1
|
Tokairin K, Ito M, Lee AG, Teo M, He S, Cheng MY, Steinberg GK. Genome-Wide DNA Methylation Profiling Reveals Low Methylation Variability in Moyamoya Disease. Transl Stroke Res 2024:10.1007/s12975-024-01299-w. [PMID: 39356405 DOI: 10.1007/s12975-024-01299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
Moyamoya disease (MMD) is a chronic cerebrovascular disorder that can lead to stroke and neurological dysfunctions. Given the largely sporadic nature and the role of gene-environment interactions in various diseases, we examined epigenetic modifications in MMD. We performed genome-wide DNA methylation using Illumina 850 K Methylation EPIC BeadChip, in two racially distinct adult female cohorts: a non-Asian cohort (13 MMD patients and 7 healthy controls) and an Asian cohort (14 MMD patients and 3 healthy controls). An additional external cohort with both sexes (females: 5 MMD patients and 5 healthy controls, males: 5 MMD patients and 5 healthy controls) was included for validation. Our findings revealed strikingly low DNA methylation variability between MMD patients and healthy controls, in both MMD female cohorts. In the non-Asian cohort, only 6 probes showed increased variability versus 647 probes that showed decreased variability. Similarly, in the Asian cohort, the MMD group also displayed a reduced methylation variability across all 2845 probes. Subsequent analysis showed that these differentially variable probes are located on genes involved in key biological processes such as methylation and transcription, DNA repair, cytoskeletal remodeling, natural killer cell signaling, cellular growth, and migration. These findings mark the first observation of low methylation variability in any disease, contrasting with the high variability observed in other disorders. This reduced methylation variability in MMD may hinder patients' adaptability to environmental shifts, such as hemodynamic stress, thereby influencing vascular homeostasis and contributing to MMD pathology. These findings offer new insights into the mechanisms of MMD and potential treatment strategies.
Collapse
Affiliation(s)
- Kikutaro Tokairin
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Masaki Ito
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex G Lee
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Mario Teo
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Shihao He
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking, China
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Araki Y, Yokoyama K, Uda K, Kanamori F, Takayanagi K, Ishii K, Nishihori M, Goto S, Tsukada T, Takeuchi K, Tanahashi K, Nagata Y, Nishimura Y, Tanei T, Nagashima Y, Muraoka S, Izumi T, Seki Y, Saito R. The Potential Role of Preoperative Posterior Cerebral Artery Involvement in Predicting Postoperative Transient Neurological Deficits and Ischemic Stroke After Indirect Revascularization in Patients With Moyamoya Disease. World Neurosurg 2024; 187:e610-e619. [PMID: 38677649 DOI: 10.1016/j.wneu.2024.04.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVE Transient neurological deficits (TNDs) are known to develop after direct bypass for Moyamoya disease and may be risk factors for subsequent stroke. However, the factors involved in the development of TNDs and stroke after indirect revascularization alone, including their association with subsequent stroke, remain unclear. The purpose of this study was to investigate this issue. METHODS The subjects of the study were 30 patients with Moyamoya disease who underwent a total of 40 indirect revascularization procedures at our institution. Clinical and radiological data were collected retrospectively. To examine factors associated with the development of postoperative TND/stroke/asymptomatic disease, the clinical characteristics of each group were statistically compared. RESULTS The mean age at surgery was 7 years (range 1-63). TNDs developed after surgery in 9 out of 40 patients (22.5%). Stroke in the acute postoperative period occurred in 3 patients (7.5%), all of whom experienced cerebral infarctions. Demographic data and preoperative clinical information were not different between the groups. However, posterior cerebral artery involvement on preoperative imaging was significantly associated with the development of TNDs and stroke (P = 0.006). Furthermore, postoperative stroke was associated with unfavorable outcomes (P = 0.025). CONCLUSIONS Posterior cerebral artery involvement is significantly associated with the occurrence of TNDs. In contrast, TNDs after indirect revascularization have little relationship with the subsequent development of stroke. TNDs usually resolve without new strokes, and a better understanding of this particular pathology could help establish an optimal treatment regimen.
