1
|
Analysis of Efficacy and Factors Associated with Reccurence After Radiofrequency Thermocoagulation in Patients with Postherpetic Neuralgia: a Long-Term Retrospective and Clinical Follow-Up Study. Pain Ther 2022; 11:971-985. [PMID: 35778672 PMCID: PMC9314488 DOI: 10.1007/s40122-022-00412-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/17/2022] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Postherpetic neuralgia (PHN) is a painful condition that persists for 1 month or more after herpes zoster rash has healed. Radiofrequency thermocoagulation (RF-TC) provides analgesia by destroying the dorsal root ganglion and blocking the pain upload pathway; nonetheless, the concomitant neurological-related side effects and recurrence remain a concern. METHODS In this study, 228 patients with PHN in the thoracic segment treated with RF-TC of the dorsal root ganglion of the spinal nerve were included, and were followed up regularly after surgery. The numerical rating scale (NRS) scores, time to recurrence, and intraoperative and postoperative adverse events were recorded and analyzed. The Kaplan-Meier method was used to plot survival curves and calculate the cumulative effective rate and recurrence rate. Cox regression analyses were performed to identify factors associated with postoperative recurrence. Predictive models were built to assess the value of applications. RESULTS The NRS scores decreased in all postoperative periods compared with preoperative ones. At 10-year-follow-up, recurrence was observed in 34.6% (79/228) of patients that underwent PHN. The main postoperative complications were numbness and reduced abdominal muscle strength, which gradually decreased with time, while the abdominal muscle strength gradually recovered. No other adverse events occurred. Interval-censored multivariable Cox regression analysis demonstrated that disease course, complications, pain grade, and type of RF electrode were associated with a significantly higher risk of relapse. The main intraoperative adverse effect was a transient increase in pain during RF-TC. CONCLUSION CT-guided RF-TC of the dorsal root ganglion of the spinal nerve for PHN is a relatively safe and effective surgical option. Disease course, type of RF electrode, complications, and pain grade are risk factors for postoperative recurrence and can assist in clinical decision-making before the RF-CT procedure.
Collapse
|
2
|
Chang KT, Lin YL, Lin CT, Hong CJ, Cheng YH, Tsai MJ, Huang WC, Shih YH, Lee YY, Cheng H, Huang MC. Neuroprotection in the Acute Stage Enables Functional Recovery Following Repair of Chronic Cervical Root Transection After a 3-Week Delay. Neurosurgery 2021; 87:823-832. [PMID: 31960049 DOI: 10.1093/neuros/nyz572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 12/01/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Preganglionic cervical root transection (PCRT) is the most severe type of brachial plexus injury. In some cases, surgical procedures must be postponed for ≥3 wk until electromyographic confirmation. However, research works have previously shown that treating PCRT after a 3-wk delay fails to result in functional recovery. OBJECTIVE To assess whether the immunosuppressive drug sirolimus, by promoting neuroprotection in the acute phase of PCRT, could enable functional recovery in cases of delayed repair. METHODS First, rats received a left 6th to 8th cervical root transection, after which half were administered sirolimus for 1 wk. Markers of microglia, astrocytes, neurons, and autophagy were assessed at days 7 and 21. Second, animals with the same injury received nerve grafts, along with acidic fibroblast growth factor and fibrin glue, 3 wk postinjury. Sirolimus was administered to half of them for the first week. Mechanical sensation, grasping power, spinal cord morphology, functional neuron survival, nerve fiber regeneration, and somatosensory-evoked potentials (SSEPs) were assessed 1 and 23 wk postinjury. RESULTS Sirolimus was shown to attenuate microglial and astrocytic proliferation and enhance neuronal autophagy and survival; only rats treated with sirolimus underwent significant sensory and motor function recovery. In addition, rats who achieved functional recovery were shown to have abundant nerve fibers and neurons in the dorsal root entry zone, dorsal root ganglion, and ventral horn, as well as to have SSEPs reappearance. CONCLUSION Sirolimus-induced neuroprotection in the acute stage of PCRT enables functional recovery, even if surgical repair is performed after a 3-wk delay.
