1
|
Kang SU, Kim HJ, Ma S, Oh DY, Jang JY, Seo C, Lee YS, Kim CH. Liquid plasma promotes angiogenesis through upregulation of endothelial nitric oxide synthase-induced extracellular matrix metabolism: potential applications of liquid plasma for vascular injuries. Cell Commun Signal 2024; 22:138. [PMID: 38374138 PMCID: PMC10875778 DOI: 10.1186/s12964-023-01412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/25/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Applications of nonthermal plasma have expanded beyond the biomedical field to include antibacterial, anti-inflammatory, wound healing, and tissue regeneration. Plasma enhances epithelial cell repair; however, the potential damage to deep tissues and vascular structures remains under investigation. RESULT This study assessed whether liquid plasma (LP) increased nitric oxide (NO) production in human umbilical vein endothelial cells by modulating endothelial NO synthase (eNOS) phosphorylation and potential signaling pathways. First, we developed a liquid plasma product and confirmed the angiogenic effect of LP using the Matrigel plug assay. We found that the NO content increased in plasma-treated water. NO in plasma-treated water promoted cell migration and angiogenesis in scratch and tube formation assays via vascular endothelial growth factor mRNA expression. In addition to endothelial cell proliferation and migration, LP influenced extracellular matrix metabolism and matrix metalloproteinase activity. These effects were abolished by treatment with NG-L-monomethyl arginine, a specific inhibitor of NO synthase. Furthermore, we investigated the signaling pathways mediating the phosphorylation and activation of eNOS in LP-treated cells and the role of LKB1-adenosine monophosphate-activated protein kinase in signaling. Downregulation of adenosine monophosphate-activated protein kinase by siRNA partially inhibited LP-induced eNOS phosphorylation, angiogenesis, and migration. CONCLUSION The present study suggests that LP treatment may be a novel strategy for promoting angiogenesis in vascular damage. Video Abstract.
Collapse
Affiliation(s)
- Sung Un Kang
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Sukhwal Ma
- Medical Accelerator Research Team, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowonro, Nowon-gu, Seoul, 01812, South Korea
| | - Doo-Yi Oh
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Jeon Yeob Jang
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Chorong Seo
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Yun Sang Lee
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea.
| |
Collapse
|
2
|
Zhang D, Jin C, Han T, Chen J, Ali Raza M, Li B, Wang L, Yan H. Sinomenine promotes flap survival by upregulating eNOS and eNOS-mediated autophagy via PI3K/AKT pathway. Int Immunopharmacol 2023; 116:109752. [PMID: 36739833 DOI: 10.1016/j.intimp.2023.109752] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 02/05/2023]
Abstract
Large skin defects and surgical tissue reconstructions are frequently covered utilizing random flaps. The flap has the advantage of being designed according to the size and shape of a surgical wound. However, the necrosis of the distal part of the flap restricts the clinical application of flaps. Sinomenine (SIN) is the major active component of sinomenium acutum. SIN has been demonstrated to inhibit oxidative stress and stimulate autophagy in a cell, animal, and clinical studies. The protective and proliferative effects of sinomenium on HUVECs were evaluated by scratched test, CCK-8, and EDU assays. For the flap survival, we established a mouse random pattern flap model and observed the effects of SIN injected intraperitoneally. The survival area and blood flow intensity of the flap in sinomenium group were significantly increased compared to the control group. Our results demonstrate that SIN promotes flap survival. Sinomenium enhances eNOS expression in the flap and reduces the level of oxidative stress, promotes autophagy flux increase, reduces apoptosis, and promotes angiogenesis. Having a therapeutic benefit of SIN, Autophagy inhibitor 3-MA shows its critical role by reversing the beneficial effects of SIN, and the nitric oxide synthase inhibitor l-NAME both stimulated HUVECs that explore the relationship between autophagy flux and nitric oxide synthase. Furthermore, the mechanism in our study reveals the changes in the signal pathway of PI3K/AKT, the protective effect of SIN during antioxidant activity, the activation of eNOS through PI3K/AKT signaling pathway affects autophagy through the eNOS system, and promote the random flap survival.
Collapse
Affiliation(s)
- Dupiao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chen Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tao Han
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianpeng Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mazhar Ali Raza
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Baolong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hede Yan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Suppression of Oxygen Radicals Protects Diabetic Endothelium Damage and Tissue Perfusion in a Streptozotocin-Induced Diabetes Rodent Model. Ann Plast Surg 2020; 82:S18-S22. [PMID: 30540602 DOI: 10.1097/sap.0000000000001723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Oxygen free radicals play a central role in diabetic angiopathy. This study investigated whether suppression of oxygen radicals could decrease endothelial damage and increase peripheral tissue circulation in a diabetic rodent model. METHODS Sprague-Dawley rats were treated using streptozotocin to induce diabetes. The experiments were performed 4 weeks after diabetes induction: group 1: control, consisted of normal rats; group 2: diabetes, did not receive treatment; groups III (SOD10) and IV (SOD50): diabetes, received polyethylene glycol-conjugated superoxide dismutase (SOD), an antioxidant, 10 and 50 U/kg per day intraperitoneally for 4 weeks. Each subgroup consisted of 10 rats. Oxygen radicals in blood mononuclear cells were detected by flow cytometry. The blood lipid peroxidation byproduct malondialdehyde was measured. Tissue perfusion of hind limb was examined by laser Doppler. The expressions of oxygen radicals, as demonstrated by 8-hydroxyguanosine (8-OG), and constitutive endothelial nitric oxide synthase in distal femoral vessels were examined by immunohistochemical staining. RESULTS Oxygen radicals, as demonstrated by H2O2 with 2',7'-dichlorofluorescin diacetate-conjugated expression, were significantly increased in diabetic rats. However, the SOD treatment groups significantly suppressed the H2O2 reaction. Diabetic-induced high malondialdehyde levels were significantly suppressed in the SOD50 group. The topical tissue blood perfusion was significantly increased as detected by laser Doppler in SOD10 and SOD50 groups, as compared with that in diabetes without treatment group (P < 0.05). The expression of 8-OG was markedly increased in the diabetic endothelium and subintima compared with that in normal vessels. Polyethylene glycol-conjugated SOD significantly suppressed 8-OG expression and protected endothelial nitric oxide synthase expression. CONCLUSIONS Suppression of oxygen radicals, particularly with the higher dosage of polyethylene glycol-conjugated SOD at 50 U/kg per day, could have a positive effect to protect against endothelial damage and enhance peripheral perfusion in diabetes.
