1
|
Dong Y, Cao H, Liang Z. A Curated Target Gene Pool Assisting Early Disease Prediction and Patient-Specific Treatment for Small Cell Lung Cancer. J Comput Biol 2018; 25:576-585. [PMID: 29741913 PMCID: PMC11753457 DOI: 10.1089/cmb.2017.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hundreds of genes have been linked to small cell lung cancer (SCLC), presenting multiple levels of connections with the disease. The question is whether these genes are sufficient as genetic biomarkers for the early diagnosis and personalized treatment of SCLC. An SCLC genetic database was developed through comprehensive ResNet relationship data analysis, where 557 SCLC target genes were curated. Multiple levels of associations between these genes and SCLC were studied. Then, a sparse representation-based variable selection (SRVS) was employed for gene selection for four SCLC gene expression data sets, followed by a case-control classification. Results were compared with that of analysis of variance (ANOVA)-based gene selection approaches. Using SRVS, a gene vector was selected for each data set, leading to significant higher classification accuracy compared with randomly selected genes (100%, 77.12%, 100%, and 100%; permutation p values: 0.017, 0.00060, 0.012, and 0.0066). The SRVS method outperformed ANOVA in terms of classification ratio. The genes were selected within the 557 SCLC gene pool, showing data set and method specificity. Our results suggested that for a given SCLC patient group, there might exist a gene vector in the 557 curated SCLC genes that possess significant prediction power. SRVS is effective for identifying the optimum gene subset targeting personalized treatment.
Collapse
Affiliation(s)
- Yan Dong
- Department of Geriatrics, Second People's Hospital of Lianyungang, Lianyungang, China
| | - Hongbao Cao
- Department of Genomics Research, R&D Solutions, Elsevier, Inc., Rockville, Maryland
- Unit on Statistical Genomics, NIMH/NIH, Bethesda, Maryland
| | - Zhigang Liang
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
2
|
Lee JS, Oh E, Yoo JY, Choi KS, Yoon MJ, Yun CO. Adenovirus expressing dual c-Met-specific shRNA exhibits potent antitumor effect through autophagic cell death accompanied by senescence-like phenotypes in glioblastoma cells. Oncotarget 2016; 6:4051-65. [PMID: 25726528 PMCID: PMC4414172 DOI: 10.18632/oncotarget.3018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/30/2014] [Indexed: 12/12/2022] Open
Abstract
c-Met, a cognate receptor tyrosine kinase of hepatocyte growth factor, is overexpressed and/or mutated in number of tumors. Therefore, abrogation of c-Met signaling may serve as potential therapeutic targets. In this study, we generated Ads expressing single shRNA specific to c-Met (shMet) (dl/shMet4 and dl/shMet5) or dual shRNAs specific to c-Met (dl/shMet4+5); and examined the therapeutic potential of these newly engineered Ads in targeting c-Met, and delineated their mechanism of action in vitro and in vivo. Ads expressing shMet induced knock-down in c-Met, and phenotypically resulted in autophagy-like features including appearance of membranousvacuoles, formation of acidic vesicular organelles, and cleavage and recruitment of microtubule-associated protein1 light chain 3 to autophagosomes. Ads expressing shMet also suppressed Akt phosphorylation and increased number of senescence-related gene products including SM22, TGase II, and PAI-1. These changes resulted in inhibition of cell proliferation and G2/M arrest of U343 cells. In vivo, intratumoral injection with dl/shMet4+5 resulted in a significant reduction of tumor growth with corresponding increasing overall survival. Histopathological analysis of these treated tumors revealed that Atg5 was highly up-regulated, indicating the therapeutic induction of autophagy. In sum, these results reveal that autophagic cell death induced by shMet-expressing Ads provide a novel strategy for targeting c-Met-expressing tumors through non-apoptotic mechanism of cell death.
