Bioeng Biotechnol 2024; 12:1346404. [PMID: 38737539 PMCID: PMC11082355 DOI: 10.3389/fbioe.2024.1346404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Objective: Titanium implants are widely used in surgeries for their biocompatibility and mechanical properties. However, excessive titanium particle release can cause implant failure. This study explores Atomic Layer Deposition (ALD) to coat commercially pure titanium (Cp-Ti) with TiO2, aiming to improve its frictional and corrosion resistance while reducing particle release. By comparing TiO2 films with varying ALD cycle numbers, we assess surface properties, particle release, friction, and corrosion performance, providing insights into mitigating particle release from implants. Methods: Cp-Ti surfaces were prepared and coated with TiO2 films of 100, 300, and 500 ALD cycles. Surface characterization involved SEM, EDX, and XRD. Friction was tested using SEM, nanoindentation, and ICP-MS. Corrosion resistance was evaluated through immersion tests and electrochemical analysis. Cytotoxicity was assessed using BMSCs. Results: Surface characterization revealed smoother surfaces with increased ALD cycles, confirming successful TiO2 deposition. Friction testing showed reduced friction coefficients with higher ALD cycles, supported by nanoindentation results. Corrosion resistance improved with increasing ALD cycles, as evidenced by electrochemical tests and reduced titanium release. Cytotoxicity studies showed no significant cytotoxic effects. Conclusion: ALD-coated TiO2 films significantly enhance frictional and corrosion resistance of titanium implants while reducing particle release. The study underscores the importance of ALD cycle numbers in optimizing film performance, offering insights for designing implants with improved properties.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Zilan Zhou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Fanchun Meng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Ruilin Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Mengyuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Xiaojun Sun
- Department of Stomatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| |
Collapse
|
3
|
Ahuja N, Awad K, Yang S, Dong H, Mikos A, Aswath P, Young S, Brotto M, Varanasi V. SiON x Coating Regulates Mesenchymal Stem Cell Antioxidant Capacity via Nuclear Erythroid Factor 2 Activity under Toxic Oxidative Stress Conditions. Antioxidants (Basel) 2024; 13:189. [PMID: 38397787 PMCID: PMC10885901 DOI: 10.3390/antiox13020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Healing in compromised and complicated bone defects is often prolonged and delayed due to the lack of bioactivity of the fixation device, secondary infections, and associated oxidative stress. Here, we propose amorphous silicon oxynitride (SiONx) as a coating for the fixation devices to improve both bioactivity and bacteriostatic activity and reduce oxidative stress. We aimed to study the effect of increasing the N/O ratio in the SiONx to fine-tune the cellular activity and the antioxidant effect via the NRF2 pathway under oxidative stress conditions. The in vitro studies involved using human mesenchymal stem cells (MSCs) to examine the effect of SiONx coatings on osteogenesis with and without toxic oxidative stress. Additionally, bacterial growth on SiONx surfaces was studied using methicillin-resistant Staphylococcus aureus (MRSA) colonies. NRF2 siRNA transfection was performed on the hMSCs (NRF2-KD) to study the antioxidant response to silicon ions. The SiONx implant surfaces showed a >4-fold decrease in bacterial growth vs. bare titanium as a control. Increasing the N/O ratio in the SiONx implants increased the alkaline phosphatase activity >1.5 times, and the other osteogenic markers (osteocalcin, RUNX2, and Osterix) were increased >2-fold under normal conditions. Increasing the N/O ratio in SiONx enhanced the protective effects and improved cell viability against toxic oxidative stress conditions. There was a significant increase in osteocalcin activity compared to the uncoated group, along with increased antioxidant activity under oxidative stress conditions. In NRF2-KD cells, there was a stunted effect on the upregulation of antioxidant markers by silicon ions, indicating a role for NRF2. In conclusion, the SiONx coatings studied here displayed bacteriostatic properties. These materials promoted osteogenic markers under toxic oxidative stress conditions while also enhancing antioxidant NRF2 activity. These results indicate the potential of SiONx coatings to induce in vivo bone regeneration in a challenging oxidative stress environment.