Collapse
|
4
|
Turan I, Sayan Ozacmak H, Ozacmak VH, Barut F, Ozacmak ID. The effects of S-nitrosoglutathione on intestinal ischemia reperfusion injury and acute lung injury in rats: Roles of oxidative stress and NF-κB. Tissue Cell 2018; 52:35-41. [PMID: 29857826 DOI: 10.1016/j.tice.2018.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intestinal ischemia and reperfusion (I/R) induces oxidative stress, inflammatory response, and acute lung injury. S-nitrosoglutathione (GSNO), a nitric oxide donor, has been documented to have protective effects on experimental ischemia models. AIM The aim of this study was to examine the effect of GSNO on I/R-induced intestine and lung damage and detect the potential mechanisms emphasizing the protective role of GSNO. METHODS Intestinal I/R was induced by occluding the superior mesenteric artery for 30 min followed by reperfusion for 180 min. GSNO was administered intravenously before reperfusion period (0.25 mg/kg). The levels of lipid peroxidation, reduced glutathione, and myeloperoxidase (MPO), histopathological evaluation and immunohistochemical expressions of both nuclear factor KappaB (NF-κB) and inducible nitric oxide (iNOS) in intestine and lung tissues were assessed. RESULTS Histolopathologic evaluation demonstrated that intestinal I/R induced severe damages in the intestine and the lung tissues. Histopathological scores decreased with GSNO treatment. GSNO treatment reduced lipid peroxidation and MPO levels and inhibited expression of NF-κB and iNOS in the intestine. CONCLUSION Our results suggest that GSNO treatment may ameliorate the intestinal and lung injury in rats, at least in part, by inhibiting inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Inci Turan
- Department of Physiology, Bulent Ecevit University Faculty of Medicine, Turkey.
| | - Hale Sayan Ozacmak
- Department of Physiology, Bulent Ecevit University Faculty of Medicine, Turkey
| | - V Haktan Ozacmak
- Department of Physiology, Bulent Ecevit University Faculty of Medicine, Turkey
| | - Figen Barut
- Department of Pathology, Bulent Ecevit University Faculty of Medicine, Turkey
| | - I Diler Ozacmak
- Or-Ahayim Private Balat Hospital, Department of General surgery, Bulent Ecevit University Faculty of Medicine, Turkey
| |
Collapse
|
5
|
Kolbenschlag J, Sogorski A, Timmermann C, Harati K, Daigeler A, Hirsch T, Goertz O, Lehnhardt M. Ten minutes of ischemia is superior to shorter intervals for the remote ischemic conditioning of human microcirculation. Clin Hemorheol Microcirc 2017; 66:239-248. [DOI: 10.3233/ch-170268] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- J. Kolbenschlag
- Department of Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Martin-Luther-Hospital Berlin, Berlin, Germany
| | - A. Sogorski
- Department of Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Department of Surgery, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - C. Timmermann
- Department of Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - K. Harati
- Department of Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - A. Daigeler
- Department of Plastic, Reconstructive, Hand and Burn Surgery, BG-Trauma Center, Eberhard Karls University Tübingen, Tübingen, Germany
| | - T. Hirsch
- Department of Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - O. Goertz
- Department of Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Martin-Luther-Hospital Berlin, Berlin, Germany
| | - M. Lehnhardt
- Department of Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Özalp B, Elbey H, Aydın H, Tekkesin MS, Uzun H. The effect of coenzyme Q10 on venous ischemia reperfusion injury. J Surg Res 2016; 204:304-310. [DOI: 10.1016/j.jss.2016.04.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/08/2016] [Accepted: 04/29/2016] [Indexed: 11/15/2022]
|
7
|
Anti-hypertensive property of a nickel-piperazine/NO donor in spontaneously hypertensive rats. Pharmacol Res 2016; 107:352-359. [DOI: 10.1016/j.phrs.2016.03.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022]
|
8
|
|
9
|
Simmers P, Gishto A, Vyavahare N, Kothapalli CR. Nitric oxide stimulates matrix synthesis and deposition by adult human aortic smooth muscle cells within three-dimensional cocultures. Tissue Eng Part A 2015; 21:1455-70. [PMID: 25597545 DOI: 10.1089/ten.tea.2014.0363] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vascular diseases are characterized by the over-proliferation and migration of aortic smooth muscle cells (SMCs), and degradation of extracellular matrix (ECM) within the vessel wall, leading to compromise in cell-cell and cell-matrix signaling pathways. Tissue engineering approaches to regulate SMC over-proliferation and enhance healthy ECM synthesis showed promise, but resulted in low crosslinking efficiency. Here, we report the benefits of exogenous nitric oxide (NO) cues, delivered from S-Nitrosoglutathione (GSNO), to cell proliferation and matrix deposition by adult human aortic SMCs (HA-SMCs) within three-dimensional (3D) biomimetic cocultures. A coculture platform with two adjacent, permeable 3D culture chambers was developed to enable paracrine signaling between vascular cells. HA-SMCs were cultured in these chambers within collagen hydrogels, either alone or in the presence of human aortic endothelial cells (HA-ECs) cocultures, and exogenously supplemented with varying GSNO dosages (0-100 nM) for 21 days. Results showed that EC cocultures stimulated SMC proliferation within GSNO-free cultures. With increasing GSNO concentration, HA-SMC proliferation decreased in the presence or absence of EC cocultures, while HA-EC proliferation increased. GSNO (100 nM) significantly enhanced the protein amounts synthesized by HA-SMCs, in the presence or absence of EC cocultures, while lower dosages (1-10 nM) offered marginal benefits. Multi-fold increases in the synthesis and deposition of elastin, glycosaminoglycans, hyaluronic acid, and lysyl oxidase crosslinking enzyme (LOX) were noted at higher GSNO dosages, and coculturing with ECs significantly furthered these trends. Similar increases in TIMP-1 and MMP-9 levels were noted within cocultures with increasing GSNO dosages. Such increases in matrix synthesis correlated with NO-stimulated increases in endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) expression within EC and SMC cultures, respectively. Results attest to the benefits of delivering NO cues to suppress SMC proliferation and promote robust ECM synthesis and deposition by adult human SMCs, with significant applications in tissue engineering, biomaterial scaffold development, and drug delivery.