Collapse
Affiliation(s)
- Jung-Sun Lee
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Eonju Oh
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Ji Young Yoo
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Kyeong Sook Choi
- Department of Molecular Science & Technology, Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Mi Jin Yoon
- Department of Molecular Science & Technology, Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
3
|
The clinical value of serum hepatocyte growth factor levels in patients undergoing primary radiotherapy for glioma: effect on progression-free survival. Med Oncol 2014; 31:122. [PMID: 25064731 DOI: 10.1007/s12032-014-0122-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
Hepatocyte growth factor (HGF) has been shown to be overexpressed in gliomas, and high-grade gliomas (glioblastoma multiforme) express more HGF than lower-grade astrocytoma, and HGF enhances their resistance to radiotherapy. To examine the effect of serum HGF levels on the likelihood of response to radiotherapy and the disease-free survival in patients with glioma, the blood samples of the patients were collected before commencing treatment and serum HGF was measured by quantitative ELISA in 48 patients with glioma grade I-IV, and all patients underwent primary conventionally fractionated radiotherapy. For statistical analysis, SPSS Version 13.0 software was used. Thirty-eight of the 48 patients had a response to treatment, and ten patients had persistent disease at 3 months. Overall, the median serum HGF level was 1,219.5 pg/ml (range 650.4-2,264.7 pg/ml). Eight patients with local failure had HGF levels >1,219.5 pg/ml, and 28 patients with response had serum HGF level of ≤ 1,219.5 pg/ml (P = 0.01). The median time to progression was 6 months in patients with HGF level of >1,219.5 pg/ml compared with 17 months in patients with HGF level of ≤ 1,219.5 pg/ml (log-rank, P = 0.041). In multivariate analysis, serum HGF, the KPS, tumour size and pathological grade, but not the patient's age, gender and oligodendroglial component influenced the progression-free survival. Elevated pre-therapeutic serum HGF levels are associated with poor response and a shorter time to progression in patients with glioma undergoing primary radiotherapy.
Collapse
|
4
|
CHU SHENGHUA, MA YANBIN, FENG DONGFU, LI ZHIQIANG, JIANG PUCHA. Correlation between SATB1 and Bcl-2 expression in human glioblastoma multiforme. Mol Med Rep 2012; 7:139-43. [DOI: 10.3892/mmr.2012.1131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/02/2012] [Indexed: 11/06/2022] Open
|
5
|
Barar J, Omidi Y. Translational Approaches towards Cancer Gene Therapy: Hurdles and Hopes. BIOIMPACTS : BI 2012; 2:127-43. [PMID: 23678451 DOI: 10.5681/bi.2012.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 09/02/2012] [Accepted: 09/11/2012] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Of the cancer gene therapy approaches, gene silencing, suicide/apoptosis inducing gene therapy, immunogene therapy and targeted gene therapy are deemed to sub-stantially control the biological consequences of genomic changes in cancerous cells. Thus, a large number of clinical trials have been conducted against various malignancies. In this review, we will discuss recent translational progresses of gene and cell therapy of cancer. METHODS Essential information on gene therapy of cancer were reviewed and discussed towards their clinical translations. RESULTS Gene transfer has been rigorously studied in vitro and in vivo, in which some of these gene therapy endeavours have been carried on towards translational investigations and clinical applications. About 65% of gene therapy trials are related to cancer therapy. Some of these trials have been combined with cell therapy to produce personalized medicines such as Sipuleucel-T (Provenge®, marketed by Dendreon, USA) for the treatment of asymptomatic/minimally symptomatic metastatic hormone-refractory prostate cancer. CONCLUSION Translational approach links two diverse boundaries of basic and clinical researches. For successful translation of geno-medicines into clinical applications, it is essential 1) to have the guidelines and standard operating procedures for development and application of the genomedicines specific to clinically relevant biomarker(s); 2) to conduct necessary animal experimental studies to show the "proof of concept" for the proposed genomedicines; 3) to perform an initial clinical investigation; and 4) to initiate extensive clinical trials to address all necessary requirements. In short, translational researches need to be refined to accelerate the geno-medicine development and clinical applications.
Collapse
Affiliation(s)
- Jaleh Barar
- Ovarian Cancer Research Center, Translational Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
6
|
Chu SH, Feng DF, Ma YB, Li ZQ. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo. Int J Nanomedicine 2012; 7:3659-66. [PMID: 22888225 PMCID: PMC3414202 DOI: 10.2147/ijn.s33584] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hydroxyapatite nanoparticles (nano-HAPs) have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU).
