1
|
Song L, Yang J, Kong W, Liu Y, Liu S, Su L. Cordyceps militaris polysaccharide alleviates ovalbumin-induced allergic asthma through the Nrf2/HO-1 and NF-κB signaling pathways and regulates the gut microbiota. Int J Biol Macromol 2023; 238:124333. [PMID: 37030458 DOI: 10.1016/j.ijbiomac.2023.124333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Polysaccharides, as one of the main types of bioactive components of Cordyceps militaris, have anti-allergic asthma effects. Herein, an ovalbumin-induced allergic asthma mouse model was established to assess the potential mechanisms of the separated and purified Cordyceps militaris polysaccharide (CMP). CMP is an α-pyranose with a molecular weight of 15.94 kDa that consists of Glc, Man, Gal, Xyl, Ara and GlcA in a molar ratio of 81.25:21.96:13.88:3.92:3.58:1.00. CMP improved inflammatory cytokine levels, alleviated the histopathological changes in the lung and intestinal tissues, regulated the expression of mRNA and proteins related to oxidative stress and inflammatory pathways, reversed gut dysbiosis at the phylum and family levels and improved microbiota function in allergic asthma mice. Moreover, it was found that the levels of inflammatory cytokines in lung tissue of mice were significantly correlated with some intestinal microbial communities. Overall, CMP improved oxidative stress and the inflammatory response in allergic asthma mice by regulating the Nrf2/HO-1 and NF-κB signaling pathways, which may be closely correlation with maintaining the stability of the gut microbiota.
Collapse
Affiliation(s)
- Lanyue Song
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jintao Yang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Weihan Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Shuyan Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ling Su
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
2
|
Heme oxygenase-1 induction mitigates burn-associated early acute kidney injury via the TLR4 signaling pathway. Burns 2021; 48:156-167. [PMID: 33962830 DOI: 10.1016/j.burns.2021.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Early acute kidney injury (AKI) after burn contributes to disastrous prognoses for severely burned patients. Burn-induced renal oxidative stress and secondary proinflammatory mediator release contribute to early AKI development, and Toll-like receptor (TLR) 4 regulates inflammation. Heme oxygenase-1 (HO-1) is a stress-responsive enzyme that plays a vital role in protecting against ischemia-induced organ injury via its antioxidant properties and regulation of inflammation. We investigated the potential effect of HO-1 induction in preventing burn-induced early AKI and its related mechanism. METHODS A classic major-burn rat model was established using a 100 °C water bath, and hemin was injected intraperitoneally immediately after the injury to induce HO-1. Histological staining and blood tests were used to assess AKI progression based on structural changes and function. Renal levels of HO-1, oxidative stress, proinflammatory mediators and TLR4-related signals were detected using ELISA, immunostaining, qRT-PCR, and western blotting. The selective TLR4 inhibitor TAK242 and TLR4 inducer LPS were introduced to determine the roles of HO-1 in burn-related renal inflammation and the TLR4 pathway. RESULTS Hemin improved burn-induced renal histological damage and dysfunction, and this beneficial effect was related to reduced renal oxidative stress and the release of proinflammatory mediators, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6 and intracellular adhesion molecule-1 (ICAM-1). Hemin downregulated the expression of TLR4 and the subsequent phosphorylation of IKKα/β, IκBα, and NF-κB p65;. TAK242 exerted an effect similar to but weaker than hemin; and LPS reversed the antiinflammatory effect of hemin and the regulation of TLR4 signals. These results suggested that the TLR4 signaling pathway mediated the HO-1-facilitated regulation of renal inflammation after burn. CONCLUSION The present study demonstrated that HO-1 induction prevented burn-induced early AKI by targeting renal inflammation, which was mediated via regulation of the TLR4/NF-κB signaling pathway.
