1
|
Zeng C, Zhu X, Li H, Huang Z, Chen M. The Role of Interferon Regulatory Factors in Liver Diseases. Int J Mol Sci 2024; 25:6874. [PMID: 38999981 PMCID: PMC11241258 DOI: 10.3390/ijms25136874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The interferon regulatory factors (IRFs) family comprises 11 members that are involved in various biological processes such as antiviral defense, cell proliferation regulation, differentiation, and apoptosis. Recent studies have highlighted the roles of IRF1-9 in a range of liver diseases, including hepatic ischemia-reperfusion injury (IRI), alcohol-induced liver injury, Con A-induced liver injury, nonalcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC). IRF1 is involved in the progression of hepatic IRI through signaling pathways such as PIAS1/NFATc1/HDAC1/IRF1/p38 MAPK and IRF1/JNK. The regulation of downstream IL-12, IL-15, p21, p38, HMGB1, JNK, Beclin1, β-catenin, caspase 3, caspase 8, IFN-γ, IFN-β and other genes are involved in the progression of hepatic IRI, and in the development of HCC through the regulation of PD-L1, IL-6, IL-8, CXCL1, CXCL10, and CXCR3. In addition, IRF3-PPP2R1B and IRF4-FSTL1-DIP2A/CD14 pathways are involved in the development of NAFLD. Other members of the IRF family also play moderately important functions in different liver diseases. Therefore, given the significance of IRFs in liver diseases and the lack of a comprehensive compilation of their molecular mechanisms in different liver diseases, this review is dedicated to exploring the molecular mechanisms of IRFs in various liver diseases.
Collapse
Affiliation(s)
- Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Xiaoqin Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Ziyin Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| |
Collapse
|
2
|
Chen T, Li S, Deng D, Zhang W, Zhang J, Shen Z. Key role of interferon regulatory factor 1 (IRF-1) in regulating liver disease: progress and outlook. J Zhejiang Univ Sci B 2024; 25:451-470. [PMID: 38910492 PMCID: PMC11199090 DOI: 10.1631/jzus.b2300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/01/2023] [Indexed: 06/25/2024]
Abstract
Interferon regulatory factor 1 (IRF-1) is a member of the IRF family. It is the first transcription factor to be identified that could bind to the interferon-stimulated response element (ISRE) on the target gene and displays crucial roles in the interferon-induced signals and pathways. IRF-1, as an important medium, has all of the advantages of full cell cycle regulation, cell death signaling transduction, and reinforcing immune surveillance, which are well documented. Current studies indicate that IRF-1 is of vital importance to the occurrence and evolution of multifarious liver diseases, including but not limited to inhibiting the replication of the hepatitis virus (A/B/C/E), alleviating the progression of liver fibrosis, and aggravating hepatic ischemia-reperfusion injury (HIRI). The tumor suppression of IRF-1 is related to the clinical characteristics of liver cancer patients, which makes it a potential indicator for predicting the prognosis and recurrence of liver cancer; additionally, the latest studies have revealed other effects of IRF-1 such as protection against alcoholic/non-alcoholic fatty liver disease (AFLD/NAFLD), cholangiocarcinoma suppression, and uncommon traits in other liver diseases that had previously received little attention. Intriguingly, several compounds and drugs have featured a protective function in specific liver disease models in which there is significant involvement of the IRF-1 signal. In this paper, we hope to propose a prospective research basis upon which to help decipher translational medicine applications of IRF-1 in liver disease treatment.
Collapse
Affiliation(s)
- Tao Chen
- First Central Clinical School, Tianjin Medical University, Tianjin 300192, China
| | - Shipeng Li
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou 450000, China
| | - Dewen Deng
- First Central Clinical School, Tianjin Medical University, Tianjin 300192, China
- Key Laboratory of Organ Transplant, Tianjin First Central Hospital, Tianjin 300192, China
| | - Weiye Zhang
- Department of Organ Transplant, Tianjin First Central Hospital, Tianjin 300192, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China
| | - Jianjun Zhang
- Department of Organ Transplant, Tianjin First Central Hospital, Tianjin 300192, China.
| | - Zhongyang Shen
- Department of Organ Transplant, Tianjin First Central Hospital, Tianjin 300192, China.
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China.
- Key Laboratory of Organ Transplant, Tianjin First Central Hospital, Tianjin 300192, China.
| |
Collapse
|
3
|
Lodhi S, Stone JP, Entwistle TR, Fildes JE. The Use of Hemoglobin-Based Oxygen Carriers in Ex Vivo Machine Perfusion of Donor Organs for Transplantation. ASAIO J 2022; 68:461-470. [PMID: 35220355 DOI: 10.1097/mat.0000000000001597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
There has been significant progress in the development of ex vivo machine perfusion for the nonischemic preservation of donor organs. However, several complications remain, including the logistics of using human blood for graft oxygenation and hemolysis occurring as a result of mechanical technology. Recently, hemoglobin-based oxygen carriers, originally developed for use as blood substitutes, have been studied as an alternative to red blood cell-based perfusates. Although research in this field is somewhat limited, the findings are promising. We offer a brief review of the use of hemoglobin-based oxygen carriers in ex vivo machine perfusion and discuss future directions that will likely have a major impact in progressing oxygen carrier use in clinical practice.