Collapse
Affiliation(s)
- Sheng-Hua Chu
- Department of Neurosurgery, No 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | | | | | |
Collapse
|
7
|
Chu SH, Feng DF, Ma YB, Zhang H, Zhu ZA, Li ZQ, Jiang PC. Promoter methylation and downregulation of SLC22A18 are associated with the development and progression of human glioma. J Transl Med 2011; 9:156. [PMID: 21936894 PMCID: PMC3184631 DOI: 10.1186/1479-5876-9-156] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 09/21/2011] [Indexed: 01/24/2023] Open
Abstract
Background Downregulation of the putative tumor suppressor gene SLC22A18 has been reported in a number of human cancers. The aim of this study was to investigate the relationship between SLC22A18 downregulation, promoter methylation and the development and progression of human glioma. Method SLC22A18 expression and promoter methylation was examined in human gliomas and the adjacent normal tissues. U251 glioma cells stably overexpressing SLC22A18 were generated to investigate the effect of SLC22A18 on cell growth and adherence in vitro using the methyl thiazole tetrazolium assay. Apoptosis was quantified using flow cytometry and the growth of SLC22A18 overexpressing U251 cells was measured in an in vivo xenograft model. Results SLC22A18 protein expression is significantly decreased in human gliomas compared to the adjacent normal brain tissues. SLC22A18 protein expression is significantly lower in gliomas which recurred within six months after surgery than gliomas which did not recur within six months. SLC22A18 promoter methylation was detected in 50% of the gliomas, but not in the adjacent normal tissues of any patient. SLC22A18 expression was significantly decreased in gliomas with SLC22A18 promoter methylation, compared to gliomas without methylation. The SLC22A18 promoter is methylated in U251 cells and treatment with the demethylating agent 5-aza-2-deoxycytidine increased SLC22A18 expression and reduced cell proliferation. Stable overexpression of SLC22A18 inhibited growth and adherence, induced apoptosis in vitro and reduced in vivo tumor growth of U251 cells. Conclusion SLC22A18 downregulation via promoter methylation is associated with the development and progression of glioma, suggesting that SLC22A18 is an important tumor suppressor in glioma.
Collapse
Affiliation(s)
- Sheng-Hua Chu
- Department of Neurosurgery, NO.3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, Qian F, Chu F, Bentzien F, Cancilla B, Orf J, You A, Laird AD, Engst S, Lee L, Lesch J, Chou YC, Joly AH. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 2011; 10:2298-308. [PMID: 21926191 DOI: 10.1158/1535-7163.mct-11-0264] [Citation(s) in RCA: 972] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The signaling pathway of the receptor tyrosine kinase MET and its ligand hepatocyte growth factor (HGF) is important for cell growth, survival, and motility and is functionally linked to the signaling pathway of VEGF, which is widely recognized as a key effector in angiogenesis and cancer progression. Dysregulation of the MET/VEGF axis is found in a number of human malignancies and has been associated with tumorigenesis. Cabozantinib (XL184) is a small-molecule kinase inhibitor with potent activity toward MET and VEGF receptor 2 (VEGFR2), as well as a number of other receptor tyrosine kinases that have also been implicated in tumor pathobiology, including RET, KIT, AXL, and FLT3. Treatment with cabozantinib inhibited MET and VEGFR2 phosphorylation in vitro and in tumor models in vivo and led to significant reductions in cell invasion in vitro. In mouse models, cabozantinib dramatically altered tumor pathology, resulting in decreased tumor and endothelial cell proliferation coupled with increased apoptosis and dose-dependent inhibition of tumor growth in breast, lung, and glioma tumor models. Importantly, treatment with cabozantinib did not increase lung tumor burden in an experimental model of metastasis, which has been observed with inhibitors of VEGF signaling that do not target MET. Collectively, these data suggest that cabozantinib is a promising agent for inhibiting tumor angiogenesis and metastasis in cancers with dysregulated MET and VEGFR signaling.
Collapse
Affiliation(s)
- F Michael Yakes
- Exelixis, Inc., 210 East Grand Ave, South San Francisco, CA 94083, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chu SH, Ma YB, Feng DF, Zhang H, Qiu JH, Zhu ZA. Elevated expression of solute carrier family 22 member 18 increases the sensitivity of U251 glioma cells to BCNU. Oncol Lett 2011; 2:1139-1142. [PMID: 22848278 DOI: 10.3892/ol.2011.371] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 07/29/2011] [Indexed: 02/07/2023] Open
Abstract
Previous studies showed that solute carrier family 22 member 18 (SLC22A18) is involved in tumorigenesis. The aim of this study was to examine the role of SLC22A18 in glioma cells. Glioma U251 cells were transfected with the human SLC22A18 gene. Transfection of the empty vector pcDNA3.1 was used as a negative control. Sensitivity to BCNU was measured by Annexin V staining. The expression of caspase-3 and bcl-2 was determined by immunohistochemistry. The transfection was confirmed by PCR, RT-PCR and Western blotting. Augmented apoptotic cell death was observed in the SLC22A18-transfected cells, compared to the non-transfected cells or cells with the empty vector. Caspase-3 expression increased in U251-SLC22A18 cells, whereas the bcl-2 expression decreased. These results indicated that SLC22A18 has a pro-apoptotic function in glioma cells.