Collapse
Affiliation(s)
- Kai-Ting Chang
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Applied Chemistry, Chaoyang University of Technology, Wufeng, Taiwan
| | - Yi-Lo Lin
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Te Lin
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Nursing, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chen-Jei Hong
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Hsin Cheng
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - May-Jywan Tsai
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Cheng Huang
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan.,Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yang-Hsin Shih
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Central Clinic Hospital, Taipei, Taiwan
| | - Yi-Yen Lee
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Henrich Cheng
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan.,Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chao Huang
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Central Clinic Hospital, Taipei, Taiwan.,Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Basic Medical Education Center, Central Taiwan University of Science and Technology, Taichung, Taiwan.,School of Medicine, Taipei Medical University, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
3
|
Ko CC, Tu TH, Wu JC, Huang WC, Cheng H. Acidic Fibroblast Growth Factor in Spinal Cord Injury. Neurospine 2019; 16:728-738. [PMID: 30653905 PMCID: PMC6944993 DOI: 10.14245/ns.1836216.108] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/26/2018] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI), with an incidence rate of 246 per million person-years among adults in Taiwan, remains a devastating disease in the modern day. Elderly men with lower socioeconomic status have an even higher risk for SCI. Despite advances made in medicine and technology to date, there are few effective treatments for SCI due to limitations in the regenerative capacity of the adult central nervous system. Experiments and clinical trials have explored neuro-regeneration in human SCI, encompassing cell- and molecule-based therapies. Furthermore, strategies have aimed at restoring connections, including autologous peripheral nerve grafts and biomaterial scaffolds that theoretically promote axonal growth. Most molecule-based therapies target the modulation of inhibitory molecules to promote axonal growth, degrade glial scarring obstacles, and stimulate intrinsic regenerative capacity. Among them, acidic fibroblast growth factor (aFGF) has been investigated for nerve repair; it is mitogenic and pluripotent in nature and could enhance axonal growth and mitigate glial scarring. For more than 2 decades, the authors have conducted multiple trials, including human and animal experiments, using aFGF to repair nerve injuries, including central and peripheral nerves. In these trials, aFGF has shown promise for neural regeneration, and in the future, more trials and applications should investigate aFGF as a neurotrophic factor. Focusing on aFGF, the current review aimed to summarize the historical evolution of the utilization of aFGF in SCI and nerve injuries, to present applications and trials, to summarize briefly its possible mechanisms, and to provide future perspectives.
Collapse
Affiliation(s)
- Chin-Chu Ko
- Jhong Jheng Spine & Orthopedic Hospital, Kaohsiung, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tsung-Hsi Tu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Jau-Ching Wu
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Cheng Huang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Henrich Cheng
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Eggers R, Tannemaat MR, De Winter F, Malessy MJA, Verhaagen J. Clinical and neurobiological advances in promoting regeneration of the ventral root avulsion lesion. Eur J Neurosci 2015; 43:318-35. [PMID: 26415525 DOI: 10.1111/ejn.13089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/31/2015] [Accepted: 09/23/2015] [Indexed: 12/27/2022]
Abstract
Root avulsions due to traction to the brachial plexus causes complete and permanent loss of function. Until fairly recent, such lesions were considered impossible to repair. Here we review clinical repair strategies and current progress in experimental ventral root avulsion lesions. The current gold standard in patients with a root avulsion is nerve transfer, whereas reimplantation of the avulsed root into the spinal cord has been performed in a limited number of cases. These neurosurgical repair strategies have significant benefit for the patient but functional recovery remains incomplete. Developing new ways to improve the functional outcome of neurosurgical repair is therefore essential. In the laboratory, the molecular and cellular changes following ventral root avulsion and the efficacy of intervention strategies have been studied at the level of spinal motoneurons, the ventral spinal root and peripheral nerve, and the skeletal muscle. We present an overview of cell-based pharmacological and neurotrophic factor treatment approaches that have been applied in combination with surgical reimplantation. These interventions all demonstrate neuroprotective effects on avulsed motoneurons, often accompanied with various degrees of axonal regeneration. However, effects on survival are usually transient and robust axon regeneration over long distances has as yet not been achieved. Key future areas of research include finding ways to further extend the post-lesion survival period of motoneurons, the identification of neuron-intrinsic factors which can promote persistent and long-distance axon regeneration, and finally prolonging the pro-regenerative state of Schwann cells in the distal nerve.