Collapse
Affiliation(s)
- Yoshio Araki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Neurosurgery, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Aichi, Japan.
| | - Kinya Yokoyama
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenji Uda
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Neurosurgery, Nagoya Ekisaikai Hospital, Nagoya, Aichi, Japan
| | - Fumiaki Kanamori
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kai Takayanagi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuki Ishii
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masahiro Nishihori
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shunsaku Goto
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tetsuya Tsukada
- Department of Neurosurgery, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Aichi, Japan
| | - Kazuhito Takeuchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kuniaki Tanahashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuichi Nagata
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yusuke Nishimura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takafumi Tanei
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshitaka Nagashima
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinsuke Muraoka
- Department of Neurosurgery, Kariya Toyota General Hospital, Kariya, Aichi, Japan
| | - Takashi Izumi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yukio Seki
- Department of Neurosurgery, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Aichi, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Li Z, Liu Y, Li X, Yang S, Feng S, Li G, Jin F, Nie S. Knockdown the moyamoya disease susceptibility gene, RNF213, upregulates the expression of basic fibroblast growth factor and matrix metalloproteinase-9 in bone marrow derived mesenchymal stem cells. Neurosurg Rev 2024; 47:246. [PMID: 38811382 DOI: 10.1007/s10143-024-02448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024]
Abstract
Moyamoya disease (MMD) is a chronic, progressive cerebrovascular occlusive disease. Ring finger protein 213 (RNF213) is a susceptibility gene of MMD. Previous studies have shown that the expression levels of angiogenic factors increase in MMD patients, but the relationship between the susceptibility gene RNF213 and these angiogenic mediators is still unclear. The aim of the present study was to investigate the pathogenesis of MMD by examining the effect of RNF213 gene knockdown on the expression of matrix metalloproteinase-9 (MMP-9) and basic fibroblast growth factor (bFGF) in rat bone marrow-derived mesenchymal stem cells (rBMSCs). Firstly, 40 patients with MMD and 40 age-matched normal individuals (as the control group) were enrolled in the present study to detect the levels of MMP-9 and bFGF in serum by ELISA. Secondly, Sprague-Dawley male rat BMSCs were isolated and cultured using the whole bone marrow adhesion method, and subsequent phenotypic analysis was performed by flow cytometry. Alizarin red and oil red O staining methods were used to identify osteogenic and adipogenic differentiation, respectively. Finally, third generation rBMSCs were transfected with lentivirus recombinant plasmid to knockout expression of the RNF213 gene. After successful transfection was confirmed by reverse transcription-quantitative PCR and fluorescence imaging, the expression levels of bFGF and MMP-9 mRNA in rBMSCs and the levels of bFGF and MMP-9 protein in the supernatant of the culture medium were detected on the 7th and 14th days after transfection. There was no significant difference in the relative expression level of bFGF among the three groups on the 7th day. For the relative expression level of MMP-9, there were significant differences on the 7th day and 14th day. In addition, there was no statistically significant difference in the expression of bFGF in the supernatant of the RNF213 shRNA group culture medium, while there was a significant difference in the expression level of MMP-9. The knockdown of the RNF213 gene affects the expression of bFGF and MMP-9. However, further studies are needed to determine how they participate in the pathogenesis of MMD. The findings of the present study provide a theoretical basis for clarifying the pathogenesis and clinical treatment of MMD.
Collapse
Affiliation(s)
- Zhengyou Li
- Department of Neurosurgery, Shandong Second Provincal General Hospital, Jinan, Shandong, 250022, P.R. China
| | - Yang Liu
- Department of Neurosurgery, Fushan District People's Hospital, Yantai, Shandong, 265500, P.R. China
| | - Xiumei Li
- Department of Neurosurgery, Shandong Second Provincal General Hospital, Jinan, Shandong, 250022, P.R. China
| | - Shaojing Yang
- Department of Neurosurgery, Shandong Second Provincal General Hospital, Jinan, Shandong, 250022, P.R. China
| | - Song Feng
- Department of Neurosurgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences and Qingdao Central Hospital Medical Group, 127 Siliu South Road, Qingdao, Shandong, 266042, P.R. China
| | - Genhua Li
- Department of Geriatric Neurology, Anti-Aging Monitoring Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, P.R. China
| | - Feng Jin
- Department of Neurosurgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences and Qingdao Central Hospital Medical Group, 127 Siliu South Road, Qingdao, Shandong, 266042, P.R. China.
| | - Shanjing Nie
- Department of Geriatric Neurology, Anti-Aging Monitoring Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, P.R. China.