Collapse
Affiliation(s)
- Sheng-Hua Chu
- Department of Neurosurgery, No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201900, P.R. China
| | | | | | | | | | | |
Collapse
|
10
|
Liu W, Fu Y, Xu S, Ding F, Zhao G, Zhang K, Du C, Pang B, Pang Q. c-Met expression is associated with time to recurrence in patients with glioblastoma multiforme. J Clin Neurosci 2010; 18:119-21. [PMID: 20832323 DOI: 10.1016/j.jocn.2010.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 05/10/2010] [Accepted: 05/12/2010] [Indexed: 12/25/2022]
Abstract
The aim of this study was to explore the difference in c-Met expression between primary and recurrent glioblastoma multiforme (GBM), and to determine whether the dysregulation of c-Met expression has a role in the malignant progression of GBM. Paired primary and recurrent GBM specimens from the same patient were evaluated using immunohistochemical analysis. The association between c-Met expression and progression-free survival time (PFST) was analyzed. There was a significant difference in c-Met expression between primary and recurrent tumors (p=0.020), and patients with tumors expressing c-Met at a higher level had a significantly shorter PFST (6.1 months vs. 11.5 months; p=0.026). Our study indicates that recurrent GBM express c-Met at a higher level and that c-Met overexpression is associated with shorter PFST in patients with GBM. These findings suggest that c-Met potentially has an important role in the treatment of GBM.
Collapse
Affiliation(s)
- Wei Liu
- Department of Neurosurgery, Provincial Hospital affiliated to Shandong University, 324 Jingwuweiqi Road, Jinan, Shandong 250021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chu SH, Feng DF, Ma YB, Zhu ZA, Zhang H, Qiu JH. Stabilization of hepatocyte growth factor mRNA by hypoxia-inducible factor 1. Mol Biol Rep 2009; 36:1967-75. [PMID: 18979225 DOI: 10.1007/s11033-008-9406-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 10/21/2008] [Indexed: 01/23/2023]
Abstract
Hypoxia regulates expression of hepatocyte growth factor (HGF) by increasing its transcription and by stabilizing its mRNA. Despite the pivotal role of hypoxia-inducible factor 1 (HIF-1) in transcriptional activation of hypoxia-responsive genes, it is not known whether HIF-1 mediates hypoxia-induced stabilization of HGF mRNA. We constructed adenoviral vectors expressing either the wild-type HIF-1alpha (Ad2/HIF-1alpha/FL), a constitutively stable hybrid form of HIF-1alpha (Ad2/HIF-1alpha/VP16), or no transgene (Ad2/CMVEV). In rat glioma (C6) cells, human glioma (U251) cells human cardiac, vascular smooth muscle, and endothelial cells, infection with Ad2/HIF-1alpha/VP16 or Ad2/HIF-1alpha/FL increased HGF expression at both the mRNA and protein levels. Under normoxic conditions, the half-life of HGF mRNA was 43 min in C6 and U251 cells. Hypoxia and Ad2/HIF-1alpha/VP16 increased the half-life of HGF mRNA to 3.2 and 2.8 h, respectively, while Ad2/CMVEV had no effect. These studies are the first to demonstrate that overexpression of HIF-1alpha increases HGF mRNA stability. Our results also suggest that stabilization of HGF mRNA by hypoxia is mediated, at least in part, by HIF-1.