Collapse
Affiliation(s)
- Ruben Eggers
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - Martijn R Tannemaat
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fred De Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn J A Malessy
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognition research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Abstract
OBJECTIVE To investigate the anatomical and histological features of spinal nerve roots and provide base data for neuroanastomosis therapy for paraplegia. METHODS Spinal nerve roots from C1 to S5 were exposed on six adult cadavers. The diameter and the number of nerve fibers of each nerve root were measured, respectively, with a caliper and image analysis software. RESULTS As for ventral roots, the diameter of C5 (2.50 ± 0.55 mm) was the largest in cervical segments. In thoracic and lumbosacral segments, the diameter gradually increased from T11 to S1 and then decreased from S1 to S5 except L3. S1 (1.43 ± 0.16 mm) was the thickest root and S5 (0.14 ± 0.02 mm) was the thinnest one. As for dorsal roots, the diameter of C7 (4.61 ± 0.87 mm) was the largest in cervical segments. From T11 to S1, the diameter increased and then decreased gradually from S1 to S5. The diameter of dorsal roots from T1 to S5 was largest at S1 (2.95 ± 0.57 mm) and smallest at S5 (0.27 ± 0.13 mm), respectively. C7 (8467 ± 1019), T12 (6538 ± 892), L3 (9169 ± 1160), and S1 (8253 ± 1419) ventral roots contained the most nerve fibers in cervical, thoracic, lumbar, and sacral segments, respectively. Similarly, C7 (39 653 ± 8458), T1 (26 507 ± 7617), L5 (34 455 ± 2740), and S1 (41 543 ± 3036) dorsal roots, respectively, contained the most nerve fibers in their corresponding segments. CONCLUSION The findings in the current study provided the imperative data and may be valuable for spinal nerve root microanastomosis surgery in the paraplegic patients.
Collapse
Affiliation(s)
- YongTao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - XiaoJi Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jun Ma
- Department of Orthopedics, The People's Hospital of Suqian, Drum Tower Hospital Group of Nanjing, Suqian, Jiangsu Province, China
| | - YingBin Ge
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaojian Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China,Correspondence to: XiaoJian Cao, Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China. ; or Yingbin Ge, Department of Physiology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
6
|
Lin YL, Chang KT, Lin CT, Tsai MJ, Tsai YA, Lee YY, Chien SC, Huang WC, Shih YH, Cheng H, Huang MC. Repairing the ventral root is sufficient for simultaneous motor and sensory recovery in multiple complete cervical root transection injuries. Life Sci 2014; 109:44-9. [DOI: 10.1016/j.lfs.2014.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/14/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
|
7
|
Chew DJ, Murrell K, Carlstedt T, Shortland PJ. Segmental spinal root avulsion in the adult rat: a model to study avulsion injury pain. J Neurotrauma 2013; 30:160-72. [PMID: 22934818 DOI: 10.1089/neu.2012.2481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Road traffic accidents are the most common cause of avulsion injury, in which spinal roots are torn from the spinal cord. Patients suffer from a loss of sensorimotor function, intractable spontaneous pain, and border-zone hypersensitivity. The neuropathic pains are particularly difficult to treat because the lack of a well-established animal model of avulsion injury prevents identifying the underlying mechanisms and hinders the development of efficacious drugs. This article describes a hindlimb model of avulsion injury in adult rats where the L5 dorsal and ventral spinal root are unilaterally avulsed (spinal root avulsion [SRA]), leaving the adjacent L4 spinal root intact. SRA produced a significant ipsilateral hypersensitivity to mechanical and thermal stimulation by 5 days compared with sham-operated or naïve rats. This hypersensitivity is maintained for up to 60 days. No autotomy was observed and locomotor deficits were minimal. The hypersensitivity to peripheral stimuli could be temporarily ameliorated by administration of amitriptyline and carbamazepine, drugs that are currently prescribed to avulsion patients. Histological assessment of the L4 ganglion cells revealed no significant alterations in calcitonin gene-related peptide (CGRP), IB4, transient receptor potential cation channel subfamily V member 1 (TrpV1), or N52 staining across groups. Immunohistochemistry of the spinal cord revealed a localized glial response, phagocyte infiltration, and neuronal loss within the ipsilateral avulsed segment. A comparable response from glia and phagocytes was also found in the intact L4 spinal cord, supporting the role for central mechanisms within the L4-5 spinal cord in contributing to the generation of the pain-related behavior. The SRA model provides a platform to investigate possible new pharmacological treatments for avulsion injuries.
Collapse
Affiliation(s)
- Daniel J Chew
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, United Kingdom.