| |
Collapse
|
4
|
Abhinav K, Lee AG, Pendharkar AV, Bigder M, Bet A, Rosenberg-Hasson Y, Cheng MY, Steinberg GK. Comprehensive Profiling of Secreted Factors in the Cerebrospinal Fluid of Moyamoya Disease Patients. Transl Stroke Res 2024; 15:399-408. [PMID: 36745304 PMCID: PMC10891229 DOI: 10.1007/s12975-023-01135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
Moyamoya disease (MMD) is characterized by progressive occlusion of the intracranial internal carotid arteries, leading to ischemic and hemorrhagic events. Significant clinical differences exist between ischemic and hemorrhagic MMD. To understand the molecular profiles in the cerebrospinal fluid (CSF) of MMD patients, we investigated 62 secreted factors in both MMD subtypes (ischemic and hemorrhagic) and examined their relationship with preoperative perfusion status, the extent of postoperative angiographic revascularization, and functional outcomes. Intraoperative CSF was collected from 32 control and 71 MMD patients (37 ischemic and 34 hemorrhagic). Multiplex Luminex assay analysis showed that 41 molecules were significantly elevated in both MMD subtypes when compared to controls, including platelet-derived growth factor-BB (PDGF-BB), plasminogen activator inhibitor 1 (PAI-1), and intercellular adhesion molecule 1 (ICAM1) (p < 0.001). Many of these secreted proteins have not been previously reported in MMD, including interleukins (IL-2, IL-4, IL-5, IL-7, IL-8, IL-9, IL-17, IL-18, IL-22, and IL-23) and C-X-C motif chemokines (CXCL1 and CXCL9). Pathway analysis indicated that both MMD subtypes exhibited similar cellular/molecular functions and pathways, including cellular activation, migration, and inflammatory response. While neuroinflammation and dendritic cell pathways were activated in MMD patients, lipid signaling pathways involving nuclear receptors, peroxisome proliferator-activated receptor (PPAR), and liver X receptors (LXR)/retinoid X receptors (RXR) signaling were inhibited. IL-13 and IL-2 were negatively correlated with preoperative cerebral perfusion status, while 7 factors were positively correlated with the extent of postoperative revascularization. These elevated cytokines, chemokines, and growth factors in CSF may contribute to the pathogenesis of MMD and represent potential future therapeutic targets.
Collapse
Affiliation(s)
- Kumar Abhinav
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurosurgery, Bristol Institute of Clinical Neuroscience, Southmead Hospital, Bristol, UK
| | - Alex G Lee
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Arjun V Pendharkar
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Bigder
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony Bet
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA
| | - Yael Rosenberg-Hasson
- Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Xu Y, Chen B, Guo Z, Chen C, Wang C, Zhou H, Zhang C, Feng Y. Identification of diagnostic markers for moyamoya disease by combining bulk RNA-sequencing analysis and machine learning. Sci Rep 2024; 14:5931. [PMID: 38467737 PMCID: PMC10928210 DOI: 10.1038/s41598-024-56367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
Moyamoya disease (MMD) remains a chronic progressive cerebrovascular disease with unknown etiology. A growing number of reports describe the development of MMD relevant to infection or autoimmune diseases. Identifying biomarkers of MMD is to understand the pathogenesis and development of novel targeted therapy and may be the key to improving the patient's outcome. Here, we analyzed gene expression from two GEO databases. To identify the MMD biomarkers, the weighted gene co-expression network analysis (WGCNA) and the differential expression analyses were conducted to identify 266 key genes. The KEGG and GO analyses were then performed to construct the protein interaction (PPI) network. The three machine-learning algorithms of support vector machine-recursive feature elimination (SVM-RFE), random forest and least absolute shrinkage and selection operator (LASSO) were used to analyze the key genes and take intersection to construct MMD diagnosis based on the four core genes found (ACAN, FREM1, TOP2A and UCHL1), with highly accurate AUCs of 0.805, 0.903, 0.815, 0.826. Gene enrichment analysis illustrated that the MMD samples revealed quite a few differences in pathways like one carbon pool by folate, aminoacyl-tRNA biosynthesis, fat digestion and absorption and fructose and mannose metabolism. In addition, the immune infiltration profile demonstrated that ACAN expression was associated with mast cells resting, FREM1 expression was associated with T cells CD4 naive, TOP2A expression was associated with B cells memory, UCHL1 expression was associated with mast cells activated. Ultimately, the four key genes were verified by qPCR. Taken together, our study analyzed the diagnostic biomarkers and immune infiltration characteristics of MMD, which may shed light on the potential intervention targets of moyamoya disease patients.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Bing Chen
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Zhongxiang Guo
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Cheng Chen
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Han Zhou
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Chonghui Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao City, 266000, China.