Collapse
Affiliation(s)
- Sirat Lodhi
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - John P Stone
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- The Transplant Centre, Manchester Foundation Trust, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Timothy R Entwistle
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- The Transplant Centre, Manchester Foundation Trust, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - James E Fildes
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- The Transplant Centre, Manchester Foundation Trust, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Yan B, Luo J, Kaltenmeier C, Du Q, Stolz DB, Loughran P, Yan Y, Cui X, Geller DA. Interferon Regulatory Factor-1 (IRF1) activates autophagy to promote liver ischemia/reperfusion injury by inhibiting β-catenin in mice. PLoS One 2020; 15:e0239119. [PMID: 33137133 PMCID: PMC7605671 DOI: 10.1371/journal.pone.0239119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
Autophagy is an important factor in liver ischemia-reperfusion injury. In the current study we investigate the function of interferon regulatory factor-1 (IRF1) in regulating autophagy to promote hepatic ischemia reperfusion injury (IR). The high expression of IRF1 during hepatic IR exhibited increased liver damage and was associated with activation of autophagy shown by Western blot markers, as well as immunofluorescent staining for autophagosomes. These effects were diminished by IRF1 deficiency in IRF1 knock out (KO) mice. Moreover, the autophagy inhibitor 3-MA decreased IR-induced liver necrosis and markedly abrogated the rise in liver injury tests (AST/ALT). β-catenin expression decreased during liver IR and was increased in the IRF1 KO mice. Immunoprecipitation assay showed the binding between IRF1 and β-catenin. Overexpression of IRF1 induced autophagy and also inhibited the expression of β-catenin. β-catenin inhibitor increased autophagy while β-catenin agonist suppressed autophagy in primary mouse hepatocytes. These results indicate that IRF1 induced autophagy aggravates hepatic IR injury in part by inhibiting β-catenin and suggests that targeting IRF1 may be an effective strategy in reducing hepatic IR injury.
Collapse
Affiliation(s)
- Bing Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jing Luo
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christof Kaltenmeier
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Qiang Du
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Donna B. Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, United States of America
| | - Patricia Loughran
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, United States of America
| | - Yihe Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xiao Cui
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - David A. Geller
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
5
|
Klune JR, Bartels C, Luo J, Yokota S, Du Q, Geller DA. IL-23 mediates murine liver transplantation ischemia-reperfusion injury via IFN-γ/IRF-1 pathway. Am J Physiol Gastrointest Liver Physiol 2018; 315:G991-G1002. [PMID: 30307739 PMCID: PMC6336948 DOI: 10.1152/ajpgi.00231.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/17/2018] [Accepted: 09/27/2018] [Indexed: 01/31/2023]
Abstract
Interleukin-23 (IL-23) is a proinflammatory cytokine initially studied in autoimmune disease that has been more recently linked to innate immunity. We observed that the expression of IL-23 is upregulated during hypoxia in a hepatocyte and nonparenchymal cell (NPC) coculture system, as well as during ischemia-reperfusion (I/R) injury in the liver. Interferon regulatory factor-1 (IRF-1) is a transcription factor that induces expression of multiple inflammatory cytokines and has been shown to play a critical role in liver I/R injury. We observed that IL-23 signaling induces not only the IL-17/chemokine (C-X-C motif) ligand 2 (CXCL2) pathway but also the IFN-γ/IRF-1 pathway. Quantification of cytokine genes revealed increased liver expression of IL-17a, CXCL2, and IRF-1 messenger RNA during liver transplantation. Recombinant IL-23 treated hepatocytes, and NPC coculture led to IL-17, CXCL2, IFN-γ, and IRF-1 expression. With anti-IL-17 and anti-Ly6G antibody neutralization, neutrophil recruitment and IFN-γ production were decreased during warm I/R injury. Overexpression of IL-23 in vivo through use of an adenovirus vector also led to expression of IL-17, CXCL2, IFN-γ, and IRF-1. The increased expression of IL-23 also led to increased apoptosis in the liver. By neutralization of IL-23 through use of an anti-IL-23p19 antibody, we were able to attenuate liver damage in a wild-type but not a natural killer T (NKT) cell-deficient mouse. This suggests that IL-23 signaling shares a common pathway with NKT cells. In conclusion, IL-23 is induced early by I/R in the liver. Its signaling leads to activation of the IL-17/CXCL2 and IFN-γ/IRF-1 pathways, resulting in increased apoptosis and necrosis. NEW & NOTEWORTHY IL-23 is expressed early during cold ischemia-reperfusion (I/R), and this expression is associated with expression of IL-17 and chemokine (C-X-C motif) ligand 2. Neutralization of IL-23 during cold I/R can significantly reduce liver damage as well as decrease cytokine production and neutrophil infiltration in the liver. IL-23 appears to activate IFN-γ production in natural killer T cells within the liver which, in turn, activates interferon regulatory factor-1, a known inflammatory transcription factor during I/R injury.