| | | | | | | |
Collapse
|
8
|
Hiruma H, Hikawa S, Kawakami T. Immunocytochemical colocalization of fibroblast growth factor-1 with neurotrophin-3 in mouse alveolar macrophages. Acta Histochem Cytochem 2012; 45:131-7. [PMID: 22685355 PMCID: PMC3365304 DOI: 10.1267/ahc.11055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/02/2012] [Indexed: 12/02/2022] Open
Abstract
Alveolar macrophages are known to express a variety of growth factors and neurotrophins. Fibroblast growth factor-1 (FGF-1) is abundantly present in the lung and has mitogenic and neurotrophic activities similarly to neurotrophins. In order to determine whether FGF-1 associates with neurotrophins in alveolar macrophages, we investigated the immunocytochemical colocalization of FGF-1 with neurotrophins, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), in mouse alveolar macrophages. The results showed that 34% of macrophages were immunoreactive for FGF-1, 10% for NGF, 9% for BDNF, and 17% for NT-3. Of FGF-1-immunoreactive (IR) macrophages, 16% were immunoreactive for NT-3, but only small percentages were immunoreactive for NGF (0.8%) and for BDNF (0.3%). FGF-1 and neurotrophins were all localized in the intracellular vesicles. In the vesicles, FGF-1 and NT-3 were frequently colocalized. All macrophages expressed lysosome-associated protein-2 (LAMP-2), a late endosomal and lysosomal marker, and early endosomes antigen 1 (EEA1), an early endosomal marker. FGF-1 and NT-3 were predominantly colocalized with LAMP-2 rather than with EEA1, whereas NGF and BDNF were colocalized with EEA1 rather than with LAMP-2. These results indicate that FGF-1 and NT-3 are substantially expressed in mouse alveolar macrophages and colocalized in vesicles, predominantly in late endosomes and lysosomes.
Collapse
Affiliation(s)
- Hiromi Hiruma
- Department of Physiology, Kitasato University School of Medicine
| | - Shiori Hikawa
- Department of Medicine, Kitasato University School of Medicine
| | - Tadashi Kawakami
- Department of Physiology, Kitasato University School of Medicine
| |
Collapse
|
9
|
Huang WC, Kuo HS, Tsai MJ, Ma H, Chiu CW, Huang MC, Yang LH, Chang PT, Lin YL, Kuo WC, Lee MJ, Liu JC, Cheng H. Adeno-associated virus-mediated human acidic fibroblast growth factor expression promotes functional recovery of spinal cord-contused rats. J Gene Med 2011; 13:283-9. [PMID: 21557400 DOI: 10.1002/jgm.1568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Following spinal cord injury, the delivery of neurotrophic factors to the injured spinal cord has been shown to promote axonal regeneration and functional recovery. In previous studies, we showed that acidic fibroblast growth factor (aFGF) is a potent neurotrophic factor that promotes the regeneration of axotomized spinal cord or dorsal root ganglion neurones. METHODS We constructed a recombinant adeno-associated virus (AAV) vector to express human aFGF and evaluated aFGF expression and function in AAV-aFGF-infected PC12 cells. We analyzed AAV-green fluorescent protein (GFP) tropism and AAV-mediated aFGF expression in contused spinal cords. Animals received behavioural testing to evaluate the functional recovery. RESULTS Overexpression of aFGF was shown in AAV-aFGF-infected PC12 cells in a dose-dependent manner. Concurrently, neurite extension and cell number were significantly increased in AAV-aFGF infected cells. AAV-mediated GFP expression persisted for at least 5 weeks in contused spinal cords, and the most prominently transduced cells were neurones. Contusive injury reduced endogenous aFGF expression in spinal cords. Overexpression of aFGF was demonstrated in AAV-aFGF transduced spinal cords compared to AAV-GFP transduced spinal cords at 3 and 14 days post-injury. Evaluation of motor function revealed that the improvement of AAV-aFGF-treated rats was prominent. Both AAV-aFGF- and recombinant human aFGF-treated rats revealed significantly better recovery at 5 weeks post-injury, compared to vehicle- and AAV-GFP-treated rats. CONCLUSIONS These data suggest that supplement of aFGF improve the functional recovery of spinal cord-contused rats and that AAV-aFGF-mediated gene transfer could be a clinically feasible therapeutic approach for patients after nervous system injuries.