Collapse
Affiliation(s)
- Phillip Simmers
- 1 Department of Chemical and Biomedical Engineering, Cleveland State University , Cleveland, Ohio
| | | | | | | |
Collapse
|
10
|
Aggarwal A, Khera A, Singh I, Sandhir R. S-nitrosoglutathione prevents blood-brain barrier disruption associated with increased matrix metalloproteinase-9 activity in experimental diabetes. J Neurochem 2014; 132:595-608. [PMID: 25187090 DOI: 10.1111/jnc.12939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/10/2014] [Accepted: 08/20/2014] [Indexed: 12/14/2022]
Abstract
Hyperglycemia is known to induce microvascular complications, thereby altering blood-brain barrier (BBB) permeability. This study investigated the role of matrix metalloproteinases (MMPs) and their endogenous inhibitors in increased BBB permeability and evaluated the protective effect of S-nitrosoglutathione (GSNO) in diabetes. Diabetes was induced in mice by intraperitoneal injection of streptozotocin (40 mg/kg body weight) for 5 days and GSNO was administered orally (100 μg/kg body weight) daily for 8 weeks after the induction of diabetes. A significant decline in cognitive functions was observed in diabetic mice assessed by Morris water maze test. Increased permeability to different molecular size tracers accompanied by edema and ion imbalance was observed in cortex and hippocampus of diabetic mice. Furthermore, activity of both pro and active MMP-9 was found to be significantly elevated in diabetic animals. Increased in situ gelatinase activity was observed in tissue sections and isolated microvessels from diabetic mice brain. The increase in activity of MMP-9 was attributed to increased mRNA and protein expression in diabetic mice. In addition, a significant decrease in mRNA and protein expression of tissue inhibitor of matrix metalloproteinase-1 was also observed in diabetic animals. However, GSNO supplementation to diabetic animals was able to abridge MMP-9 activation as well as tissue inhibitor of matrix metalloproteinase-1 levels, restoring BBB integrity and also improving learning and memory. Our findings clearly suggest that GSNO could prevent hyperglycemia-induced disruption of BBB by suppressing MMP-9 activity.
Collapse
Affiliation(s)
- Aanchal Aggarwal
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, India
| | - Alka Khera
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, India
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, India
| |
Collapse
|
11
|
Chang KP, Lai CS. Micro-RNA profiling as biomarkers in flap ischemia-reperfusion injury. Microsurgery 2012; 32:642-8. [PMID: 23097335 DOI: 10.1002/micr.22046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 08/02/2012] [Accepted: 08/09/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is usually the key and often plays an irreversible role to induce flap compromise in microvascular tissue transfers. This article aims to profile the expression of micro-RNAs (miRs) in free flap surgeries following IRI. METHODS The miRs expression profiling was initially surveyed in rat epigastric flap vessels using Agilent 350-Microarrayed miRs after IRI, and then quantified by real-time reverse transcription polymerase chain reaction in flap vessels and tissues (n = 5) at three intervals: before induction of ischemia (normoxia without IRI, sham), 2 and 72 hours after reperfusion following 2 hours of ischemia. Furthermore, for seven patients with free anterolateral thigh flap reconstruction, the miRs expression patterns in these flaps before induction of ischemia (normoxia), at 2 and 72 hours after reperfusion following an ischemic interval were investigated. RESULTS Four miRs (miR-96, miR-193-3p, miR-210, and miR-21) of 350 tested rat miRs were found to be positively significant. In rat flap vessels, the upregulation of these miRs at 72-hour reperfusion was statistically significant. These patterns were not noted in rat flap tissues, except for miR-96. However, there seemed to be no significant difference in human flap vessels between normoxia and 2-hour reperfusion following ischemia. In human flap tissue, significant upregulation of miR-193-3p, miR-210, and miR-21 was detected at 72-hour perfusion. CONCLUSIONS Our findings show some changes of four upregulated miRs in our model of IRI. We suggest that further investigation is needed to determine the role of miRs in IRI of microsurgical reconstruction.