Collapse
Affiliation(s)
- John R Klune
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Christian Bartels
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jing Luo
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
- The Second Xiangya Hospital of Central South University , Changsha , China
| | - Shinichiro Yokota
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Qiang Du
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - David A Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Assadiasl S, Shahi A, Salehi S, Afzali S, Amirzargar A. Interferon regulatory factors: Where to stand in transplantation. Transpl Immunol 2018; 51:76-80. [PMID: 30336215 DOI: 10.1016/j.trim.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 01/23/2023]
Abstract
Interferon regulatory factors (IRFs) are implicated in regulating inflammatory responses to pathogens and alloantigens. Since transplantation is usually accompanied by ischemia reperfusion injury (IRI), acute and chronic rejections, as well as immunodeficiency due to immunosuppressive drugs, IRFs seem to play a considerable role in allograft outcome. For instance, IRF-1 has been shown to be involved in pathogenesis of IRI; however, IRF-2 exhibits an opposite function. Some IRF-3 and 5 SNPs are associated with better or worse graft survival rates. Of note, IRF-4 inhibition has resulted in improved transplant outcomes. Herein we review available studies about IRFs influence on various stages of transplantation.
Collapse
Affiliation(s)
- Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Shahi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Amirzargar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Association between IRF1 Gene Expression and Liver Enzymes in HBV-infected Liver Transplant Recipients with and without Experience of Rejection. Int J Organ Transplant Med 2018; 9:68-74. [PMID: 30834090 PMCID: PMC6390982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Liver function indices and anti-viral immune regulatory markers can both improve graft outcomes, which lead to better post-transplantation management and increase the possibility of surveillance in liver transplant recipients with chronic hepatitis B virus (HBV) infection. OBJECTIVE To determine the association between the interferon regulatory factor 1 (IRF1) mRNA levels and liver enzymes in HBV-infected liver transplant recipients with and without experience of rejection. METHODS A total of 46 chronic HBV-infected patients who had undergone liver transplant surgery was divided into 2 groups of recipients "with rejection" and "without rejection.". Blood samples were collected form each patient on days 1, 4, and 7 post-transplantation. A SYBER GREEN real-time PCR was used to evaluate the expression level of IRF1 in liver recipients. Liver enzyme activities were also measured in all patients. RESULTS The expression of IRF1 in the patients with rejection was up-regulated at all 3 follow-up days compared with those without rejection. The serum levels of ALT and AST were more than normal levels at 3 follow-up times in both study groups. Significant differences were found in IRF1 gene expression levels and also serum ALT levels between those with and without rejection after 7 days post-transplantation. CONCLUSION The IRF1 expression and serum ALT levels were increased significantly in patient with rejection compared to those without rejection. IRF1, an inflammatory factor, may also intensify induction of inflammatory pathways in engrafted liver and promote liver inflammation and injuries leading to liver enzymes elevation in patients with graft rejection.
Collapse
|
8
|
Yang MQ, Du Q, Varley PR, Goswami J, Liang Z, Wang R, Li H, Stolz DB, Geller DA. Interferon regulatory factor 1 priming of tumour-derived exosomes enhances the antitumour immune response. Br J Cancer 2018; 118:62-71. [PMID: 29112686 PMCID: PMC5765230 DOI: 10.1038/bjc.2017.389] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/16/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumour-derived exosomes (TEXs) have a potential for application in cancer vaccines. Whether TEXs after induction by interferon regulatory factor 1 (IRF-1) are capable of enhancing the antitumour response remains to be determined. METHODS Exosomes released by tumour cells infected with IRF-1-expressing adenovirus (IRF-1-Exo) or treated with interferon-γ (IFN-Exo) were isolated via ultracentrifugation. The IRF-1 target proteins IL-15Rα and MHC class I (MHC-I) were analysed by western blot. Exosomes along with CpG adjuvant were injected into tumour models to assess the antitumour effects. Tumours were harvested for immunofluorescence staining. Splenocytes from tumour-bearing mice were co-cultured with tumour cells. The IFNγ-positive and granzyme B-positive CD8α+ splenocyte cells were quantified by flow cytometry. RESULTS The IRF-1-Exo or IFN-Exo displayed increased IL-15Rα and MHC-I expression. Injection of IRF-1-Exo or IFN-Exo combined with CpG had improved antitumour effects in mice. This effect may be a result of increased infiltration of tumours by CD4+ and CD8α+ T cells. Antibody-mediated depletion of CD4+ or CD8+ T cells abrogated the antitumour effects. Splenocytes isolated from CpG+IRF-1-Exo-injected Hepa 1-6 tumour mice had increased IFNγ-positive and granzyme B-positive CD8+ cells after co-culturing with Hepa 1-6 cells as compared with MC38 cells. CONCLUSIONS The IRF-1 priming of TEXs enhances antitumour immune response.