Collapse
|
3
|
Sallam HS, Urvil P, Savidge TC, Chen JDZ. Ghrelin abates bacterial translocation following burn injury by improving gastric emptying. Neurogastroenterol Motil 2020; 32:e13742. [PMID: 31603615 DOI: 10.1111/nmo.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/14/2019] [Accepted: 09/18/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND In severe burns, increased intestinal permeability facilitates bacterial translocation, resulting in systemic endotoxemia and multi- organ failure. We investigated the role of burn-induced gastrointestinal dysmotility (BIGD) in promoting bacterial translocation following burn injury, and the protective effect of ghrelin in this process. METHODS We assessed gastric emptying (GE%) and intestinal transit (IT by geometric center "GC") in a 60% total body surface area scald burn rat model and measured bacterial counts in mesenteric lymph nodes (MLN) and distal small intestine by colony-forming unit per gram of tissue (CFU/g). A group of animals was treated with ghrelin or saline after burn. KEY RESULTS Scald burn was associated with a significant delay in GE (62% ± 4% vs 74% ± 4%; P = .02) and a trend of delay in intestinal transit (GC: 5.5 ± 0.1 vs 5.8 ± 0.2; P = .09). Concurrently, there was a marginal increase in small intestinal bacterial overgrowth (6 × 105 vs 2 × 105 CFU/g; P = .05) and significant translocation to MLN (2 × 102 vs 4 × 101 ; P = .03). We observed a negative correlation between GE and intestinal bacterial overgrowth (rs = -0.61; P = .002) and between IT and translocation (rs = -0.63; P = .004). Ghrelin administration significantly accelerated GE following burn injury (91% ± 3% vs 62% ± 4; P = .03), reduced small intestinal bacterial overgrowth, and completely inhibited translocation to MLN (0.0 vs 5 × 102 ; P = .01). CONCLUSIONS & INFERENCES Burn-induced gastrointestinal dysmotility is correlated with the systemic translocation of gram-negative gut bacteria that are implicated in multiple organ failure in burn patients. Therapeutic interventions to restore BIGD are warranted (Neurogastroenterol Motil, 2012, 24, 78).
Collapse
Affiliation(s)
- Hanaa S Sallam
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA.,Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Petri Urvil
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Tor C Savidge
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Jiande D Z Chen
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
4
|
Jiang L, Jiang Q, Yang S, Huang S, Han X, Duan J, Pan S, Zhao M, Guo S. GYY4137 attenuates LPS-induced acute lung injury via heme oxygenase-1 modulation. Pulm Pharmacol Ther 2018; 54:77-86. [PMID: 30605726 DOI: 10.1016/j.pupt.2018.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/16/2018] [Accepted: 12/30/2018] [Indexed: 12/16/2022]
Abstract
GYY4137, a slow-releasing hydrogen sulfide (H2S) donor, has been reported to exert anti-inflammatory activity and protect against sepsis. Heme oxygenase-1 (HO-1) is an important anti-inflammatory heat shock protein and plays a similar effect on sepsis. This study investigated the role of GYY4137 in acute lung injury (ALI) via HO-1 regulation. Lung injury was assessed in mice challenged with intratracheal lipopolysaccharide (LPS) and the mechanism of anti-inflammatory effects of GYY4137 was investigated in mice and RAW264.7 cells. GYY4137 reduced the LPS-mediated pulmonary injury and neutrophil infiltration, and inhibited the LPS-induced production of proinflammatory cytokines, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Moreover, GYY4137 suppressed the LPS-evoked NF-κB activation in RAW264.7 cells. GYY4137, not time-expired GYY4137 significantly induced HO-1 expression compared with the LPS group. The beneficial effects of GYY4137 above were reversed by the HO-1 inhibitor tin protoporphyrin (SnPP). These results suggest an anti-inflammatory effect and a therapeutic role of GYY4137 in LPS-induced ALI via HO-1 regulation.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- School of Statistics, Beijing Normal University, Beijing, China
| | - Songlin Yang
- Department of ICU, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shicong Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Han
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Duan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shangha Pan
- The Key Hepatosplenic Surgery Laboratory, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingyan Zhao
- Department of ICU, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Shuliang Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Huang HH, Lee YC, Chen CY. Effects of burns on gut motor and mucosa functions. Neuropeptides 2018; 72:47-57. [PMID: 30269923 DOI: 10.1016/j.npep.2018.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/16/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023]
Abstract
This review analyzed the published studies on the effects of thermal injury on gastrointestinal motility and mucosal damage. Our strategy was to integrate all available evidence to provide a complete review on the prokinetic properties of variable reagents and the potential clinical treatment of mucosal damage and gastrointestinal dysmotility after thermal injury. We classified the studies into two major groups: studies on gastrointestinal dysmotility and studies on mucosal damage. We also subclassified the studies into 3 parts: stomach, small intestine, and colon. This review shows evidence that ghrelin can recover burn-induced delay in gastric emptying and small intestinal transit, and can protect the gastric mucosa from burn-induced injury. Oxytocin and β-glucan reduced the serum inflammatory mediators, and histological change and mucosal damage indicators, but did not show evidence of having the ability to recover gastrointestinal motility. Using a combination of different reagents to protect the gastrointestinal mucosa against damage and to recover gastrointestinal motility is an alternative treatment for thermal injury.