Collapse
Affiliation(s)
- Kao-Ping Chang
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | |
Collapse
|
12
|
Glutathione in cerebral microvascular endothelial biology and pathobiology: implications for brain homeostasis. Int J Cell Biol 2012; 2012:434971. [PMID: 22745639 PMCID: PMC3382959 DOI: 10.1155/2012/434971] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/01/2012] [Indexed: 02/07/2023] Open
Abstract
The integrity of the vascular endothelium of the blood-brain barrier (BBB) is central to cerebrovascular homeostasis. Given the function of the BBB as a physical and metabolic barrier that buffers the systemic environment, oxidative damage to the endothelial monolayer will have significant deleterious impact on the metabolic, immunological, and neurological functions of the brain. Glutathione (GSH) is a ubiquitous major thiol within mammalian cells that plays important roles in antioxidant defense, oxidation-reduction reactions in metabolic pathways, and redox signaling. The existence of distinct GSH pools within the subcellular organelles supports an elegant mode for independent redox regulation of metabolic processes, including those that control cell fate. GSH-dependent homeostatic control of neurovascular function is relatively unexplored. Significantly, GSH regulation of two aspects of endothelial function is paramount to barrier preservation, namely, GSH protection against oxidative endothelial cell injury and GSH control of postdamage cell proliferation in endothelial repair and/or wound healing. This paper highlights our current insights and hypotheses into the role of GSH in cerebral microvascular biology and pathobiology with special focus on endothelial GSH and vascular integrity, oxidative disruption of endothelial barrier function, GSH regulation of endothelial cell proliferation, and the pathological implications of GSH disruption in oxidative stress-associated neurovascular disorders, such as diabetes and stroke.
Collapse
|
13
|
Khan M, Im YB, Shunmugavel A, Gilg AG, Dhindsa RK, Singh AK, Singh I. Administration of S-nitrosoglutathione after traumatic brain injury protects the neurovascular unit and reduces secondary injury in a rat model of controlled cortical impact. J Neuroinflammation 2009; 6:32. [PMID: 19889224 PMCID: PMC2777134 DOI: 10.1186/1742-2094-6-32] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/04/2009] [Indexed: 12/04/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of preventable death and serious morbidity in young adults. This complex pathological condition is characterized by significant blood brain barrier (BBB) leakage that stems from cerebral ischemia, inflammation, and redox imbalances in the traumatic penumbra of the injured brain. Once trauma has occurred, combating these exacerbations is the keystone of an effective TBI therapy. Following other brain injuries, nitric oxide modulators such as S-nitrosoglutathione (GSNO) maintain not only redox balance but also inhibit the mechanisms of secondary injury. Therefore, we tested whether GSNO shows efficacy in a rat model of experimental TBI. Methods TBI was induced by controlled cortical impact (CCI) in adult male rats. GSNO (50 μg/kg body weight) was administered at two hours after CCI. GSNO-treated injured animals (CCI+GSNO group) were compared with vehicle-treated injured animals (CCI+VEH group) in terms of tissue morphology, BBB leakage, edema, inflammation, cell death, and neurological deficit. Results Treatment of the TBI animals with GSNO reduced BBB disruption as evidenced by decreased Evan's blue extravasation across brain, infiltration/activation of macrophages (ED1 positive cells), and reduced expression of ICAM-1 and MMP-9. The GSNO treatment also restored CCI-mediated reduced expression of BBB integrity proteins ZO-1 and occludin. GSNO-mediated improvements in tissue histology shown by reduction of lesion size and decreased loss of both myelin (measured by LFB staining) and neurons (assayed by TUNEL) further support the efficacy of GSNO therapy. GSNO-mediated reduced expression of iNOS in macrophages as well as decreased neuronal cell death may be responsible for the histological improvement and reduced exacerbations. In addition to these biochemical and histological improvements, GSNO-treated injured animals recovered neurobehavioral functions as evaluated by the rotarod task and neurological score measurements. Conclusion GSNO is a promising candidate to be evaluated in humans after brain trauma because it not only protects the traumatic penumbra from secondary injury and improves overall tissue structure but also maintains the integrity of BBB and reduces neurologic deficits following CCI in a rat model of experimental TBI.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Kuo YR, Wang CT, Wang FS, Chiang YC, Wang CJ. Extracorporeal shock-wave therapy enhanced wound healing via increasing topical blood perfusion and tissue regeneration in a rat model of STZ-induced diabetes. Wound Repair Regen 2009; 17:522-30. [PMID: 19614917 DOI: 10.1111/j.1524-475x.2009.00504.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extracorporeal shock-wave therapy (ESWT) has a significant positive effect in accelerating chronic wound healing. However, the bio-mechanisms operating during ESWT of wounds remain unclear. This study investigated the effectiveness of ESWT in the enhancement of diabetic wound healing. A dorsal skin defect (area, 6 x 5 cm) in a streptozotocin-induced diabetes rodent model was used. Fifty male Wistar rats were divided into five groups. Group I consisted of nondiabetic control; group II included diabetic control receiving no ESWT; group III included rats that underwent one session of ESWT (ESW-1) on day 3 (800 impulses at 0.09 mJ/mm(2)) postwounding; group IV included rats that underwent two sessions of ESWT (ESW-2) on days 3 and 7; and group V included rats that underwent three sessions of ESWT (ESW-3) on days 3, 7, and 10. The wound healing was assessed clinically. Blood perfusion scan was performed with laser Doppler. The VEGF, eNOS, and PCNA were analyzed with immunohistochemical stain. The results revealed that the wound size was significantly reduced in the ESWT-treated rats, especially in the ESW-2 and ESW-3 groups, as compared with the control (p<0.01). Blood perfusion was significantly increased after ESWT compared with the controls. Histological findings revealed a significant reduction in the topical pro-inflammatory reaction in the ESWT group as compared with the control. In immunohistochemical stain, significant increases in VEGF, eNOS, and PCNA expressions were observed in the ESWT group, especially in the ESW-2 and ESW-3 groups, as compared with the control. In conclusion, treatment with an optimal session of ESWT significantly enhanced diabetic wound healing associated with increased neo-angiogenesis and tissue regeneration, and topical anti-inflammatory response.