Collapse
Affiliation(s)
- Mu-qing Yang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
- Department of General Surgery, Tenth People’s Hospital affiliated to Tongji University, Shanghai 200072, China
| | - Qiang Du
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Patrick R Varley
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Julie Goswami
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Zhihai Liang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Ronghua Wang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Hui Li
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- The Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - David A Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| |
Collapse
|
9
|
Rani R, Tandon A, Wang J, Kumar S, Gandhi CR. Stellate Cells Orchestrate Concanavalin A-Induced Acute Liver Damage. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2008-2019. [PMID: 28710903 DOI: 10.1016/j.ajpath.2017.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/13/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022]
Abstract
Concanavalin A (ConA) causes immune cell-mediated liver damage, but the contribution of resident nonparenchymal cells (NPCs) is also evident. Hepatic stellate cells (HSCs) induce hepatic inflammation and immunological reactions; we therefore investigated their role in ConA-induced liver injury. ConA was administered i.v. to control or HSC-depleted mice; hepatic histopathology and cytokines/chemokines were determined after 6 hours. In vitro, effects of ConA-conditioned HSC medium on hepatocytes were determined. ConA induced inflammation, sinusoidal congestion, and extensive midzonal hepatocyte death in control mice, which were strongly minimized in HSC-depleted mice. CD4 and natural killer T cells and neutrophils were markedly reduced in ConA-treated HSC-depleted mice compared with control mice. The increase in cytokines/chemokines of hepatic injury was much higher in ConA-treated control mice than in HSC-depleted mice. ConA-treated HSCs showed increased expression of interferon-β, tumor necrosis factor-α, and CXCL1, induced oxidative stress in hepatocytes, and caused hepatocyte apoptosis. ConA induced nuclear translocation of interferon-regulatory factor-1 (IRF1) in hepatocytes in vivo, and ConA/HSC induced a similar effect in cultured hepatocytes. IRF1-knockout mice were resistant to ConA-induced liver damage, and anti-interferon β antibody mitigated ConA/HSC-induced injury. In HSC-NPC co-culture, ConA-induced expression of inflammatory cytokines/chemokines was significantly augmented compared with NPCs alone. HSCs play an essential role in ConA-induced liver injury directly via the interferon-β/IRF1 axis, and by modulating properties of NPCs.
Collapse
Affiliation(s)
- Richa Rani
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio; Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ashish Tandon
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Jiang Wang
- Department of Pathology, University of Cincinnati, Cincinnati, Ohio
| | - Sudhir Kumar
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio; Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chandrashekhar R Gandhi
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio; Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
10
|
Interferon regulatory factor-1 activates autophagy to aggravate hepatic ischemia-reperfusion injury via the P38/P62 pathway in mice. Sci Rep 2017; 7:43684. [PMID: 28266555 PMCID: PMC5339805 DOI: 10.1038/srep43684] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/30/2017] [Indexed: 01/07/2023] Open
Abstract
Increasing evidence has linked autophagy to a detrimental role in hepatic ischemia- reperfusion (IR) injury (IRI). Here we focus on the role of interferon regulatory factor-1 (IRF-1) in regulating autophagy to aggravate hepatic IRI. We found that IRF-1 was up-regulated during hepatic IRI and was associated with an activation of the autophagic signaling. This increased IRF-1 expression, which was allied with high autophagic activity, amplified liver damage to IR, an effect which was abrogated by IRF-1 depletion. Moreover, IRF-1 contributed to P38 induced autophagic and apoptotic cell death, that can play a key role in liver dysfunction. The levels of P62 mRNA and protein were increased when P38 was activated and decreased when P38 was inhibited by SB203580. We conclude that IRF-1 functioned as a trigger to activate autophagy via P38 activation and that P62 was required for this P38-mediated autophagy. IRF-1 appears to exert a pivotal role in hepatic IRI, by predisposing hepatocytes to activate an autophagic pathway. Such an effect promotes autophagic cell death through the P38/P62 pathway. The identification of this novel pathway, that links expression levels of IRF-1 with autophagy, may provide new insights for the generation of novel protective therapies directed against hepatic IRI.