Collapse
Affiliation(s)
- Hsien-Hao Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yu-Chi Lee
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yen Chen
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Taiwan Association for the Study of Small Intestinal Diseases, Guishan, Taiwan.
| |
Collapse
|
6
|
Chen Z, Zhang Y, Ma L, Ni Y, Zhao H. Nrf2 plays a pivotal role in protection against burn trauma-induced intestinal injury and death. Oncotarget 2017; 7:19272-83. [PMID: 27009867 PMCID: PMC4991382 DOI: 10.18632/oncotarget.8189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/05/2016] [Indexed: 12/30/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a basic leucine zipper transcription factor that principally defends against oxidative stress and also plays a unique role in severe sepsis. However, its contribution to intestinal injury and death after burn trauma is unclear.In this study, wild-type (Nrf2+/+) and Nrf2-deficient (Nrf2-/-) mice were subjected to 15% or 30% total body surface area burn or sham injury. Survival, systemic inflammation, and gut injury were determined.Nrf2-/- mice were more susceptible to burn-induced intestinal injury, as characterized by increases in damage to the gut structure and in intestinal permeability. This exacerbation was associated with an increase in the intestinal mRNA expression of inflammatory cytokines (interleukin [IL]-6, IL-1B, monocyte chemotactic protein 1, intercellular adhesion molecule, and vascular cell adhesion molecule) and a decrease in the intestinal mRNA expression of Nrf2-regulated genes (NAD(P)H dehydrogenasequinine-1 and glutamate-cysteine ligase modifier subunit). Nrf2-deficient mice also showed a lower survival rate and higher levels of systemic cytokines (IL-6 and IL-1B) and high-mobility group protein B1 than wild-type mice. This study demonstrates for the first time that mice that lack Nrf2 are more susceptible to burn-induced intestinal injury and have more systemic inflammation and a lower survival rate.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiran Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Ma
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiming Ni
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haige Zhao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Nacci C, Fanelli M, Potenza MA, Leo V, Montagnani M, De Salvia MA. Carbon monoxide contributes to the constipating effects of granisetron in rat colon. World J Gastroenterol 2016; 22:9333-9345. [PMID: 27895421 PMCID: PMC5107697 DOI: 10.3748/wjg.v22.i42.9333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/16/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the mechanisms underlying the potential contribution of the heme oxygenase/carbon monoxide (HO/CO) pathway in the constipating effects of granisetron.
METHODS For in vivo studies, gastrointestinal motility was evaluated in male rats acutely treated with granisetron [25, 50, 75 μg/kg/subcutaneous (sc)], zinc protoporphyrin IX [ZnPPIX, 50 μg/kg/intraperitoneal (ip)] and hemin (50 μmol/L/kg/ip), alone or in combination. For in vitro studies, the contractile neurogenic response to electrical field stimulation (EFS, 3, 5, 10 Hz, 14 V, 1 ms, pulse trains lasting 10 s), as well as the contractile myogenic response to acetylcholine (ACh, 0.1-100 μmol/L) were evaluated on colon specimens incubated with granisetron (3 μmol/L, 15 min), ZnPPIX (10 μmol/L, 60 min) or CO-releasing molecule-3 (CORM-3, 100, 200, 400 μmol/L) alone or in combination. These experiments were performed under co-treatment with or without atropine (3 μmol/L, a muscarinic receptor antagonist) or NG-nitro-L-Arginine (L-NNA, 100 μmol/L, a nitric oxide synthase inhibitor).