| |
Collapse
|
6
|
Sato D, Miyawaki S, Imai H, Hongo H, Kiyofuji S, Koizumi S, Saito N. Clinical Characteristics of Immediate Contralateral Ischemia Subsequent to Revascularization for Moyamoya Disease. World Neurosurg 2024; 183:e355-e365. [PMID: 38154683 DOI: 10.1016/j.wneu.2023.12.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Moyamoya disease is a bilateral steno-occlusive disease involving the cerebral vasculature. While some patients are affected by procedure-related ipsilateral ischemia, ischemic complications contralateral to the revascularization are rarely observed. METHODS We retrospectively investigated 135 hemispheres (103 patients) that underwent revascularization in our institution between April 2006 and September 2022. Revascularization surgery comprised single superficial temporal artery-middle cerebral artery anastomosis and encephalo-myo-synangiosis. Certain patients aged under 10 years underwent indirect revascularization. Bilateral revascularization was performed with an interval of >3 months. Medical records and neuroimages were reviewed, and patients with contralateral ischemic complications were identified. Some cases underwent genetic analysis. RESULTS The mean age was 34.5 (range: 5-71) years, and 95 cases (70.4%) were in women. Of the 102 cases examined for the RNF213 c.14429 G > A (p.Arg4810Lys) variant, 33 (32.4%) and 69 (67.6%) showed the GG and GA genotype, respectively. Three cases (2.2%, all female, age range 44-71 years) were complicated with contralateral infarction. The infarcted area distributions of the 2 cases with RNF213 c.14429 G > A variant were patchy and peripheral. The other case showed on magnetic resonance imaging (MRI) angiography total occlusion of the internal carotid artery where patency had been confirmed preoperatively. CONCLUSIONS Contralateral ischemia after revascularization occurred in 2.2% of cases. We classified them into peripheral and central types: peripheral type, an infarction owing to hemodynamic insufficiency or intracranial blood flow redistribution; central type, total occlusion of the contralateral internal carotid artery. Intensive preoperative management can minimize the risk of peripheral types, and neurosurgeons should beware of severe central types.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Hideaki Imai
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Neurosurgery, Japan Community Health Care Organization, Tokyo Shinjuku Medical Center, Tokyo, Japan
| | - Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kiyofuji
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Koizumi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Tashiro R, Anzawa R, Inoue T, Mikagi A, Ozaki D, Tominaga K, Inoue T, Ishida T, Fujimura M, Usuki T, Endo H, Niizuma K, Tominaga T. The prognostic values of plasma desmosines, crosslinking molecules of elastic fibers, in the disease progression of Moyamoya disease. Bioorg Med Chem 2024; 100:117602. [PMID: 38324946 DOI: 10.1016/j.bmc.2024.117602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
Moyamoya disease (MMD) is a cerebrovascular disease which is characterized by the chronic progression of steno-occlusive changes at the terminal portion of internal carotid arteries and the development of "moyamoya vessels." Dysregulation of the extracellular matrix is regarded as a key pathophysiology underlying unique vascular remodeling. Here, we measured the concentration of elastin crosslinkers desmosine and isodesmosine in the plasma of MMD patients. We aimed to reveal its diagnostic values of desmosines in the progression of steno-occlusive lesions. The concentrations of plasma desmosines were determined by liquid chromatography-tandem mass spectrometry. The temporal profiles of steno-occlusive lesions on magnetic resonance angiography were retrospectively evaluated, and the correlation between the progression of steno-occlusive changes in intracranial arteries and plasma desmosines concentrations was further analyzed. Plasma desmosines were significantly higher in MMD patients with disease progression compared to MMD patients without disease progression. Also, the incidence of disease progression was higher in MMD patients with plasma desmosines levels over limit of quantitation (LOQ) than those with plasma desmosines levels below LOQ. In conclusion, plasma desmosines could be potential biomarkers to predict the progression of steno-occlusive changes in MMD patients.