Collapse
|
11
|
Molecular pathways in protecting the liver from ischaemia/reperfusion injury: a 2015 update. Clin Sci (Lond) 2015; 129:345-62. [PMID: 26014222 DOI: 10.1042/cs20150223] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischaemia/reperfusion injury is an important cause of liver damage during surgical procedures such as hepatic resection and liver transplantation, and represents the main cause of graft dysfunction post-transplantation. Molecular processes occurring during hepatic ischaemia/reperfusion are diverse, and continuously include new and complex mechanisms. The present review aims to summarize the newest concepts and hypotheses regarding the pathophysiology of liver ischaemia/reperfusion, making clear distinction between situations of cold and warm ischaemia. Moreover, the most updated therapeutic strategies including pharmacological, genetic and surgical interventions, as well as some of the scientific controversies in the field are described.
Collapse
|
12
|
Zhang XJ, Zhang P, Li H. Interferon regulatory factor signalings in cardiometabolic diseases. Hypertension 2015; 66:222-47. [PMID: 26077571 DOI: 10.1161/hypertensionaha.115.04898] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/14/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Xiao-Jing Zhang
- From the Department of Cardiology, Renmin Hospital (X.-J.Z., P.Z., H.L.) and Cardiovascular Research Institute (X.-J.Z., P.Z., H.L.), Wuhan University, Wuhan, China; and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China (X.-J.Z.)
| | - Peng Zhang
- From the Department of Cardiology, Renmin Hospital (X.-J.Z., P.Z., H.L.) and Cardiovascular Research Institute (X.-J.Z., P.Z., H.L.), Wuhan University, Wuhan, China; and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China (X.-J.Z.)
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital (X.-J.Z., P.Z., H.L.) and Cardiovascular Research Institute (X.-J.Z., P.Z., H.L.), Wuhan University, Wuhan, China; and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China (X.-J.Z.).
| |
Collapse
|
13
|
Yokota S, Yoshida O, Dou L, Spadaro AV, Isse K, Ross MA, Stolz DB, Kimura S, Du Q, Demetris AJ, Thomson AW, Geller DA. IRF-1 promotes liver transplant ischemia/reperfusion injury via hepatocyte IL-15/IL-15Rα production. THE JOURNAL OF IMMUNOLOGY 2015; 194:6045-56. [PMID: 25964490 DOI: 10.4049/jimmunol.1402505] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/15/2015] [Indexed: 01/08/2023]
Abstract
Ischemia and reperfusion (I/R) injury following liver transplantation (LTx) is an important problem that significantly impacts clinical outcomes. IFN regulatory factor-1 (IRF-1) is a nuclear transcription factor that plays a critical role in liver injury. Our objective was to determine the immunomodulatory role of IRF-1 during I/R injury following allogeneic LTx. IRF-1 was induced in liver grafts immediately after reperfusion in both human and mouse LTx. IRF-1 contributed significantly to I/R injury because IRF-1-knockout (KO) grafts displayed much less damage as assessed by serum alanine aminotransferase and histology. In vitro, IRF-1 regulated both constitutive and induced expression of IL-15, as well as IL-15Rα mRNA expression in murine hepatocytes and liver dendritic cells. Specific knockdown of IRF-1 in human primary hepatocytes gave similar results. In addition, we identified hepatocytes as the major producer of soluble IL-15/IL-15Rα complexes in the liver. IRF-1-KO livers had significantly reduced NK, NKT, and CD8(+) T cell numbers, whereas rIL-15/IL-15Rα restored these immune cells, augmented cytotoxic effector molecules, promoted systemic inflammatory responses, and exacerbated liver injury in IRF-1-KO graft recipients. These results indicate that IRF-1 promotes LTx I/R injury via hepatocyte IL-15/IL-15Rα production and suggest that targeting IRF-1 and IL-15/IL-15Rα may be effective in reducing I/R injury associated with LTx.
Collapse
Affiliation(s)
- Shinichiro Yokota
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Osamu Yoshida
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Lei Dou
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Anthony V Spadaro
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Kumiko Isse
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Mark A Ross
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Shoko Kimura
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Qiang Du
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Anthony J Demetris
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Angus W Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and
| | - David A Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15261
| |
Collapse
|
14
|
Fontes P, Lopez R, van der Plaats A, Vodovotz Y, Minervini M, Scott V, Soltys K, Shiva S, Paranjpe S, Sadowsky D, Barclay D, Zamora R, Stolz D, Demetris A, Michalopoulos G, Marsh JW. Liver preservation with machine perfusion and a newly developed cell-free oxygen carrier solution under subnormothermic conditions. Am J Transplant 2015; 15:381-94. [PMID: 25612645 PMCID: PMC5024042 DOI: 10.1111/ajt.12991] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/28/2014] [Accepted: 08/23/2014] [Indexed: 01/25/2023]
Abstract
We describe a new preservation modality combining machine perfusion (MP) at subnormothermic conditions(21 °C) with a new hemoglobin-based oxygen carrier (HBOC) solution. MP (n=6) was compared to cold static preservation (CSP; n=6) in porcine orthotopic liver transplants after 9 h of cold ischemia and 5-day follow-up. Recipients' peripheral blood, serial liver biopsies, preservation solutions and bile specimens were collected before, during and after liver preservation. Clinical laboratorial and histological analyses were performed in addition to mitochondrial functional assays, transcriptomic, metabolomic and inflammatory inflammatory mediator analyses. Compared with CSP, MP animals had: (1) significantly higher survival (100%vs. 33%; p<0.05); (2) superior graft function (p<0.05);(3) eight times higher hepatic O2 delivery than O2 consumption (0.78 mL O2/g/h vs. 0.096 mL O2/g/h) during MP; and (4) significantly greater bile production (MP=378.5 ± 179.7; CS=151.6 ± 116.85). MP downregulated interferon (IFN)-α and IFN-γ in liver tissue. MP allografts cleared lactate, produced urea, sustained gluconeogenesis and produced hydrophilic bile after reperfusion. Enhanced oxygenation under subnormothermic conditions triggers regenerative and cell protective responses resulting in improved allograft function. MP at 21 °C with the HBOC solution significantly improves liver preservation compared to CSP.