RESULTS Administration of granisetron (50, 75 μg/kg) in vivo significantly increased the time to first defecation (P = 0.045 vs vehicle-treated rats), clearly suggesting a constipating effect of this drug. Although administration of ZnPPIX or hemin alone had no effect on this gastrointestinal motility parameter, ZnPPIX co-administered with granisetron abolished the granisetron-induced constipation. On the other hand, co-administration of hemin and granisetron did not modify the increased constipation observed under granisetron alone. When administered in vitro, granisetron alone (3 μmol/L) did not significantly modify the colon’s contractile response to either EFS or ACh. Incubation with ZnPPIX alone (10 μmol/L) significantly reduced the colon’s contractile response to EFS (P = 0.016) but had no effect on contractile response to ACh. Co-administration of ZnPPIX and atropine (3 μmol/L) abolished the ZnPPIX-mediated decrease in contractile response to EFS. Conversely, incubation with CORM-3 (400 μmol/L) alone increased both the contractile response to EFS at 10 Hz (10 Hz: 71.02 ± 19.16 vs 116.25 ± 53.70, P = 0.01) and the contractile response to ACh (100 μmol/L) (P = 0.012). Co-administration of atropine abolished the CORM-3-mediated effects on the EFS-mediated response. When granisetron was co-incubated in vitro with ZnPPIX, the ZnPPIX-mediated decrease in colon contractile response to EFS was lost. On the other hand, co-incubation of granisetron and CORM-3 (400 μmol/L) further increased the colon’s contractile response to EFS (at 5 Hz: P = 0.007; at 10 Hz: P = 0.001) and to ACh (ACh 10 μmol/L: P = 0.001; ACh 100 μmol/L: P = 0.001) elicited by CORM-3 alone. L-NNA co-administered with granisetron and CORM-3 abolished the potentiating effect of CORM-3 on granisetron on both the EFS-induced and ACh-induced contractile response.
CONCLUSION Taken together, findings from in vivo and in vitro studies suggest that the HO/CO pathway is involved in the constipating effects of granisetron.
Collapse
|
8
|
Shimizu K, Ogura H, Asahara T, Nomoto K, Matsushima A, Hayakawa K, Ikegawa H, Tasaki O, Kuwagata Y, Shimazu T. Gut microbiota and environment in patients with major burns – a preliminary report. Burns 2014; 41:e28-33. [PMID: 25465986 DOI: 10.1016/j.burns.2014.10.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/07/2014] [Accepted: 10/14/2014] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The gut is an important target organ after severe insult. Gut microbiota have an important role in immune response. However, the gut microbiota and environment have not been clarified in patients with burns. Therefore, we serially evaluated the gut microbiota and environment in patients with major burns. METHODS Fecal samples from five patients with major burns were measured for quantitative evaluation of the gut microbiota. RESULTS In the four survivors of major burns, the numbers of beneficial bacteria, especially those of total obligate anaerobes and Bifidobacterium, initially decreased, but then increased as the condition of the survivors improved. By contrast, the numbers severely decreased in the non-survivor as gut failure and sepsis progressed. The number of pathogenic bacteria such as Pseudomonas and Candida did not continue to increase in the survivors, whereas in the non-survivor the number increased and continued to higher counts. Short-chain fatty acids such as propionic and butyric acids decreased to lower-than-normal levels but tended to increase after recovery in the survivors. The levels remained below normal in the non-survivor. CONCLUSIONS The gut microbiota and environment are severely altered in patients with major burns. Consequently, abnormal gut conditions may have an influence on the systemic inflammatory response and multiple organ dysfunction syndrome. A novel treatment to maintain the gut microbiota and environment is expected in the future.