Collapse
Affiliation(s)
- Sheng-Hua Chu
- Department of Neurosurgery, No. 3 People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
12
|
Chu SH, Feng DF, Zhang H, Chen ET, Duan ZX, Li XY, Li J, Ma YB, Zhu ZA, Qiu JH. c-Met-targeted RNA interference inhibits growth and metastasis of glioma U251 cells in vitro. J Neurooncol 2009; 93:183-9. [PMID: 19165419 DOI: 10.1007/s11060-008-9772-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 12/15/2008] [Indexed: 11/28/2022]
Abstract
Angiogenesis plays an essential role in tumor growth and metastasis and is a promising target for cancer therapy. c-Met, a receptor tyrosine kinase, and its ligand, hepatocyte growth factor (HGF), are critical in cellular proliferation, motility, invasion, and angiogenesis. The present study was designed to determine the role of c-Met in growth and metastasis of glioma U251 cells using RNA interference (RNAi) technology in vitro. We constructed three kinds of shRNA expression vectors aiming at the c-Met gene, then transfected them into glioma U251 cells by lipofectamine(TM) 2000. The level of c-Met mRNA was investigated by real-time polymerse chain reaction (RT-PCR). The protein expression of c-Met was observed by immunofluoresence staining and western blotting. U251 cell growth and adherence was detected by methyl thiazole tetrazolium assay. The apoptosis of U251 cells was examined with a flow cytometer. The adherence, invasion, and in vitro angiogenesis assays of U251 cells were done. We got three kinds of c-Met specific shRNA expression vectors which could efficiently inhibit the growth and metastasis of U251 cells and the expression of c-Met in U251 cells. RT-PCR, immunofluoresence staining and western blotting showed that inhibition rate for c-Met expression was up to 90%, 79% and 85%, respectively. The expression of c-Met can be inhibited by RNA interference in U251 cells, which can inhibit the growth and metastasis of U251 cell and induce cell apoptosis. These results indicate that RNAi of c-Met can be an effective antiangiogenic strategy for glioma.
Collapse
Affiliation(s)
- Sheng-Hua Chu
- Department of Neurosurgery, No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sheng-Hua C, Yan-Bin M, Zhi-An Z, Hong Z, Dong-Fu F, Zhi-Qiang L, Xian-Hou Y. RETRACTED: Radiation-enhanced hepatocyte growth factor secretion in malignant glioma cell lines. ACTA ACUST UNITED AC 2007; 68:610-613. [PMID: 17765959 DOI: 10.1016/j.surneu.2006.12.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 12/06/2006] [Indexed: 10/22/2022]
Abstract
BACKGROUND Postoperative radiotherapy is the standard treatment for patients with a malignant glioma. However, a malignant glioma is radioresistant and almost always recurs, even after a high dose of radiation. A malignant glioma is characterized by its proliferation, invasion and neoangiogenesis, which can be attributed to the high levels of HGF. The scope of this study is to investigate HGF secretion by malignant glioma cells with different radiosensitivity after irradiation. METHODS Three human malignant glioma cell lines (U251, U251-NG2, and BT325) were irradiated with single doses of 0, 5, 10, and 20 grays of gamma-rays from a (137)Cs source. Hepatocyte growth factor levels in medium were measured by ELISA at 24, 48, and 72 hours after radiation. Cell survival was measured by the proliferation-based assay (XTT assay) 7 days after irradiation. RESULTS After a single dose radiation, the HGF levels showed a dose-dependent increase in U251, U251-NG2, and BT325 glioma cells. Both baseline and radiation-enhanced HGF levels were about 10-fold higher in BT325 compared to U251 and U251-NG2 cells. In addition, in the XTT assay, the BT325 was more radioresistant than both U251 and U251-NG2 cell lines (dose modifying factor = 1.5 and 1.6, respectively). CONCLUSION Irradiation-enhanced HGF secretion in all 3 tested glioma cell lines (up to 7 times basal levels). It is tempting to associate the radiation-enhanced HGF secretion with an increased angiogenic potential of the tumor, which may be a factor in radioresistance.