Collapse
Affiliation(s)
- P. Fontes
- Department of SurgeryUniversity of Pittsburgh Medical CenterPittsburghPA,Department of SurgeryThomas E. Starzl Transplantation InstitutePittsburghPA,McGowan Institute of Regenerative MedicineUniversity of PittsburghPittsburghPA,Department of SurgeryUniversity of PittsburghPittsburghPA
| | - R. Lopez
- Department of SurgeryUniversity of Pittsburgh Medical CenterPittsburghPA,Department of SurgeryThomas E. Starzl Transplantation InstitutePittsburghPA
| | | | - Y. Vodovotz
- Department of SurgeryUniversity of PittsburghPittsburghPA
| | - M. Minervini
- Department of PathologyUniversity of Pittsburgh Medical CenterPittsburghPA
| | - V. Scott
- Department of AnesthesiaUniversity of PittsburghPittsburghPA
| | - K. Soltys
- Department of SurgeryUniversity of Pittsburgh Medical CenterPittsburghPA,Department of SurgeryThomas E. Starzl Transplantation InstitutePittsburghPA
| | - S. Shiva
- Vascular Medicine InstituteDepartment of Cardiothoracic SurgeryUniversity of PittsburghPittsburghPA
| | - S. Paranjpe
- Department of PathologyUniversity of PittsburghPittsburghPA
| | - D. Sadowsky
- Department of SurgeryUniversity of PittsburghPittsburghPA
| | - D. Barclay
- Department of SurgeryUniversity of PittsburghPittsburghPA
| | - R. Zamora
- Department of SurgeryUniversity of PittsburghPittsburghPA
| | - D. Stolz
- Department of PathologyUniversity of PittsburghPittsburghPA
| | - A. Demetris
- Department of PathologyUniversity of Pittsburgh Medical CenterPittsburghPA,Thomas E. Starzl Transplantation InstitutePittsburghPA
| | - G. Michalopoulos
- Department of PathologyUniversity of Pittsburgh Medical CenterPittsburghPA
| | - J. W. Marsh
- Department of SurgeryUniversity of Pittsburgh Medical CenterPittsburghPA,Department of SurgeryThomas E. Starzl Transplantation InstitutePittsburghPA
| |
Collapse
|
15
|
The regulation role of interferon regulatory factor-1 gene and clinical relevance. Hum Immunol 2014; 75:1110-4. [DOI: 10.1016/j.humimm.2014.09.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 09/27/2014] [Accepted: 09/27/2014] [Indexed: 11/20/2022]
|
16
|
Doorschodt B, Teubner A, Kobayashi E, Tolba R. Promising future for the transgenic rat in transplantation research. Transplant Rev (Orlando) 2014; 28:155-62. [DOI: 10.1016/j.trre.2014.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/02/2014] [Accepted: 05/20/2014] [Indexed: 01/17/2023]
|
17
|
Hashmi SK, Baranov E, Gonzalez A, Olthoff K, Shaked A. Genomics of liver transplant injury and regeneration. Transplant Rev (Orlando) 2014; 29:23-32. [PMID: 24746681 DOI: 10.1016/j.trre.2014.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/19/2014] [Indexed: 12/21/2022]
Abstract
While improved surgical techniques, post-operative care, and immunosuppression regimens have reduced morbidity and mortality associated with orthotopic liver transplantation (OLT), further improvement of outcomes requires personalized treatment and a better understanding of genomic mechanisms involved. Gene expression profiles of ischemia/reperfusion (I/R) injury, regeneration, and rejection, may suggest mechanisms for development of better predictive tools and treatments. The liver is unique in its regenerative potential, recovering lost mass and function after injury from ischemia, resection, and rejection. I/R injury, an inevitable consequence of perfusion cessation, cold storage, and reperfusion, is regulated by the interaction of the immune system, inflammatory cytokines, and reduced microcirculatory blood flow in the liver. Rejection, a common post-operative complication, is mediated by the recipient's immune system through T-cell-dependent responses activating proinflammatory and apoptotic pathways. Characterizing distinctive gene expression signatures for these events can identify therapies to reduce injury, promote regeneration, and improve outcomes. While certain markers of liver injury and regeneration have been observed in animals, many of these are unverified in human studies. Further investigation of these genomic signatures and mechanisms through new technology offers promise, but continues to pose a significant challenge. An overview of the current fund of knowledge in this area is reviewed.