Collapse
Affiliation(s)
- Kentaro Shimizu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | - Asako Matsushima
- Critical Care & Trauma Center, Osaka General Medical Center, Osaka, Japan
| | - Koichi Hayakawa
- Department of Emergency and Critical Care Medicine, Kansai Medical University, Hirakata-City, Osaka, Japan
| | - Hitoshi Ikegawa
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Osamu Tasaki
- Nagasaki University Hospital Emergency Medical Center, Nagasaki, Japan
| | - Yasuyuki Kuwagata
- Department of Emergency and Critical Care Medicine, Kansai Medical University, Hirakata-City, Osaka, Japan
| | - Takeshi Shimazu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
9
|
Song J, Yin J, Sallam HS, Bai T, Chen Y, Chen JDZ. Electroacupuncture improves burn-induced impairment in gastric motility mediated via the vagal mechanism in rats. Neurogastroenterol Motil 2013; 25:807-e635. [PMID: 23848593 DOI: 10.1111/nmo.12183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/16/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Delayed gastric emptying (GE) is common in patients with severe burns. This study was designed to investigate effects and mechanisms of electroacupuncture (EA) on gastric motility in rats with burns. METHODS Male rats (intact and vagotomized) were implanted with gastric electrodes, chest and abdominal wall electrodes for investigating the effects of EA at ST-36 (stomach-36 or Zusanli) on GE, gastric slow waves, autonomic functions, and plasma interleukin 6 (IL-6) 6 and 24 h post severe burns. KEY RESULTS (i) Burn delayed GE (P < 0.001). Electroacupuncture improved GE 6 and 24 h post burn (P < 0.001). Vagotomy blocked the EA effect on GE. (ii) Electroacupuncture improved burn-induced gastric dysrhythmia. The percentage of normal slow waves was increased with EA 6 and 24 h post burn (P = 0.02). (iii) Electroacupuncture increased vagal activity assessed by the spectral analysis of heart rate variability (HRV). The high-frequency component reflecting vagal component was increased with EA 6 (P = 0.004) and 24 h post burn (P = 0.03, vs sham-EA). (iv) Electroacupuncture attenuated burn-induced increase in plasma IL-6 at both 6 (P = 0.03) and 24 h post burn (P = 0.003). CONCLUSIONS & INFERENCES Electroacupuncture at ST-36 improves gastric dysrhythmia and accelerates GE in rats with burns. The improvement seems to be mediated via the vagal pathway involving the inflammatory cytokine IL-6.
Collapse
Affiliation(s)
- J Song
- Division of Gastroenterology, University of Texas Medical Branch, Galveston, TX, USA; Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
10
|
Hemin and Zinc Protoporphyrin IX Affect Granisetron Constipating Effects In Vitro and In Vivo. ISRN GASTROENTEROLOGY 2013; 2013:612037. [PMID: 23864955 PMCID: PMC3705784 DOI: 10.1155/2013/612037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/05/2013] [Indexed: 12/20/2022]
Abstract
Granisetron is a 5-HT3 receptors antagonist used in the management of emesis associated with anticancer chemotherapy. It affects intestinal motility with constipating effect. Since the pathway heme oxygenase/carbon monoxide (HO/CO) is involved in gastrointestinal motility, we evaluated the possible interplay between granisetron and agents affecting HO/CO pathways such as zinc protoporphyrin IX (ZnPPIX), an HO inhibitor, or hemin, an HO-1 inducer. ZnPPIX (10 µM) or hemin (10 µM), but not granisetron (0.1, 0.3, 1 µM), affected spontaneous basal activity recorded in rat duodenal strips, in noncholinergic nonadrenergic conditions. Granisetron restored spontaneous basal activity after ZnPPIX, but not after hemin. ZnPPIX decreased and hemin increased the inhibition of activity after electrical field stimulation (EFS), but they did not affect the contraction that follows the relaxation induced by EFS called off contraction. Granisetron did not alter the response to EFS per se but abolished both ZnPPIX and hemin effect when coadministered. In vivo study showed constipating effect of granisetron (25, 50, 75 µg/kg/sc) but no effect of either ZnPPIX (50 µg/kg/i.p.) or hemin (50 µM/kg/i.p.). When coadministered, granisetron effect was abolished by ZnPPIX and increased by hemin. Specimens from rats treated in vivo with hemin (50 µM/kg/i.p.) showed increased HO-1 protein levels. In conclusion, granisetron seems to interact with agents affecting HO/CO pathway both in vitro and in vivo.