Collapse
Affiliation(s)
- Ryosuke Tashiro
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Riki Anzawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Tomoo Inoue
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Ayame Mikagi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Dan Ozaki
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Keita Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takashi Inoue
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tomohisa Ishida
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo 060-0815, Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8575, Japan; Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
8
|
Tu YK, Fang YC. Molecular Biomarkers Affecting Moyamoya Disease. Adv Tech Stand Neurosurg 2024; 49:1-18. [PMID: 38700677 DOI: 10.1007/978-3-031-42398-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Although the pathogenetic pathway of moyamoya disease (MMD) remains unknown, studies have indicated that variations in the RING finger protein RNF 213 is the strongest susceptible gene of MMD. In addition to the polymorphism of this gene, many circulating angiogenetic factors such as growth factors, vascular progenitor cells, inflammatory and immune mediators, angiogenesis related cytokines, as well as circulating proteins promoting intimal hyperplasia, excessive collateral formation, smooth muscle migration and atypical migration may also play critical roles in producing this disease. Identification of these circulating molecules biomarkers may be used for the early detection of this disease. In this chapter, how the hypothesized pathophysiology of these factors affect MMD and the interactive modulation between them are summarized.
Collapse
Affiliation(s)
- Yong-Kwang Tu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.
- Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| | - Yao-Ching Fang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Kaku Y, Ohmori Y, Kameno K, Uchikawa H, Takemoto Y, Kawano T, Ishimura T, Uetani H, Mukasa A. Inhalational Anesthesia Reduced Transient Neurological Events After Revascularization Surgery for Moyamoya Disease. Neurosurgery 2023:00006123-990000000-01002. [PMID: 38108408 DOI: 10.1227/neu.0000000000002804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The choice between inhalational and total intravenous anesthesia (TIVA) in revascularization surgery for Moyamoya disease (MMD) remains a topic of debate. Anesthesia methods have changed with the advent of new anesthetics. This study investigated whether modern anesthesia methods affected the development of neurological symptoms after revascularization surgery for MMD. METHODS This single-center retrospective study included 63 adult patients (82 hemispheres) with MMD treated with direct and indirect bypass surgeries at our hospital between 2013 and 2022. Patients were divided into inhalational anesthesia (IA) and TIVA groups based on the anesthesia maintenance method. Baseline patient characteristics; postoperative neurological symptoms, including hyperperfusion syndrome, cerebral infarction, and transient neurological events (TNEs); and cortical hyperintensity belt (CHB) sign scores (5-point scale from 0 to 4) on postoperative magnetic resonance imaging were compared between the two groups. The operation methods, anesthetics, and intraoperative hemodynamic and ventilatory parameters were compared between patients with and without TNEs. RESULTS The IA and TIVA groups comprised 39 and 43 hemispheres, respectively. The frequency of postoperative hyperperfusion syndrome and cerebral infarction did not differ between the groups, but the number of TNEs in the IA group (5/39; 13%) was significantly lower than that in the TIVA group (16/43; 37%). Multivariate logistic regression analysis revealed that TNEs were associated with TIVA (odds ratio, 3.91; 95% CI, 1.24-12.35; P = .02). The median [IQR] postoperative CHB sign score in the IA group (2 [1-3]) was significantly lower than that in the TIVA group (4 [3-4]). CONCLUSION The IA group had fewer postoperative TNEs and lower CHB sign scores than the TIVA group. Although further studies are needed, this study provides insights into the prevention of TNEs with IA and reconsideration of the optimal anesthesia for MMD.