Collapse
Affiliation(s)
- Sohaib Khalid Hashmi
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Esther Baranov
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ana Gonzalez
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kim Olthoff
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Abraham Shaked
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Cho HI, Kim KM, Kwak JH, Lee SK, Lee SM. Protective mechanism of anethole on hepatic ischemia/reperfusion injury in mice. JOURNAL OF NATURAL PRODUCTS 2013; 76:1717-1723. [PMID: 23962021 DOI: 10.1021/np4004323] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The aim of this study was to investigate the hepatoprotective effect of anethole (trans-anethole, 1), a major component of Foeniculum vulgare, and its molecular mechanism during ischemia/reperfusion (I/R). Mice were subjected to 60 min of partial hepatic ischemia followed by 1 and 6 h of reperfusion. Compound 1 (50, 100, and 200 mg/kg) or the vehicle alone (10% Tween 80-saline) was orally administered 1 h prior to ischemia. After 1 and 6 h of reperfusion, serum alanine aminotransferase, tumor necrosis factor-α, and interleukin 6 levels significantly increased, but these increases were attenuated by 1. Nuclear translocation of interferon regulatory factor (IRF)-1, release of high mobility group box (HMGB) 1 into the extracellular milieu, and the interactions between IRF-1 and histone acetyltransferase p300 increased after I/R. These increases were attenuated by 1. Compound 1 suppressed increases in toll-like receptor (TLR) 4, myeloid differentiation primary response gene 88 protein expression, phosphorylation of p38, extracellular signal-regulated kinase, c-Jun N-terminal kinase, nuclear translocation of nuclear factor kappa B, and phosphorylated c-Jun. The present findings suggest that 1 protects against hepatic I/R injury by suppression of IRF-1-mediated HMGB1 release and subsequent TLR activation.
Collapse
Affiliation(s)
- Hong-Ik Cho
- School of Pharmacy, Sungkyunkwan University , Suwon, Gyeonggi-do, 440-746, Republic of Korea
| | | | | | | | | |
Collapse
|
19
|
Klune JR, Dhupar R, Kimura S, Ueki S, Cardinal J, Nakao A, Nace G, Evankovich J, Murase N, Tsung A, Geller DA. Interferon regulatory factor-2 is protective against hepatic ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 2012; 303:G666-73. [PMID: 22744333 PMCID: PMC3468551 DOI: 10.1152/ajpgi.00050.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interferon regulatory factor (IRF)-1 is a nuclear transcription factor that induces inflammatory cytokine mediators and contributes to hepatic ischemia-reperfusion (I/R) injury. No strategies to mitigate IRF1-mediated liver damage exist. IRF2 is a structurally similar endogenous protein that competes with IRF1 for DNA binding sites in IRF-responsive target genes and acts as a competitive inhibitor. However, the role of IRF2 in hepatic injury during hypoxic or inflammatory conditions is unknown. We hypothesize that IRF2 overexpression may mitigate IRF1-mediated I/R damage. Endogenous IRF2 is basally expressed in normal livers and is mildly increased by ischemia alone. Overexpression of IRF2 protects against hepatic warm I/R injury. Furthermore, we demonstrate that IRF2 overexpression limits production of IRF1-dependent proinflammatory genes, such as IL-12, IFNβ, and inducible nitric oxide synthase, even in the presence of IRF1 induction. Additionally, isograft liver transplantation with IRF2 heterozygote knockout (IRF2(+/-)) donor grafts that have reduced endogenous IRF2 levels results in worse injury following cold I/R during murine orthotopic liver transplantation. These findings indicate that endogenous intrahepatic IRF2 protein is protective, because the IRF2-deficient liver donor grafts exhibited increased liver damage compared with the wild-type donor grafts. In summary, IRF2 overexpression protects against I/R injury by decreasing IRF1-dependent injury and may represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- John R. Klune
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rajeev Dhupar
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shoko Kimura
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shinya Ueki
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jon Cardinal
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Atsunori Nakao
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gary Nace
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Evankovich
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Noriko Murase
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Allan Tsung
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A. Geller
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Preconditioning with physiological levels of ethanol protect kidney against ischemia/reperfusion injury by modulating oxidative stress. PLoS One 2011; 6:e25811. [PMID: 22022451 PMCID: PMC3192120 DOI: 10.1371/journal.pone.0025811] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 09/11/2011] [Indexed: 01/01/2023] Open
Abstract
