1
|
Perea D, Guiu J, Hudry B, Konstantinidou C, Milona A, Hadjieconomou D, Carroll T, Hoyer N, Natarajan D, Kallijärvi J, Walker JA, Soba P, Thapar N, Burns AJ, Jensen KB, Miguel-Aliaga I. Ret receptor tyrosine kinase sustains proliferation and tissue maturation in intestinal epithelia. EMBO J 2017; 36:3029-3045. [PMID: 28899900 PMCID: PMC5641678 DOI: 10.15252/embj.201696247] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 01/25/2023] Open
Abstract
Expression of the Ret receptor tyrosine kinase is a defining feature of enteric neurons. Its importance is underscored by the effects of its mutation in Hirschsprung disease, leading to absence of gut innervation and severe gastrointestinal symptoms. We report a new and physiologically significant site of Ret expression in the intestine: the intestinal epithelium. Experiments in Drosophila indicate that Ret is expressed both by enteric neurons and adult intestinal epithelial progenitors, which require Ret to sustain their proliferation. Mechanistically, Ret is engaged in a positive feedback loop with Wnt/Wingless signalling, modulated by Src and Fak kinases. We find that Ret is also expressed by the developing intestinal epithelium of mice, where its expression is maintained into the adult stage in a subset of enteroendocrine/enterochromaffin cells. Mouse organoid experiments point to an intrinsic role for Ret in promoting epithelial maturation and regulating Wnt signalling. Our findings reveal evolutionary conservation of the positive Ret/Wnt signalling feedback in both developmental and homeostatic contexts. They also suggest an epithelial contribution to Ret loss‐of‐function disorders such as Hirschsprung disease.
Collapse
Affiliation(s)
- Daniel Perea
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Jordi Guiu
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark
| | - Bruno Hudry
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | | | - Alexandra Milona
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Dafni Hadjieconomou
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Thomas Carroll
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Nina Hoyer
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (UKE), University of Hamburg, Hamburg, Germany
| | - Dipa Natarajan
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK
| | - Jukka Kallijärvi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - James A Walker
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Soba
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (UKE), University of Hamburg, Hamburg, Germany
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK
| | - Kim B Jensen
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark.,The Danish Stem Cell Center (Danstem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| |
Collapse
|
2
|
Matro J, Giubellino A, Pacak K. Current and future therapeutic approaches for metastatic pheochromocytoma and paraganglioma: focus on SDHB tumors. Horm Metab Res 2013; 45:147-53. [PMID: 23322515 PMCID: PMC3577956 DOI: 10.1055/s-0032-1331211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As a result of intense genetic studies of families with specific mutations, the road to better therapeutic intervention for pheochromocytoma (PHEOs) and parangangliomas (PGLs) has more recently become populated with several promising molecular targets. Consequently a change in paradigm from a previous view on nonspecific therapy has shifted towards more selective molecular targeted therapies. In particular, malignant PHEOs/PGLs, more specifically the tumors that result from mutations in succinate dehydrogenase subunit B (SDHB), are a clear concern, and novel therapies should be developed to address this problem. Here we summarize current and future therapeutic approaches.
Collapse
Affiliation(s)
- Joey Matro
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Faculty of Pharmacy and Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - Alessio Giubellino
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
3
|
Prazeres H, Torres J, Rodrigues F, Couto JP, Vinagre J, Sobrinho-Simões M, Soares P. How to Treat a Signal? Current Basis for RET-Genotype-Oriented Choice of Kinase Inhibitors for the Treatment of Medullary Thyroid Cancer. J Thyroid Res 2011; 2011:678357. [PMID: 21765992 PMCID: PMC3134398 DOI: 10.4061/2011/678357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/10/2011] [Indexed: 12/26/2022] Open
Abstract
The significance of RET in thyroid cancer comes from solid evidence that, when inherited, an RET activating mutation primes C-cells to transform into medullary carcinomas. Moreover, environmental exposure to radiation also induces rearranged transforming RET “isoforms” that are found in papillary thyroid cancer. The RET gene codes for a tyrosine kinase receptor that targets a diverse set of intracellular signaling pathways. The nature of RET point mutations predicts differences in the mechanisms by which the receptor becomes activated and correlates with different forms of clinical presentation, age of onset, and biological aggressiveness. A number of RET-targeting Tyrosine Kinase Inhibitors (TKIs) are currently undergoing clinical trials to evaluate their effectiveness in the treatment of thyroid cancer, and it is conceivable that the RET genotype may also influence response to these compounds. The question that now emerges is whether, in the future, the rational for treatment of refractory thyroid cancer will be based on the management of an abnormal RET signal. In this paper we address the RET-targeting TKIs and review studies about the signaling properties of distinct RET mutants as a means to predict response and design combinatorial therapies for the soon to be available TKIs.