Collapse
Affiliation(s)
- Yur-Ren Kuo
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Niao-Sung Hsiang, Kaohsiung 83305, Taiwan.
| | | | | | | | | |
Collapse
|
15
|
Portugal-Cohen M, Kohen R. Exposure of human keratinocytes to ischemia, hyperglycemia and their combination induces oxidative stress via the enzymes inducible nitric oxide synthase and xanthine oxidase. J Dermatol Sci 2009; 55:82-90. [DOI: 10.1016/j.jdermsci.2009.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/26/2009] [Accepted: 05/09/2009] [Indexed: 10/20/2022]
|
16
|
van den Heuvel MG, Buurman WA, Bast A, van der Hulst RR. Review: ischaemia–reperfusion injury in flap surgery. J Plast Reconstr Aesthet Surg 2009; 62:721-6. [DOI: 10.1016/j.bjps.2009.01.060] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Revised: 01/03/2009] [Accepted: 01/30/2009] [Indexed: 11/25/2022]
|
17
|
Kuo YR, Wang CT, Wang FS, Yang KD, Chiang YC, Wang CJ. Extracorporeal shock wave treatment modulates skin fibroblast recruitment and leukocyte infiltration for enhancing extended skin-flap survival. Wound Repair Regen 2009; 17:80-7. [PMID: 19152654 DOI: 10.1111/j.1524-475x.2008.00444.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Extracorporeal shock wave (ESW) treatment has a positive effect of rescuing ischemic skin flaps. This study assessed whether ESW treatment rescues the compromised flap tissue by suppressing the apoptosis of ischemic tissue and recruiting tissue remodeling. We used a random-pattern extended dorsal-skin-flap (10 x 3 cm) rodent model. Thirty-six male Sprague-Dawley rats were divided into three groups. Group I, the control group, received no treatment. Group II received one session of ESW treatment (500 impulses at 0.15 mJ/mm(2)) immediately after surgery. Group III received two sessions of ESW treatment, immediately and the day after the surgery. Results indicated that the necrotic area in the flaps in group II was significantly smaller than that of the flaps in group I (p<0.01). Transferase dUTP-nick end labeling (TUNEL) analysis revealed a significant decrease in the number of apoptotic cells in group II. Hydrogen peroxide (H(2)O(2)) expression in circulation blood was significantly decreased in group II on the day after ESW treatment. Immunohistochemical staining indicated that compared with no treatment, ESW treatment could substantially increase proliferating cell nuclear antigen (PCNA), endothelial nitric oxide synthase, and prolyl 4-hydroxylase (rPH) expression, reduce CD45 expression, and suppress 8-hydroxyguanosine (8-OG) expression in the ischemic zone of the flap tissue. In conclusion, ESW treatment administered at an optimal dosage exerts a positive effect of rescuing ischemic extended skin flaps. The mechanisms of action of ESWs involve modulation of oxygen radicals, attenuation of leukocyte infiltration, decrease in tissue apoptosis, and recruitment of skin fibroblasts, which results in increased flap tissue survival.
Collapse
Affiliation(s)
- Yur-Ren Kuo
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | | | | | | | | | | |
Collapse
|
18
|
Haorah J, Ramirez SH, Floreani N, Gorantla S, Morsey B, Persidsky Y. Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radic Biol Med 2008; 45:1542-50. [PMID: 18845238 PMCID: PMC2605399 DOI: 10.1016/j.freeradbiomed.2008.08.030] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 08/01/2008] [Accepted: 08/26/2008] [Indexed: 01/28/2023]
Abstract
Neuro-cognitive deficits, neuronal injury, and neurodegeneration are well documented in alcoholics, yet the underlying mechanisms remain elusive. Oxidative damage of mitochondria and cellular proteins intertwines with the progression of neuroinflammation and neurological disorders initiated by alcohol abuse. Here, we present the evidence that metabolism of ethanol in primary human neurons by alcohol dehydrogenase (ADH) or cytochrome P450-2E1 (CYP2E1) generates reactive oxygen species (ROS) and nitric oxide (NO) via induction of NADPH/xanthine oxidase (NOX/XOX) and nitric oxide synthase (NOS) in human neurons. The acetaldehyde-mediated increase in NOX, XOX, or NOS activity is regulated as a transcriptional rather than a translational process. Marked increase in the lipid peroxidation product (4-hydroxynonenal) and enhanced ROS generation coincides with decreased neuronal viability and diminished expression of neuronal marker (neurofilaments). Novel quantitative methods of ROS and NO detection help dissect the mechanisms of alcohol-induced neurodegeneration. Uncovering the basic mechanisms of oxidative neuronal injury will serve as the basis for development of new therapies.