Collapse
Affiliation(s)
- Neelam Ahuja
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Kamal Awad
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76010, USA
- Department of Material Science and Engineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Su Yang
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76010, USA
| | - He Dong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Antonios Mikos
- Center for Engineering Complex Tissues, Center for Excellence in Tissue Engineering, Rice University, Houston, TX 77005, USA
| | - Pranesh Aswath
- Department of Material Science and Engineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Venu Varanasi
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76010, USA
- Department of Material Science and Engineering, University of Texas at Arlington, Arlington, TX 76010, USA
| |
Collapse
|
4
|
Ma M, Zhao M, Ji R, Guo Y, Li D, Zeng S. Adjusting the Dose of Ag-Ion Implantation on TiN-Ag-Modified SLA-Ti Creates Different Micronanostructures: Implications on Bacteriostasis, Biocompatibility, and Osteogenesis in Dental Implants. ACS OMEGA 2023; 8:39269-39278. [PMID: 37901550 PMCID: PMC10601048 DOI: 10.1021/acsomega.3c04769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
The prevention of aseptic loosening and peri-implantitis is crucial for the success of dental implant surgery. In this study, different doses of Ag-implanted TiN/Ag nanomultilayers were prepared on the sandblasting with large grit and acid etching (SLA)-Ti surface using a multiarc ion-plating system and an ion-implantation system, respectively. The physical and chemical properties of the samples were assessed using various techniques, including scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, inductively coupled plasma atomic emission spectrometry, and water contact angle measurements. In addition, the applicability and biosafety of the SLA/1 × 1017-Ag and SLA/1 × 1018-Ag surfaces were determined via biocompatibility testing in vivo and in vitro. The results demonstrated that the physical and chemical properties of SLA/1 × 1017-Ag and SLA/1 × 1018-Ag surfaces were different to some extent. However, compared with SLA-Ti, silver-loaded TiN/Ag-modified SLA-Ti surfaces (SLA/1 × 1018-Ag) with enhanced bacteriostatis, osteogenesis, and biocompatibility have great potential for dental applications.
Collapse
Affiliation(s)
- Ming Ma
- Department
of Pediatric dentistry, School and Hospital of Stomatology, Guangdong
Engineering Research Center of Oral Restoration and Reconstruction,
Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative
Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Mengli Zhao
- School
of Electronic Engineering, Chaohu University, Anhui 238024, China
| | - Ruotong Ji
- Department
of Pediatric dentistry, School and Hospital of Stomatology, Guangdong
Engineering Research Center of Oral Restoration and Reconstruction,
Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative
Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Yi Guo
- Department
of Pediatric dentistry, School and Hospital of Stomatology, Guangdong
Engineering Research Center of Oral Restoration and Reconstruction,
Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative
Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Dejun Li
- College
of Physics and Materials Science, Tianjin
Normal University, Tianjin 300387, China
| | - Sujuan Zeng
- Department
of Pediatric dentistry, School and Hospital of Stomatology, Guangdong
Engineering Research Center of Oral Restoration and Reconstruction,
Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative
Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| |
Collapse
|
5
|
Awad K, Ahuja N, Yacoub AS, Brotto L, Young S, Mikos A, Aswath P, Varanasi V. Revolutionizing bone regeneration: advanced biomaterials for healing compromised bone defects. FRONTIERS IN AGING 2023; 4:1217054. [PMID: 37520216 PMCID: PMC10376722 DOI: 10.3389/fragi.2023.1217054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023]
Abstract
In this review, we explore the application of novel biomaterial-based therapies specifically targeted towards craniofacial bone defects. The repair and regeneration of critical sized bone defects in the craniofacial region requires the use of bioactive materials to stabilize and expedite the healing process. However, the existing clinical approaches face challenges in effectively treating complex craniofacial bone defects, including issues such as oxidative stress, inflammation, and soft tissue loss. Given that a significant portion of individuals affected by traumatic bone defects in the craniofacial area belong to the aging population, there is an urgent need for innovative biomaterials to address the declining rate of new bone formation associated with age-related changes in the skeletal system. This article emphasizes the importance of semiconductor industry-derived materials as a potential solution to combat oxidative stress and address the challenges associated with aging bone. Furthermore, we discuss various material and autologous treatment approaches, as well as in vitro and in vivo models used to investigate new therapeutic strategies in the context of craniofacial bone repair. By focusing on these aspects, we aim to shed light on the potential of advanced biomaterials to overcome the limitations of current treatments and pave the way for more effective and efficient therapeutic interventions for craniofacial bone defects.
Collapse
Affiliation(s)
- Kamal Awad
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
- Department of Materials Science and Engineering, College of Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Neelam Ahuja
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
| | - Ahmed S. Yacoub
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Leticia Brotto
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
| | - Simon Young
- Katz Department of Oral and Maxillofacial Surgery, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Antonios Mikos
- Center for Engineering Complex Tissues, Center for Excellence in Tissue Engineering, J.W. Cox Laboratory for Biomedical Engineering, Rice University, Houston, TX, United States
| | - Pranesh Aswath
- Department of Materials Science and Engineering, College of Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Venu Varanasi
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
- Department of Materials Science and Engineering, College of Engineering, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|