Background Oxidative stress due to excessive production of reactive oxygen species (ROS) and subsequent lipid peroxidation plays a critical role in renal ischemia/reperfusion (IR) injury. The purpose of current study is to demonstrate the effect of antecedent ethanol exposure on IR-induced renal injury by modulation of oxidative stress. Materials and Methods Bilateral renal warm IR was induced in male C57BL/6 mice after ethanol or saline administration. Blood ethanol concentration, kidney function, histological damage, inflammatory infiltration, cytokine production, oxidative stress, antioxidant capacity and Aldehyde dehydrogenase (ALDH) enzymatic activity were assessed to evaluate the impact of antecedent ethanol exposure on IR-induced renal injury. Results After bilateral kidney ischemia, mice preconditioned with physiological levels of ethanol displayed significantly preserved renal function along with less histological tubular damage as manifested by the reduced inflammatory infiltration and cytokine production. Mechanistic studies revealed that precondition of mice with physiological levels of ethanol 3 h before IR induction enhanced antioxidant capacity characterized by significantly higher superoxidase dismutase (SOD) activities. Our studies further demonstrated that ethanol pretreatment specifically increased ALDH2 activity, which then suppressed lipid peroxidation by promoting the detoxification of Malondialdehyde (MDA) and 4-hydroxynonenal (HNE). Conclusions Our results provide first line of evidence indicating that antecedent ethanol exposure can provide protection for kidneys against IR-induced injury by enhancing antioxidant capacity and preventing lipid peroxidation. Therefore, ethanol precondition and ectopic ALDH2 activation could be potential therapeutic approaches to prevent renal IR injury relevant to various clinical conditions.
Collapse
|
21
|
Toll-like receptors in hepatic ischemia/reperfusion and transplantation. Gastroenterol Res Pract 2010; 2010. [PMID: 20811615 PMCID: PMC2929604 DOI: 10.1155/2010/537263] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 07/08/2010] [Indexed: 12/18/2022] Open
Abstract
The family of Toll-like receptors (TLRs) function as pattern-recognition receptors (PRRs) that respond to a myriad of highly conserved ligands. These substrates include pathogen-associated molecular patterns (PAMPs) for the recognition of invading pathogens, as well as damage-associated molecular patterns (DAMPs) for the recognition of endogenous tissue injury. While the functions of TLRs are diverse, they have received much attention for their roles in ischemia/reperfusion (I/R) injury of the liver and other organs. The TLRs play central roles in sensing tissue damage and activating the innate immune system following I/R. Engagement of TLRs by endogenous DAMPs activates proinflammatory signaling pathways leading to the production of cytokines, chemokines and further release of endogenous danger signals. This paper focuses on the most recent findings regarding TLR family members in hepatic I/R injury and transplantation.
Collapse
|
22
|
Cao Z, Dhupar R, Cai C, Li P, Billiar TR, Geller DA. A critical role for IFN regulatory factor 1 in NKT cell-mediated liver injury induced by alpha-galactosylceramide. THE JOURNAL OF IMMUNOLOGY 2010; 185:2536-43. [PMID: 20624945 DOI: 10.4049/jimmunol.1000092] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
NKT cells are remarkably abundant in mouse liver. Compelling experimental evidence has suggested that NKT cells are involved in the pathogenesis of many liver diseases. Activation of NKT cells with alpha-galactosylceramide (alpha-GalCer) causes liver injury through mechanisms that are not well understood. We undertook studies to characterize the key pathways involved in alpha-GalCer-induced liver injury. We found that expression of the transcription factor IFN regulatory factor 1 (IRF-1) in mouse liver was dramatically upregulated by alpha-GalCer treatment. Neutralization of either TNF-alpha or IFN-gamma inhibited alpha-GalCer-mediated IRF-1 upregulation. alpha-GalCer-induced liver injury was significantly suppressed in IRF-1 knockout mice or in wild-type C56BL/6 mice that received a microRNA specifically targeting IRF-1. In contrast, overexpression of IRF-1 greatly potentiated alpha-GalCer-induced liver injury. alpha-GalCer injection also induced a marked increase in hepatic inducible NO synthase expression in C56BL/6 mice, but not in IRF-1 knockout mice. Inducible NO synthase knockout mice exhibited significantly reduced liver injury following alpha-GalCer treatment. Finally, we demonstrated that both NKT cells and hepatocytes expressed IRF-1 in response to alpha-GalCer. However, it appeared that the hepatocyte-derived IRF-1 was mainly responsible for alpha-GalCer-induced liver injury, based on the observation that inhibition of IRF-1 by RNA interference did not affect alpha-GalCer-induced NKT cell activation. Our findings revealed a novel mechanism of NKT cell-mediated liver injury in mice, which has implications in the development of human liver diseases.
Collapse
Affiliation(s)
- Zongxian Cao
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|