Collapse
Affiliation(s)
- James Haorah
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5215, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Kuo YR, Wu WS, Hsieh YL, Wang FS, Wang CT, Chiang YC, Wang CJ. Extracorporeal Shock Wave Enhanced Extended Skin Flap Tissue Survival via Increase of Topical Blood Perfusion and Associated with Suppression of Tissue Pro-Inflammation. J Surg Res 2007; 143:385-92. [PMID: 17720194 DOI: 10.1016/j.jss.2006.12.552] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 12/03/2006] [Accepted: 12/21/2006] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Distal skin flap ischemic necrosis is a significant challenge in reconstructive surgery. This study assessed whether extracorporeal shock wave (ESW) treatment rescues compromised flap tissue by enhancing tissue perfusion and is associated with suppression of inflammatory response. METHODS This study used the dorsal skin random flap model in a rodent. Thirty-six male Sprague Dawley rats were divided into three groups. Group I, a control group, received no treatment. Group II was administrated 500 impulses of ESW treatment at 0.15 mJ/mm(2) as a single treatment immediately postoperatively. Group III received 500 impulses of ESW at 0.15 mJ/mm(2) applied immediately postoperatively and the day following surgery. Flap blood perfusion was detected by laser Doppler. Flap survival/necrosis area and histological staining of flap ischemia zone was performed on day 7 postoperatively. The tumor necrosis factor alpha, vascular endothelial growth factor, and proliferating cell nuclear antigen expression were evaluated with immunohistochemical staining. RESULTS Experimental results indicated that the necrotic area of the flaps in Group II was significantly reduced compared with that in the control group (13 +/- 2.6% versus 42 +/- 5.7%, P < 0.01). There was small and insignificant reduction in the necrotic area in Group III compared with the controls. Flap tissue blood perfusion was significantly increased postoperatively in Group II. Histological staining indicated that ESW treatment substantially increased vascular endothelial growth factor and proliferating cell nuclear antigen expressions, reduced leukocyte infiltration, and suppression of tumor necrosis factor alpha expression in flap tissue ischemic zones in Group II compared with that in controls. CONCLUSION Optimal dosage of ESW treatment has a positive effect in rescuing ischemic zone of flap by increasing tissue perfusion and is associated with suppressing inflammatory response.
Collapse
Affiliation(s)
- Yur-Ren Kuo
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Lozano FS, Cascajo C, García-Sánchez E, Barros MB, García-Criado FJ, Parreño F, García-Sánchez JE, Gómez-Alonso A. Bacterial translocation as a source of Dacron-graft contamination in experimental aortic operation: the importance of controlling SIRS. Surgery 2006; 140:83-92. [PMID: 16857446 DOI: 10.1016/j.surg.2006.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 12/29/2005] [Accepted: 12/29/2005] [Indexed: 01/22/2023]
Abstract
BACKGROUND Several experimental studies have shown the beneficial effects of nitric oxide (NO) in the modulation of the systemic inflammatory response syndrome (SIRS). Nitric oxide is involved in and affects almost all stages in the development of inflammation. We have attempted to ascertain whether the nitric oxide donor molsidomine prevents aortic graft contamination through control of the SIRS and a decrease in bacterial translocation (BT). METHODS Twenty-four mini-pigs were divided into 4 groups. The animals were subjected to suprarenal aortic/iliac cross-clamping (for 30 minutes) and by-pass with a Dacron-collagen prosthetic graft impregnated in rifampicin. Groups: 1) sham (aortic dissection alone); 2) cross-clamping and bypass; 3) hemorrhage of 40% of total blood volume before cross-clamping and by-pass; and 4) the same as in group 3 but also including the administration of the NO donor molsidomine (4 mg/kg) 5 minutes before cross-clamping. VARIABLES 1) bacteriology of mesenteric lymph nodes (MLN), kidney, blood, and prosthesis; 2) serum TNF-alpha (ELISA); and 3) iNOS expression in kidney and liver (Western blot). RESULTS Aortic cross-clamping with or without hemorrhage was associated with BT in 80% and 100% of the animals, respectively. About 86% of the bacteria isolated in the graft were also present in MLN. This contamination coincided with an increase in TNF-alpha and with a greater expression of iNOS. Molsidomine administration decreased TNF-alpha and iNOS, decreased BT (from 100% to 20% of the animals), and decreased graft contamination (from 83% to 20%). CONCLUSIONS The present model induces high levels of BT and SIRS, both acted as sources of contamination for the implanted Dacron graft. Molsidomine administration decreased the presence of bacteria in the graft by controlling BT and modulating SIRS.
Collapse
Affiliation(s)
- Francisco S Lozano
- Service of Vascular Surgery, Salamanca, Spain; Experimental Surgery Unit, Medical School, University of Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Topp SG, Zhang F, Chatterjee T, Lineaweaver WC. Role of nitric oxide in surgical flap survival. J Am Coll Surg 2005; 201:628-39. [PMID: 16183504 DOI: 10.1016/j.jamcollsurg.2005.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 05/09/2005] [Accepted: 05/18/2005] [Indexed: 12/27/2022]
Affiliation(s)
- Shelby G Topp
- Division of Plastic Surgery, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | | | |
Collapse
|
22
|
Mark LA, Robinson AV, Schulak JA. Inhibition of nitric oxide synthase reduces renal ischemia/reperfusion injury. J Surg Res 2005; 129:236-41. [PMID: 16140334 DOI: 10.1016/j.jss.2005.06.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 05/17/2005] [Accepted: 06/17/2005] [Indexed: 01/03/2023]
Abstract
BACKGROUND The role of nitric oxide (NO) production because of inducible nitric oxide synthase (iNOS) in the pathogenesis of renal ischemia/reperfusion (I/R) injury is unclear. In this study the roles of both iNOS and NO were characterized in a rat model of renal I/R injury. In addition, the effect of iNOS inhibition on renal function was evaluated. METHODS Sprague-Dawley rats underwent 45 min of left renal ischemia and contralateral nephrectomy followed by various periods of reperfusion and renal function analysis [plasma creatinine, fractional excretion of sodium (FENa), creatinine clearance (CrCl), and measurement of plasma and urine NO levels]. In addition, the effect of treatment with 1400W, a highly selective iNOS inhibitor, was evaluated. RESULTS Renal dysfunction peaked at 48 h after reperfusion and immunohistochemistry studies revealed iNOS expression in the vasculature (3 h) and renal tubules (48 h) after reperfusion. Renal function improved significantly in treated animals compared to controls [creatinine of 1.1 v. 1.9 mg/dl (P < 0.05) and CrCl of 0.54 v. 0.31 ml/min (P < 0.05), respectively]. In addition, FENa was decreased by 50%, plasma NO levels were significantly lower (32.7 v. 45.7 micromol/L, P < 0.01), and deposition of nitrotyosine in the tubules of treated rats was less than in control animals. CONCLUSIONS These data support the hypothesis that iNOS and NO are involved in the pathogenesis of renal I/R injury and suggests that use of iNOS inhibitors may be a valuable therapeutic strategy clinical situations where renal I/R may be prevalent.