Collapse
|
11
|
Al-Sadi R, Guo S, Ye D, Dokladny K, Alhmoud T, Ereifej L, Said HM, Ma TY. Mechanism of IL-1β modulation of intestinal epithelial barrier involves p38 kinase and activating transcription factor-2 activation. THE JOURNAL OF IMMUNOLOGY 2013; 190:6596-606. [PMID: 23656735 DOI: 10.4049/jimmunol.1201876] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The defective intestinal epithelial tight junction (TJ) barrier has been postulated to be an important pathogenic factor contributing to intestinal inflammation. It has been shown that the proinflammatory cytokine IL-1β causes an increase in intestinal permeability; however, the signaling pathways and the molecular mechanisms involved remain unclear. The major purpose of this study was to investigate the role of the p38 kinase pathway and the molecular processes involved. In these studies, the in vitro intestinal epithelial model system (Caco-2 monolayers) was used to delineate the cellular and molecular mechanisms, and a complementary in vivo mouse model system (intestinal perfusion) was used to assess the in vivo relevance of the in vitro findings. Our data indicated that the IL-1β increase in Caco-2 TJ permeability correlated with an activation of p38 kinase. The activation of p38 kinase caused phosphorylation and activation of p38 kinase substrate, activating transcription factor (ATF)-2. The activated ATF-2 translocated to the nucleus where it attached to its binding motif on the myosin L chain kinase (MLCK) promoter region, leading to the activation of MLCK promoter activity and gene transcription. Small interfering RNA induced silencing of ATF-2, or mutation of the ATF-2 binding motif prevented the activation of MLCK promoter and MLCK mRNA transcription. Additionally, in vivo intestinal perfusion studies also indicated that the IL-1β increase in mouse intestinal permeability required p38 kinase-dependent activation of ATF-2. In conclusion, these studies show that the IL-1β-induced increase in intestinal TJ permeability in vitro and in vivo was regulated by p38 kinase activation of ATF-2 and by ATF-2 regulation of MLCK gene activity.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
CCR7 deficiency causes diarrhea associated with altered ion transport in colonocytes in the absence of overt colitis. Mucosal Immunol 2012; 5:377-87. [PMID: 22395421 DOI: 10.1038/mi.2012.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The chemokine receptor CCR7 is a central regulator in the maintenance of cellular homeostasis of mucosal tissues. CCR7⁻/⁻ mice develop autoimmune gastritis and exocrinopathy accompanied by the formation of mucosal tertiary lymphoid follicles. Here we found that CCR7-deficient mice frequently suffered from chronic diarrhea linked with increased gastrointestinal motility and the development of severe anorectal prolapse. Enhanced formation of intestinal lymphoid follicles was associated with an elevated proportion of activated colonic T cells and increased production of the cytokine interleukin (IL)-1β. To uncover the pathomechanisms of diarrhea in CCR7⁻/⁻ mice, colonic epithelial barrier and ion channel activities were analyzed in Ussing chambers. Although overt acute colitis was absent, CCR7 deficiency resulted in reduced electrogenic sodium absorption and colonic chloride secretion. As it is known that IL-1β regulates epithelial sodium channel (ENaC) activity, these data imply a causal link between CCR7 expression, IL-1β level, and Na⁺ malabsorption owing to altered ENaC expression and diarrhea.
Collapse
|
13
|
Naito Y, Takagi T, Uchiyama K, Yoshikawa T. Heme oxygenase-1: a novel therapeutic target for gastrointestinal diseases. J Clin Biochem Nutr 2011; 48:126-33. [PMID: 21373265 PMCID: PMC3045685 DOI: 10.3164/jcbn.10-61] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/01/2010] [Indexed: 12/18/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in the catabolism of heme, followed by production of biliverdin, free iron and carbon monoxide (CO). HO-1 is a stress-responsive protein induced by various oxidative agents. Recent studies demonstrate that the expression of HO-1 in response to different inflammatory mediators may contribute to the resolution of inflammation and has protective effects in several organs against oxidative injury. Although the mechanism underlying the anti-inflammatory actions of HO-1 remains poorly defined, both CO and biliverdin/bilirubin have been implicated in this response. In the gastrointestinal tract, HO-1 is shown to be transcriptionally induced in response to oxidative stress, preconditioning and acute inflammation. Recent studies suggest that the induction of HO-1 expression plays a critical protective role in intestinal damage models induced by ischemia-reperfusion, indomethacin, lipopolysaccharide-associated sepsis, trinitrobenzene sulfonic acid, and dextran sulfate sodium, indicating that activation of HO-1 may act as an endogenous defensive mechanism to reduce inflammation and tissue injury in the gastrointestinal tract. In addition, CO derived from HO-1 is shown to be involved in the regulation in gastro-intestinal motility. These in vitro and in vivo data suggest that HO-1 may be a novel therapeutic target in patients with gastrointestinal diseases.