Collapse
Affiliation(s)
- Yasuyuki Kaku
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Yuki Ohmori
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Koki Kameno
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Hiroki Uchikawa
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Yushin Takemoto
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Takayuki Kawano
- Department of Neurosurgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | | | - Hiroyuki Uetani
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan
| |
Collapse
|
10
|
Shirozu N, Ohgidani M, Hata N, Tanaka S, Inamine S, Sagata N, Kimura T, Inoue I, Arimura K, Nakamizo A, Nishimura A, Maehara N, Takagishi S, Iwaki K, Nakao T, Masuda K, Sakai Y, Mizoguchi M, Yoshimoto K, Kato TA. Angiogenic and inflammatory responses in human induced microglia-like (iMG) cells from patients with Moyamoya disease. Sci Rep 2023; 13:14842. [PMID: 37684266 PMCID: PMC10491754 DOI: 10.1038/s41598-023-41456-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Angiogenic factors associated with Moyamoya disease (MMD) are overexpressed in M2 polarized microglia in ischemic stroke, suggesting that microglia may be involved in the pathophysiology of MMD; however, existing approaches are not applicable to explore this hypothesis. Herein we applied blood induced microglial-like (iMG) cells. We recruited 25 adult patients with MMD and 24 healthy volunteers. Patients with MMD were subdivided into progressive (N = 7) or stable (N = 18) group whether novel symptoms or radiographic advancement of Suzuki stage within 1 year was observed or not. We produced 3 types of iMG cells; resting, M1-, and M2-induced cells from monocytes, then RNA sequencing followed by GO and KEGG pathway enrichment analysis and qPCR assay were performed. RNA sequencing of M2-induced iMG cells revealed that 600 genes were significantly upregulated (338) or downregulated (262) in patients with MMD. Inflammation and immune-related factors and angiogenesis-related factors were specifically associated with MMD in GO analysis. qPCR for MMP9, VEGFA, and TGFB1 expression validated these findings. This study is the first to demonstrate that M2 microglia may be involved in the angiogenic process of MMD. The iMG technique provides a promising approach to explore the bioactivity of microglia in cerebrovascular diseases.
Collapse
Affiliation(s)
- Noritoshi Shirozu
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunya Tanaka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Inamine
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tetsuaki Kimura
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| | - Koichi Arimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ataru Nishimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Maehara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Soh Takagishi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuma Iwaki
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
11
|
Chen T, Wei W, Yu J, Xu S, Zhang J, Li X, Chen J. The Progression of Pathophysiology of Moyamoya Disease. Neurosurgery 2023; 93:502-509. [PMID: 36912514 DOI: 10.1227/neu.0000000000002455] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/17/2023] [Indexed: 03/14/2023] Open
Abstract
Moyamoya disease (MMD) is a chronic steno-occlusive cerebrovascular disease that often leads to hemorrhagic and ischemic strokes; however, its etiology remains elusive. Surgical revascularization by either direct or indirect bypass techniques to restore cerebral hypoperfusion is the treatment of choice to date. This review aims to provide an overview of the current advances in the pathophysiology of MMD, including the genetic, angiogenic, and inflammatory factors related to disease progression. These factors may cause MMD-related vascular stenosis and aberrant angiogenesis in complex manners. With a better understanding of the pathophysiology of MMD, nonsurgical approaches that target the pathogenesis of MMD may be able to halt or slow the progression of this disease.
Collapse
Affiliation(s)
- Tongyu Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Shuangxiang Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
- Sino-Italian Ascula Brain Science Joint Laboratory, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| |
Collapse
|
12
|
Mangiardi M, Bonura A, Iaccarino G, Alessiani M, Bravi MC, Crupi D, Pezzella FR, Fabiano S, Pampana E, Stilo F, Alfano G, Anticoli S. The Pathophysiology of Collateral Circulation in Acute Ischemic Stroke. Diagnostics (Basel) 2023; 13:2425. [PMID: 37510169 PMCID: PMC10378392 DOI: 10.3390/diagnostics13142425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cerebral collateral circulation is a network of blood vessels which stabilizes blood flow and maintains cerebral perfusion whenever the main arteries fail to provide an adequate blood supply, as happens in ischemic stroke. These arterial networks are able to divert blood flow to hypoperfused cerebral areas. The extent of the collateral circulation determines the volume of the salvageable tissue, the so-called "penumbra". Clinically, this is associated with greater efficacy of reperfusion therapies (thrombolysis and thrombectomy) in terms of better short- and long-term functional outcomes, lower incidence of hemorrhagic transformation and of malignant oedema, and smaller cerebral infarctions. Recent advancements in brain imaging techniques (CT and MRI) allow us to study these anastomotic networks in detail and increase the likelihood of making effective therapeutic choices. In this narrative review we will investigate the pathophysiology, the clinical aspects, and the possible diagnostic and therapeutic role of collateral circulation in acute ischemic stroke.