Collapse
Affiliation(s)
- Lisa A Mark
- Department of Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
23
|
Lozano FS, López-Novoa JM, Rodriguez JM, Barros MB, García-Criado FJ, Nicolás JL, Parreño A, Revilla J, Gómez-Alonso A. Exogenous nitric oxide modulates the systemic inflammatory response and improves kidney function after risk-situation abdominal aortic surgery. J Vasc Surg 2005; 42:129-39. [PMID: 16012462 DOI: 10.1016/j.jvs.2005.03.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Renal impairment is a very frequent complication of aortic surgery requiring prolonged suprarenal clamping, especially if it is associated with previous hemorrhage. The aim of this study was to assess the beneficial effect of the administration of a nitric oxide (NO) donor on renal function through a modulation of the systemic inflammatory response in a model of abdominal aortic surgery. METHODS Twenty-five minipigs were divided into five groups. Under anesthesia, the animals were subjected to suprarenal aortic-iliac clamping (for 30 minutes) and bypass with a Dacron-collagen prosthetic graft impregnated in rifampicin, with or without associated hemorrhage (40% of total blood volume). Prophylaxis with cefazolin was implemented. The five groups were (1) the sham group (only aortic dissection), (2) the clamping and bypass (C) group, (3) hemorrhage preclamping and bypass (H+C) group, (4) the same as group C but with the administration of the NO donor molsidomine (4 mg/kg intravenously) (C+NO group), (5) the same as the H+C group but with the administration of the NO donor molsidomine (4 mg/kg intravenously) (H+C+NO group). The following were determined: (1) kidney function (serum creatinine), (2) serum cytokines (tumor necrosis factor alpha [TNF-alpha] and interleukin-10 [IL-10]); (3) neutrophil infiltration (myeloperoxidase [MPO]) in the kidney, (4) oxygen free radicals (superoxide anion [SOA] and superoxide dismutase [SOD]) in the kidney, (5) serum nitrites, (6) soluble and kidney tissue cell adhesion molecule (soluble intercellular adhesion molecule-1 [sICAM-1], soluble vascular cell adhesion molecule-1 [sVCAM-1], intercellular adhesion molecule-1 [ICAM-1], and vascular cell adhesion molecule-1 [VCAM-1]), (7) inducible nitric oxide synthase (iNOS) in the kidney, and (8) nuclear factor-kappaB (NF-kappaB) in the kidney. Determinations were made during ischemia at 15 minutes post-reperfusion; at 24, 48, and 72 hours; and on day 7. RESULTS The different insults used in the experimental model led to deterioration in kidney function and an increase in the systemic (and renal) inflammatory response at all levels investigated. Treatment with an NO donor, both with and without associated hemorrhage, reduced the inflammatory response at the systemic (TNF-alpha and IL-10) and kidney (MPO, SOA, and SOD) levels, normalizing kidney function. Likewise, exogenous administration of NO improved the excessive production of NO (nitrites) via iNOS. This was also reflected in a reduction in CAMs and of NF-kappaB expression. The hypotension induced by molsidomine was transitory and did not elicit hemodynamic repercussions. CONCLUSION In our experimental model, prophylactic treatment with the NO donor molsidomine regulates the systemic inflammatory response and minimizes damage at the kidney level. Clinical Relevance The importance of this article resides in the fact that an experimental study that clarifies the effect of the donors of NO under circumstances as similar as possible to those of the human clinic, such as aortic surgery under hypovolemic shock (ruptured aortic aneurysm) have been little studied, most of these studies being performed in rodents without bypass. Using a model with one or two simultaneous insults (aortic clamping with/without previous hemorrhage) that is very similar to the human clinical situation (abdominal aortic rupture), we confirm the findings of previous work related to the beneficial effects of NO donors.
Collapse
Affiliation(s)
- Francisco S Lozano
- Angiology and Vascular Surgery Service, University Hospital of Salamanca, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lozano FS, Barros MB, García-Criado FJ, Gomez-Alonso A. Exogenous nitric oxide can control SIRS and downregulate NFκB1,2. J Surg Res 2005; 124:52-8. [PMID: 15734479 DOI: 10.1016/j.jss.2004.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Indexed: 11/21/2022]
Abstract
BACKGROUND Nitric oxide (NO) participates in inflammation and affects almost all steps of its development. Several experimental studies have unveiled the beneficial effects of NO through modulation of the Systemic Inflammatory Response Syndrome (SIRS). In this sense, in the present work we attempted to evaluate the beneficial effects of exogenous NO and its levels of action (biochemical and cellular) in a model of SIRS induced by two sequential insults. MATERIALS AND METHODS Dacron graft implantation (first insult) and subsequent administration of Zymosan A (second insult) in Wistar rats. The animals were divided into four groups: 1) No manipulation (Basal); 2) Laparotomy (L) + mineral oil (Sham); 3) L + Graft-Zymosan (GZ) (Control); and 4) L + GZ + NO (Assay). Determinations: Survival, TNF-alpha, SOA, ICAM-1, and NFkappaB. RESULTS The model established (Control) induced a mortality rate of 20%. Also, it significantly increased the levels of TNF-alpha (P <0.001) and SOA (P <0.01), ICAM-1 expression, and NFkappaB levels (P <0.05). Treatment with NO reduced mortality to 0%, significantly decreasing TNF-alpha (P <0.001) and SOA (P <0.01) levels, ICAM-1 expression, and NFkappaB levels (P <0.05). CONCLUSION The exogenous administration of NO before the two sequential insults controlled SIRS at biochemical level (TNF-alpha, SOA) and at cellular level (transcription) in a lasting manner. The cascade-like interrelationship of both levels and the study design do not allow us the pinpoint the key to its modulation.