Collapse
Affiliation(s)
- Hugo Prazeres
- Cancer Biology Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
4
|
Plaza-Menacho I, Morandi A, Mologni L, Boender P, Gambacorti-Passerini C, Magee AI, Hofstra RMW, Knowles P, McDonald NQ, Isacke CM. Focal adhesion kinase (FAK) binds RET kinase via its FERM domain, priming a direct and reciprocal RET-FAK transactivation mechanism. J Biol Chem 2011; 286:17292-302. [PMID: 21454698 DOI: 10.1074/jbc.m110.168500] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Whether RET is able to directly phosphorylate and activate downstream targets independently of the binding of proteins that contain Src homology 2 or phosphotyrosine binding domains and whether mechanisms in trans by cytoplasmic kinases can modulate RET function and signaling remain largely unexplored. In this study, oligopeptide arrays were used to screen substrates directly phosphorylated by purified recombinant wild-type and oncogenic RET kinase domain in the presence or absence of small molecule inhibitors. The results of the peptide array were validated by enzyme kinetics, in vitro kinase, and cell-based experiments. The identification of focal adhesion kinase (FAK) as a direct substrate for RET kinase revealed (i) a RET-FAK transactivation mechanism consisting of direct phosphorylation of FAK Tyr-576/577 by RET and a reciprocal phosphorylation of RET by FAK, which crucially is able to rescue the kinase-impaired RET K758M mutant and (ii) that FAK binds RET via its FERM domain. Interestingly, this interaction is abolished upon RET phosphorylation, indicating that RET binding to the FERM domain of FAK is a priming step for RET-FAK transactivation. Finally, our data indicate that FAK inhibitors could be used as potential therapeutic agents for patients with multiple endocrine neoplasia type 2 tumors because both, treatment with the FAK kinase inhibitor NVP-TAE226 and FAK down-regulation by siRNA reduced RET phosphorylation and signaling as well as the proliferation and survival of tumor and transfected cell lines expressing oncogenic RET.
Collapse
Affiliation(s)
- Iván Plaza-Menacho
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bolós V, Gasent JM, López-Tarruella S, Grande E. The dual kinase complex FAK-Src as a promising therapeutic target in cancer. Onco Targets Ther 2010; 3:83-97. [PMID: 20616959 PMCID: PMC2895777 DOI: 10.2147/ott.s6909] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Indexed: 12/11/2022] Open
Abstract
Focal adhesion kinase (FAK) and steroid receptor coactivator (Src) are intracellular (nonreceptor) tyrosine kinases that physically and functionally interact to promote a variety of cellular responses. Plenty of reports have already suggested an additional central role for this complex in cancer through its ability to promote proliferation and anoikis resistance in tumor cells. An important role for the FAK/Src complex in tumor angiogenesis has also been established. Furthermore, FAK and Src have been associated with solid tumor metastasis through their ability to promote the epithelial mesenchymal transition. In fact, a strong correlation between increased FAK/Src expression/phosphorylation and the invasive phenotype in human tumors has been found. Additionally, an association for FAK/Src with resistances to the current anticancer therapies has already been established. Currently, novel anticancer agents that target FAK or Src are under development in a broad variety of solid tumors. In this article we will review the normal cellular functions of the FAK/Src complex as an effector of integrin and/or tyrosine kinase receptor signaling. We will also collect data about their role in cancer and we will summarize the most recent data from the FAK and Src inhibitors under clinical and preclinical development. Furthermore, the association of both these proteins with chemotherapy and hormonal therapy resistances, as a rationale for new combined therapeutic approaches with these novel agents, to abrogate treatment associated resistances, will also be reviewed.