Collapse
Affiliation(s)
- Chu Sheng-Hua
- Department of Neurosurgery, No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University College of Medicine, Shanghai 201900, ROC China.
| | - Ma Yan-Bin
- Department of Neurosurgery, No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University College of Medicine, Shanghai 201900, ROC China
| | - Zhu Zhi-An
- Department of Neurosurgery, No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University College of Medicine, Shanghai 201900, ROC China
| | - Zhang Hong
- Department of Neurosurgery, No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University College of Medicine, Shanghai 201900, ROC China
| | - Feng Dong-Fu
- Department of Neurosurgery, No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University College of Medicine, Shanghai 201900, ROC China
| | - Li Zhi-Qiang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, ROC China
| | - Yuan Xian-Hou
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, ROC China
| |
Collapse
|
14
|
Chu SH, Zhang H, Ma YB, Feng DF, Zhu ZA, Yuan XH, Li ZQ. c-Met antisense oligodeoxynucleotides as a novel therapeutic agent for glioma: in vitro and in vivo studies of uptake, effects, and toxicity. J Surg Res 2007; 141:284-8. [PMID: 17561117 DOI: 10.1016/j.jss.2006.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/30/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND c-Met, a receptor tyrosine kinase, and its ligand, hepatocyte growth factor, are critical in cellular proliferation, motility, and invasion and are known to be overexpressed in gliomas. The aim of our study was to investigate the uptake and effects of c-Met antisense oligodeoxynucleotides (ASODNs) on rat and human glioma cells in vitro and the uptake and toxicity of these nucleotides in rat carcinomatosis and brain tumor models. MATERIALS AND METHODS The three human cell lines (U87, BT325, SHG44) and the C6 rat glioma cell line were cultured. To study the uptake of oligodeoxynucleotides (ODNs) by glioma cells in vitro, cultured glioma cells readily incorporated caroboxyfluorescein-5-succimidyl ester (FAM) labeled phosphorothioate oligodeoxynucleotides, as demonstrated by immunofluorescence microscopy and flow cytometry. To study the effect of ASODNs treatment on c-Met expression in vitro, Expression of c-Met was assessed by immunofluorescence microscopy and reverse transcriptase polymerase chain reaction (RT-PCR) analysis. For animal studies of ODNs toxicity and uptake, eight rats underwent placement of cisternal catheters, under general anesthesia. Four rats were given 24 mug FAM-labeled ASODNs while the others were given a saline control injection. After a 24 h observation period, rats were sacrificed by barbiturate overdose, and their brains were studied. RESULTS For all cell lines, fluorescence was seen to increase with increasing ASODNs concentration. Cells treated in similar fashion were also analyzed by flow cytometry to graphically illustrate the differing fluorescence. Multiple glioma cell lines were tested, with similar results. c-Met ASODNs was found to be successfully incorporated from the media into cultured human glioma cells, even at concentrations as low as 2 muM. In addition, maintenance of the pH-dependent green fluorescence color, as seen by immunofluorescence microscopy and by using flow cytometry, indicated that the FAM was not contained within lysosomes. Immunofluorescence microscopy and RT-PCR analysis showed decreases in c-Met expression with oligodeoxynucleotides treatment. Uptake into tumor cells was also demonstrated in vivo, with no detectable toxicity at concentrations exceeding expected therapeutic levels. CONCLUSION These data are encouraging for further study of c-Met antisense oligodeoxynucleotides as a therapeutic modality for glioma.
Collapse
Affiliation(s)
- Sheng-Hua Chu
- Department of Neurosurgery, No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University College of Medicine, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Chu SH, Ma YB, Zhang H, Feng DF, Zhu ZA, Li ZQ, Yuan XH. RETRACTED ARTICLE: Hepatocyte growth factor production is stimulated by gangliosides and TGF-β isoforms in human glioma cells. J Neurooncol 2007; 85:33-8. [PMID: 17464449 DOI: 10.1007/s11060-007-9387-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Accepted: 04/02/2007] [Indexed: 10/23/2022]
Abstract
Hepatocyte growth factor (HGF) is a pleiotrophic cytokine that stimulates motility and invasion of several cancer cell types and induces angiogenesis, which is known to be expressed in several malignancies including glioma. The effect of transforming growth factor-beta (TGF-beta) isoforrns as well as gangliosides on HGF production was investigated in human glioma cell lines. TGF-beta isoforms and gangliosides were found to differentially stimulate HGF production by these cells. The ganglioside GD3 enhanced this release to the greatest extent and the stimulation was more marked in a glioblastoma cell line than in the two other anaplastic astrocytoma cell lines. These results suggest that both TGF-betas and gangliosides may act as indirect angiogenic factors by stimulating HGF secretion.
Collapse
Affiliation(s)
- Sheng-hua Chu
- Department of Neurosurgery, NO. 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China.
| | | | | | | | | | | | | |
Collapse
|