Collapse
Affiliation(s)
- Wen-Cheng Huang
- Centre for Neural Regeneration, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chew DJ, Carlstedt T, Shortland PJ. A comparative histological analysis of two models of nerve root avulsion injury in the adult rat. Neuropathol Appl Neurobiol 2011; 37:613-32. [DOI: 10.1111/j.1365-2990.2011.01176.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Lee KH, Kim UJ, Park YG, Won R, Lee H, Lee BH. Optical Imaging of Somatosensory Evoked Potentials in the Rat Cerebral Cortex after Spinal Cord Injury. J Neurotrauma 2011; 28:797-807. [DOI: 10.1089/neu.2010.1492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan, Korea
| | - Un Jeng Kim
- Department of Physiology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Gou Park
- Department of Neurosurgery, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ran Won
- Department of Biomedical Laboratory Science, Division of Health Science, Dongseo University, Busan, Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, Korea
| | - Bae Hwan Lee
- Department of Physiology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Huang MC, Lo MJ, Lin YL, Chang SE, Huang WC, Kuo WC, Tsai MJ, Kuo HS, Shih YH, Cheng H. Functional recovery after the repair of transected cervical roots in the chronic stage of injury. J Neurotrauma 2010; 26:1795-804. [PMID: 19548814 DOI: 10.1089/neu.2008.0529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The treatment of root injury is typically performed at the more chronic stages post injury, by which time a substantial number of neurons have died. Therefore, before being applied in the clinical setting, a treatment strategy for these lesions should prove to be as effective in the chronic stages of injury as it is in the acute stage. In this study, we simulated the most severe clinical scenarios to establish an optimal time window for repair at a chronic stage. The sixth to eighth cervical roots on the left side of female SD rats were cut at their junction with the spinal cord. One or three weeks later, the wound was reopened and these roots were repaired with intercostal nerve grafts, with subsequent application of aFGF and fibrin glue. In the control group, the wound was closed after re-exploration without further repair procedures. Sensory and motor functions were measured after the surgery. Spinal cord morphology, neuron survival, and nerve fiber regeneration were traced by CTB-HRP. Results showed that both the sensory and motor functions had significant recovery in the 1-week repair group, but not in the 3-week repair group. By CTB-HRP tracing, we found that the architecture of the spinal cords was relatively preserved in the 1-week repair group, while those of the control group showed significant atrophic change. There were regenerating nerve fibers in the dorsal horn and more motor neuron survival in the 1-week repair group compared to that of the 3-week group. It was concluded that treating transected cervical roots at a chronic stage with microsurgical nerve grafting and application of aFGF and fibrin glue can lead to significant functional recovery, as long as the repair is done before too many neurons die.
Collapse
Affiliation(s)
- Ming-Chao Huang
- Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Parotid duct repair with suturing and anastomosis using tissue adhesive, evaluated by sialography: an experimental study in the dog. J Oral Maxillofac Surg 2009; 67:1191-6. [PMID: 19446203 DOI: 10.1016/j.joms.2008.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 10/20/2008] [Accepted: 12/19/2008] [Indexed: 11/23/2022]
Abstract
PURPOSE The most common method of parotid duct anastomosis is suturing. In addition to the postoperative complications in suturing (ie, anastomosis leakage, fistula formation, and infection of maxillofacial spaces), the surgical duration and suturing difficulties arise as major problems. The efficacy of fibrin glue in parotid duct anastomosis was evaluated and compared with suturing in 15 dogs. MATERIALS AND METHODS Fifteen dogs (of the same breed and gender) were studied in this experimental trial. Intravenous cephalothin (1 g) and intramuscular dexamethasone (8 mg) were administered preoperatively for all cases, but no drug was administered postoperatively. Extraoral transverse incisions were made in buccal regions bilaterally to expose parotid ducts and transection was performed in similar areas (right and left). Next, the right transected duct was repaired with 7-0 nylon sutures, and then the left anastomosis was performed, using fibrin glue. At 10 days after the operation, clinical evaluations and sialography were used to evaluate the quality of the anastomosis repair, ductal leakage, and fistula. RESULTS The ductal fistula was found on the right in 2 cases (13.33%) and on the left (20%) in 3 cases. Aspiration was positive in the right parotid duct in 2 cases (13.33%) and in the left parotid duct (33.33%) in 5 cases. Also, right ductal leakage was seen in 4 cases (26.66%) and left ductal leakage in 7 cases (46.66%), using sialography. CONCLUSIONS The results of this study suggest that the efficacies of fibrin glue and suturing in parotid duct anastomosis are similar, but the use of fibrin glue had a number of advantages, including shortening of the operative time and the possibility of stent removal intraoperatively.
Collapse
|
14
|
Wu A, Lauschke JL, Morris R, Waite PM. Characterization of Rat Forepaw Function in Two Models of Cervical Dorsal Root Injury. J Neurotrauma 2009; 26:17-29. [DOI: 10.1089/neu.2008.0675] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ann Wu
- Neural Injury Research Unit, School of Medical Sciences, University of New South Wales, New South Wales, Sydney, Australia
| | - Jenny L. Lauschke
- Neural Injury Research Unit, School of Medical Sciences, University of New South Wales, New South Wales, Sydney, Australia
| | - Renée Morris
- Neural Injury Research Unit, School of Medical Sciences, University of New South Wales, New South Wales, Sydney, Australia
| | - Phil M.E. Waite
- Neural Injury Research Unit, School of Medical Sciences, University of New South Wales, New South Wales, Sydney, Australia
| |
Collapse
|