Collapse
|
6
|
Abstract
The RET (rearranged during transfection) protooncogene encodes a single pass transmembrane receptor that is expressed in cells derived from the neural crest and the urogenital tract. As part of a cell-surface complex, RET binds glial derived neurotrophic factor (GDNF) ligands in conjunction with GDNF-family alpha co-receptors (GFRalpha). Ligand-induced activation induces dimerization and tyrosine phosphorylation of the RET receptor with downstream activation of several signal transduction pathways. Activating germline RET mutations play a central role in the development of the multiple endocrine neoplasia (MEN) syndromes MEN2A, MEN2B, and familial medullary thyroid carcinoma (FMTC) and also in the development of the congenital abnormality Hirschsprung's disease. Approximately 50% of patients with sporadic MTC have somatic RET mutations, and a significant portion of papillary thyroid carcinomas result from chromosomal inversions or translocations, which activate RET (RET/PTC oncogenes). The RET protooncogene has a significant place in cancer prevention and treatment. Timely thyroidectomy in kindred members who have inherited a mutated RET allele, characteristic of MEN2A, MEN2B, or FMTC, can prevent MTC, the most common cause of death in these syndromes. Also, recently developed molecular therapeutics that target the RET pathway have shown activity in clinical trials of patients with advanced MTC, a disease for which there has been no effective therapy.
Collapse
Affiliation(s)
- Samuel A Wells
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
7
|
Schweppe RE, Kerege AA, French JD, Sharma V, Grzywa RL, Haugen BR. Inhibition of Src with AZD0530 reveals the Src-Focal Adhesion kinase complex as a novel therapeutic target in papillary and anaplastic thyroid cancer. J Clin Endocrinol Metab 2009; 94:2199-203. [PMID: 19293266 PMCID: PMC2690419 DOI: 10.1210/jc.2008-2511] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 03/06/2009] [Indexed: 11/19/2022]
Abstract
CONTEXT Focal adhesion kinase (FAK) and Src are overexpressed and activated in many cancers and have been associated with tumor progression. The role of the Src-FAK complex has not been characterized in papillary and anaplastic thyroid cancer (PTC and ATC). OBJECTIVE The goal of this study was to determine the role of Src and FAK in the growth and invasion of PTC and ATC. DESIGN PTC and ATC cells were treated with the oral Src inhibitor, AZD0530, to determine the consequences of Src inhibition using growth and invasion assays. FAK and phospho-FAK levels were analyzed in cell lines as well as in PTC tumor samples. RESULTS AZD0530 treatment inhibited the growth and invasion in four of five thyroid cancer cell lines, and inhibition did not correlate with basal levels of phospho-Src. Instead, we show for the first time that FAK, a critical substrate and effector of Src, is phosphorylated at tyrosine residue 861 (pY861) in PTC and ATC cells, and high levels of phospho-FAK correlate with AZD0530 sensitivity. We further showed that pY861-FAK phosphorylation is Src-dependent. Sensitivity to AZD0530 was confirmed using a preclinical three-dimensional culture model. Phospho-ERK1/2 was not affected by AZD0530, indicating that Src signaling does not require MAPK. Finally, FAK and pY861-FAK were expressed in 10 of 10 and five of 10 PTC tumors, respectively. CONCLUSIONS Inhibition of the Src-FAK complex represents a promising therapeutic strategy for patients with advanced thyroid cancer, and phospho-FAK represents a potential biomarker for response.
Collapse
Affiliation(s)
- Rebecca E Schweppe
- Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Denver, Aurora, Colorado 80045, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Targeting RET for thyroid cancer therapy. Biochem Pharmacol 2009; 77:297-309. [PMID: 19028457 DOI: 10.1016/j.bcp.2008.10.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 11/23/2022]
|
9
|
de Groot JWB, Links TP, Plukker JTM, Lips CJM, Hofstra RMW. RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr Rev 2006; 27:535-60. [PMID: 16849421 DOI: 10.1210/er.2006-0017] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The RET gene encodes a receptor tyrosine kinase that is expressed in neural crest-derived cell lineages. The RET receptor plays a crucial role in regulating cell proliferation, migration, differentiation, and survival through embryogenesis. Activating mutations in RET lead to the development of several inherited and noninherited diseases. Germline point mutations are found in the cancer syndromes multiple endocrine neoplasia (MEN) type 2, including MEN 2A and 2B, and familial medullary thyroid carcinoma. These syndromes are autosomal dominantly inherited. The identification of mutations associated with these syndromes has led to genetic testing to identify patients at risk for MEN 2 and familial medullary thyroid carcinoma and subsequent implementation of prophylactic thyroidectomy in mutation carriers. In addition, more than 10 somatic rearrangements of RET have been identified from papillary thyroid carcinomas. These mutations, as those found in MEN 2, induce oncogenic activation of the RET tyrosine kinase domain via different mechanisms, making RET an excellent candidate for the design of molecular targeted therapy. Recently, various kinds of therapeutic approaches, such as tyrosine kinase inhibition, gene therapy with dominant negative RET mutants, monoclonal antibodies against oncogene products, and nuclease-resistant aptamers that recognize and inhibit RET have been developed. The use of these strategies in preclinical models has provided evidence that RET is indeed a potential target for selective cancer therapy. However, a clinically useful therapeutic option for treating patients with RET-associated cancer is still not available.