Collapse
Affiliation(s)
- Francisco S Lozano
- Department of Vascular Surgery, University Hospital, University of Salamanca, Salamanca, Spain
| | | | | | | |
Collapse
|
25
|
Khan M, Sekhon B, Giri S, Jatana M, Gilg AG, Ayasolla K, Elango C, Singh AK, Singh I. S-Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke. J Cereb Blood Flow Metab 2005; 25:177-92. [PMID: 15647746 DOI: 10.1038/sj.jcbfm.9600012] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Preservation of endothelial functions with low-dose nitric oxide (NO) and inhibition of excessive production of NO from inducible NO synthase (iNOS) is a potential therapeutic approach for acute stroke. Based on this hypothesis, an NO modulator, S-nitrosoglutathione (GSNO) was used, which provided neuroprotection in a rat model of focal cerebral ischemia. Administration of GSNO after the onset of ischemia reduced infarction and improved cerebral blood flow. To understand the mechanism of protection, the involvement of inflammation in ischemic brain injury was examined. Treatment with GSNO reduced the expression of tumor necrosis factor-alpha, interleukin-1beta, and iNOS; inhibited the activation of microglia/macrophage (ED1, CD11-b); and downregulated the expression of leukocyte function-associated antigen-1 and intercellular adhesion molecule-1 in the ischemic brain. The number of apoptotic cells (including neurons) and the activity of caspase-3 were also decreased after GSNO treatment. Further, the antiinflammatory effect of GSNO on expression of iNOS and activation of NF-kappaB machinery in rat primary astrocytes and in the murine microglial cell line BV2 was tested. Cytokine-mediated expression of iNOS and activation of NF-kappaB were inhibited by GSNO treatment. That GSNO protects the brain against ischemia/reperfusion injury by modulating NO systems, resulting in a reduction in inflammation and neuronal cell death was documented by the results.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kuo YR, Wu WS, Jeng SF, Wang FS, Huang HC, Lin CZ, Yang KD. Suppressed TGF-?1 expression is correlated with up-regulation of matrix metalloproteinase-13 in keloid regression after flashlamp pulsed-dye laser treatment. Lasers Surg Med 2005; 36:38-42. [PMID: 15662627 DOI: 10.1002/lsm.20104] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVES Flashlamp pulsed-dye lasers (PDLs) has shown effectiveness in the treatment of keloids. In this study, we investigated whether PDL treatments decreased transforming growth factor-beta1 (TGF-beta1)-induction and up-regulation of matrix metalloproteinase (MMP) expression in keloid regression. STUDY DESIGN/MATERIALS AND METHODS Keloid tissues obtained from 10 patients with intra-lesional or punch biopsies before and 7 days after PDL treatments [fluence per pulse was 10-18 J/cm2 (mean 14.0 J/cm2)]. Immunohistochemical (IHC) staining of TGF-beta1 and MMP-1 and MMP-13 expressions in keloid tissue was performed. Western blot analysis of MMP-1 and MMP-13 expressions in extracellular matrix was evaluated. RESULTS IHC staining indicated that expression of TGF-beta1 was significantly reduced in keloid tissues after PDL irradiation. MMP-13 but not MMP-1 expression on IHC staining significantly increased in extracellular matrix of keloid tissues after PDL treatment. Western blot analysis also showed MMP-13 but not MMP-1 significant increased in keloid tissues after PDL treatment. CONCLUSIONS Regression of keloids regressed after PDL treatments are associated with down-regulation of TGF-beta1 expression and up-regulation of MMP-13 activity.
Collapse
Affiliation(s)
- Yur-Ren Kuo
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
Kuo YR, Wang FS, Jeng SF, Lutz BS, Huang HC, Yang KD. Nitrosoglutathione Promotes Flap Survival via Suppression of Reperfusion Injury-Induced Superoxide and Inducible Nitric Oxide Synthase Induction. ACTA ACUST UNITED AC 2004; 57:1025-31. [PMID: 15580027 DOI: 10.1097/01.ta.0000100372.92325.32] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Evidence suggests that failure of flap reconstruction is related to ischemia/reperfusion (I/R)-mediated endothelial damage. Using a rat inferior epigastric artery flap as an I/R injury model, we investigated whether administration of nitrosoglutathione (GSNO), an exogenous nitric oxide (NO) donor, can scavenge superoxide and promote flap survival. METHODS Thirty minutes before flap reperfusion, normal saline, N-acetylcysteine (75 and 150 mg/kg), or GSNO (0.2 and 0.6 mg/kg) was randomly injected into 10 rats. Superoxide, nuclear factor-kappa B (NF-kappa B) activation, NO synthase (NOS) isoforms, and 3-nitrotyrosine expression in the pedicle vessels as well as survival areas of the flaps were evaluated. RESULTS I/R injury induced superoxide production, NF-kappa B activation, and inducible NOS (iNOS) expression in the pedicle vessels. GSNO significantly inhibited superoxide production and suppressed NF-kappa B activation, iNOS induction, and 3-nitrotyrosine expression, but up-regulated endothelial NOS expression in the flap vessels. Optimal doses of both GSNO (0.6 mg/kg) and N-acetylcysteine (150 mg/kg) effectively promoted flap survival area (p < 0.001), although there was no significant difference between both groups. CONCLUSION Exogenous NO donation by GSNO can scavenge superoxide and suppress iNOS induction, resulting in better flap survival after prolonged ischemia.
Collapse
Affiliation(s)
- Yur-Ren Kuo
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|