Collapse
Affiliation(s)
- Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | |
Collapse
|
14
|
Takagi T, Naito Y, Uchiyama K, Yoshikawa T. The role of heme oxygenase and carbon monoxide in inflammatory bowel disease. Redox Rep 2011; 15:193-201. [PMID: 21062534 DOI: 10.1179/174329210x12650506623889] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease, is a chronic and recurrent inflammatory disorder of the intestinal tract. Since the precise pathogenesis of IBD remains unclear, it is important to investigate the pathogenesis of IBD and to evaluate new anti-inflammatory strategies. Recent evidence suggests that heme oxygenase-1 (HO-1) plays a critical protective role during the development of intestinal inflammation. In fact, it has been demonstrated that the activation of HO-1 may act as an endogenous defensive mechanism to reduce inflammation and tissue injury in various animal intestinal injury models induced by ischemia-reperfusion, indomethacin, lipopolysaccharide-associated sepsis, trinitrobenzene sulfonic acid or dextran sulfate sodium. In addition, carbon monoxide (CO) derived from HO-1 has been shown to be involved in the regulation of intestinal inflammation. Furthermore, administration of a low concentration of exogenous CO has a protective effect against intestinal inflammation. These data suggest that HO-1 and CO may be novel therapeutic molecules for patients with gastrointestinal inflammatory diseases. In this review, we present what is currently known regarding the role of HO-1 and CO in intestinal inflammation.
Collapse
Affiliation(s)
- Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
15
|
Sallam HS, Oliveira HM, Liu S, Chen JDZ. Mechanisms of burn-induced impairment in gastric slow waves and emptying in rats. Am J Physiol Regul Integr Comp Physiol 2010; 299:R298-305. [PMID: 20427716 DOI: 10.1152/ajpregu.00135.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Delayed gastric emptying is common following severe large cutaneous burns; however, the mechanisms of burn-induced delayed gastric emptying remain unknown. The aim of this study was to explore the possible involvement of hyperglycemia and cyclooxygenase-2 receptors in the burn-induced gastric dysrhythmias. Gastric slow waves and gastric emptying were assessed in rats 6 h following sham or burn injury. Animals were randomized to one sham-burn and seven burn groups: untreated; two groups of saline treated (control); insulin treated (5 IU/kg); cyclooxygenase-2 inhibitor treated (10 mg/kg); ghrelin treated (2 nmol/rat); and gastric electrical stimulation treated. It was found that 1) severe burn injury impaired gastric slow waves postprandially and delayed gastric emptying; 2) the impairment in gastric slow waves included a decrease in the slow-wave frequency and in the percentage of normal slow waves, and an increase in the percentage of bradygastria (P = 0.001, 0.01, and 0.01, respectively vs. preburn values). None of the gastric slow-wave parameters was significantly correlated with gastric emptying; 3) cyclooxygenase-2 inhibitor normalized burn-induced delayed gastric emptying (P = 0.3 vs. sham-burn), but not gastric dysrhythmias (P < 0.002 vs. sham), whereas insulin normalized both gastric emptying (P = 0.4 vs. sham-burn) and gastric dysrhythmias (P = 0.3 vs. sham-burn); 4) both gastric electrical stimulation and ghrelin accelerated burn-induced delayed gastric emptying (P = 0.002 and 0.04, respectively, vs. untreated burn). In conclusion, hyperglycemia alters gastric slow-wave activity and delayed gastric emptying, while cyclooxygenase-2 inhibition delays gastric emptying without altering gastric slow-wave activity.