Collapse
Affiliation(s)
- Jan Willem B de Groot
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Pai SI, Lin YY, Macaes B, Meneshian A, Hung CF, Wu TC. Prospects of RNA interference therapy for cancer. Gene Ther 2006; 13:464-77. [PMID: 16341059 DOI: 10.1038/sj.gt.3302694] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) is a powerful gene-silencing process that holds great promise in the field of cancer therapy. The discovery of RNAi has generated enthusiasm within the scientific community, not only because it has been used to rapidly identify key molecules involved in many disease processes including cancer, but also because RNAi has the potential to be translated into a technology with major therapeutic applications. Our evolving understanding of the molecular pathways important for carcinogenesis has created opportunities for cancer therapy employing RNAi technology to target the key molecules within these pathways. Many gene products involved in carcinogenesis have already been explored as targets for RNAi intervention, and RNAi targeting of molecules crucial for tumor-host interactions and tumor resistance to chemo- or radiotherapy has also been investigated. In most of these studies, the silencing of critical gene products by RNAi technology has generated significant antiproliferative and/or proapoptotic effects in cell-culture systems or in preclinical animal models. Nevertheless, significant obstacles, such as in vivo delivery, incomplete suppression of target genes, nonspecific immune responses and the so-called off-target effects, need to be overcome before this technology can be successfully translated into the clinical arena. Significant progress has already been made in addressing some of these issues, and it is foreseen that early phase clinical trials will be initiated in the very near future.
Collapse
Affiliation(s)
- S I Pai
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
11
|
Panta GR, Du L, Nwariaku FE, Kim LT. Direct phosphorylation of proliferative and survival pathway proteins by RET. Surgery 2005; 138:269-74. [PMID: 16153436 DOI: 10.1016/j.surg.2005.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Gain-of-function mutations in the RET tyrosine kinase receptor cause the multiple endocrine neoplasia syndromes type 2a and 2b, and medullary thyroid cancer. We have previously shown that RET signals through focal adhesion kinase (FAK) in medullary thyroid cancer cells and that extracellular signal-regulated kinase (ERK) activity can be blocked by pp2, an inhibitor of both Src and RET. We hypothesized that RET could directly phosphorylate FAK and ERK. METHODS RET and ERK kinase activity were measured with the use of an in vitro kinase assay. The relative contribution of RET in phosphorylation of ERK was tested by treating cells with PD98059, an inhibitor of MEK, and the RET inhibitor PP2, then measuring ERK activity. RESULTS Immunoprecipitated, mutant RET from cells or the recombinant RET kinase domain was able to directly phosphorylate tyrosine residues on FAK. Specifically Y576/577, Y861, and Y925, but not the autophosphorylation site Y397 of FAK, were phosphorylated by RET. Similarly ERK 2 could be phosphorylated at Y187 (Y204 in ERK1). Inhibition of both MEK (upstream of ERK) and RET was more potent than inhibition of either alone in decreasing ERK activity. Furthermore, tyrosine residues in DOK1, the p85 subunit of phosphatidylinositol 3' kinase, JNK 1 and 2, P-38, and phospholipase-gamma were directly phosphorylated by RET. CONCLUSIONS RET directly phosphorylates tyrosine residues on FAK, ERK 1/2, DOK1, the p85 subunit of of phosphatidylinositol 3' kinase, JNK 1 and 2, P-38, and phospholipase-gamma. These data indicate a direct interaction between RET and a broad range of effector molecules that may contribute to tumor pathogenesis.
Collapse
Affiliation(s)
- Ganesh R Panta
- Central Arkansas Veterans Healthcare System, Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, USA
| | | | | | | |
Collapse
|