Collapse
Affiliation(s)
- Hanaa S Sallam
- Department of Internal Medicine/Division of Gastroenterology, University of Texas Medical Branch, Galveston, Texas 77555-0655, USA
| | | | | | | |
Collapse
|
16
|
Piepoli AL, de Salvatore G, Lemoli M, de Benedictis L, Mitolo-Chieppa D, de Salvia MA. Modulation of heme oxygenase/carbon monoxide system affects the inhibitory neurotransmission involved in gastrointestinal motility of streptozotocin-treated diabetic rats. Neurogastroenterol Motil 2008; 20:1251-62. [PMID: 19019021 DOI: 10.1111/j.1365-2982.2008.01193.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alterations in gastrointestinal motility of diabetic patients have been linked to degenerative changes induced by glucose abnormalities in the peripheral nervous system. The heme oxygenase/carbon monoxide (HO/CO) signalling represents one of the non-adrenergic/non-cholinergic (NANC) neurotransmission pathways involved in regulation of physiological peristalsis. To investigate the role of HO/CO system in intestinal motility under diabetic conditions, the response to electrical field stimulation (EFS) and western blot analysis of HO/CO pathway components were studied on duodenum longitudinal smooth muscle strips isolated from streptozotocin (STZ)-treated diabetic rats (65 mg kg(-1), i.p.) and respective controls (CTRL), 6 weeks after the onset of diabetes. When compared to CTRL, the ability of CO releasing molecule (CORM-3) (100-400 micromol L(-1)) to enhance NANC relaxation was significantly impaired in STZ-treated rats (P < 0.05). Conversely, in vitro incubation with the HO inhibitor ZnPPIX (10 micromol L(-1), 60 min) significantly reduced EFS-induced relaxation in CTRL (P < 0.05), but not in STZ-treated rats. Interestingly, the ability of ZnPPIX to inhibit EFS-induced relaxation was partially restored in STZ-treated rats co-administered in vivo with the HO-1 inducer cobalt protoporphyrin IX (CoPPIX) (0.5 mg per 100 g body weight weekly). Expression of inducible HO-1 protein was increased in homogenates from STZ-treated rats (vs CTRL, P < 0.01), and further increased in STZ-treated rats receiving CoPPIX (P < 0.05). Taken together, our data underline the essential role of HO/CO system in regulation of inhibitory NANC neurotransmission in the duodenum and suggest that dysregulation of HO/CO activity may represent one mechanism by which gastrointestinal motility is altered in diabetes.
Collapse
Affiliation(s)
- A L Piepoli
- Department of Pharmacology and Human Physiology, Medical School, University of Bari, Bari, Italy
| | | | | | | | | | | |
Collapse
|
17
|
de Backer O, Blanckaert B, Leybaert L, Lefebvre RA. A novel method for the evaluation of intestinal transit and contractility in mice using fluorescence imaging and spatiotemporal motility mapping. Neurogastroenterol Motil 2008; 20:700-7. [PMID: 18248582 DOI: 10.1111/j.1365-2982.2007.01073.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study introduces a novel, simplified method for the evaluation of murine intestinal transit and contractility using fluorescence and video imaging. Intestinal transit was measured by evaluating the intestinal distribution of non-absorbable fluorescein-labelled dextran (70 kDa, FD70) along the gastrointestinal (GI) tract. After excision of the GI tract, two full-field images--one in normal illumination mode and another in fluorescent mode--were taken with a charge coupled device (CCD) camera and subsequently matched for calculation of fluorescence distribution along the GI tract. Immediately after, intestinal contractility was evaluated in different regions of the intact intestine by spatiotemporal motility mapping (i.e. video imaging). In control mice, the small intestine showed vigorous oscillatory contractions and FD70 was primarily distributed within the terminal ileum/caecum at 90 min postgavage. As validation step, the effect of intestinal manipulation (IM, surgical procedure) and two pharmacological agents--known to alter GI motility--was tested. At 24 h postoperatively, spontaneous contractile activity of the small intestine was nearly abolished in IM mice, leaving the small intestine distended and resulting in a significantly delayed intestinal transit. In accordance, spontaneous mechanical activity of circular muscle strips in standard organ baths was significantly reduced in IM mice compared to control mice. Administration of atropine (1-3 mg kg(-1), i.p.) suppressed spontaneous contractile activity along the entire intestinal tract and induced a dose-related delay in intestinal transit. In contrast, metoclopramide (3-10 mg kg(-1), i.p.) markedly increased contractile activity--however only in the upper GI tract--and accelerated intestinal transit in a dose-dependent manner.
Collapse
Affiliation(s)
- O de Backer
- Heymans Institute of Pharmacology, Faculty of Medicine, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|