Collapse
Affiliation(s)
- Marilena Mangiardi
- Department of Stroke Unit, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| | - Adriano Bonura
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy
| | - Gianmarco Iaccarino
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy
| | - Michele Alessiani
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy
| | - Maria Cristina Bravi
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy
| | - Domenica Crupi
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy
| | - Francesca Romana Pezzella
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy
| | - Sebastiano Fabiano
- Department of Neuroradiology and Interventional Neuroradiology, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| | - Enrico Pampana
- Department of Neuroradiology and Interventional Neuroradiology, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Stilo
- Unit of Vascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy
| | - Guido Alfano
- Department of Radiology and Interventional Radiology, M.G. Vannini Hospital, 00177 Rome, Italy
| | - Sabrina Anticoli
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy
| |
Collapse
|
13
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
14
|
Uchino H, Ito M, Tokairin K, Tatezawa R, Sugiyama T, Kazumata K, Fujimura M. Association of RNF213 polymorphism and cortical hyperintensity sign on fluid-attenuated inversion recovery images after revascularization surgery for moyamoya disease: possible involvement of intrinsic vascular vulnerability. Neurosurg Rev 2023; 46:119. [PMID: 37166684 DOI: 10.1007/s10143-023-02030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
A cortical hyperintensity on fluid-attenuated inversion recovery images (FLAIR cortical hyperintensity (FCH)) is an abnormal finding after revascularization surgery for moyamoya disease. This study aimed to investigate the pathophysiology of FCH through genetic analyses of RNF213 p.R4810K polymorphism and perioperative hemodynamic studies using single-photon emission computed tomography. We studied 96 hemispheres in 65 adults and 47 hemispheres in 27 children, who underwent combined direct and indirect revascularization. Early or late FCH was defined when it was observed on postoperative days 0-2 and 6-9, respectively. FCH scores (range: 0-6) were evaluated according to the extent of FCH in the operated hemisphere. FCHs were significantly more prevalent in adult patients than pediatric patients (early: 94% vs. 78%; late: 97% vs. 59%). In pediatric patients, FCH scores were significantly improved from the early to late phase regardless of the RNF213 genotype (mutant median [IQR]: 2 [1-5] vs. 1 [0-2]; wild-type median: 4 [0.5-6] vs. 0.5 [0-1.75]). In adults, FCH scores were significantly improved in patients with the wild-type RNF213 allele (median: 4 [2-5.25] vs. 2 [2, 3]); however, they showed no significant improvement in patients with the RNF213 mutation. FCH scores were significantly higher in patients with symptomatic cerebral hyperperfusion than those without it (early median: 5 [4, 5] vs. 4 [2-5]; late median: 4 [3-5] vs. 3 [2-4]). In conclusion, the RNF213 p.R4810K polymorphism was associated with prolonged FCH, and extensive FCH was associated with symptomatic cerebral hyperperfusion in adult patients with moyamoya disease.
Collapse
Affiliation(s)
- Haruto Uchino
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Masaki Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Kikutaro Tokairin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ryota Tatezawa
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Taku Sugiyama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ken Kazumata
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
15
|
Luo M, Yu J, Xin C, Hu M, Tao T, Wan G, Chen J, Zhang J. Expression of hypoxia-inducing factor-1α and matrix metalloproteinase-9 in the recipient parasylvian cortical arteries with different hemodynamic sources in adult moyamoya disease. Front Surg 2023; 10:1080395. [PMID: 36998597 PMCID: PMC10043197 DOI: 10.3389/fsurg.2023.1080395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 03/16/2023] Open
Abstract
ObjectiveIn our latest research, we have demonstrated that the recipient parasylvian cortical arteries (PSCAs) with hemodynamic sources from the middle cerebral artery (M-PSCAs) has a higher risk of postoperative cerebral hyperperfusion (CHP) syndrome than those from non-M-PSCAs in adult moyamoya disease (MMD) patient. However, whether there are differences between M-PSCAs and non-M-PSCAs in vascular specimens characteristics has not been studied. In this study, we further investigate the vascular specimen of recipient PSCAs by histological and immunohistochemical methods.Methods50 vascular specimens of recipient PSCAs were obtained from 50 adult MMD patients during the combined bypass surgeries in our departments of Zhongnan hospital. 4 recipient PSCAs samples were also obtained in the same way from the middle cerebral artery occlusion patients. The samples were received the pathological sectioning, hematoxylin and eosin staining, and immunohistochemistry, then the vascular wall thickness, matrix metalloproteinase-9 (MMP-9) and hypoxia-inducing factor-1α (HIF-1α) were analyzed.ResultsM-PSCAs adult MMD patients had a thinner intima than non-M-PSCAs in the recipient PSCAs specimens. In recipient non-M-PSCAs vascular specimens, the immunoreactivity indicating HIF-1α and matrix metalloproteinase-9 (MMP-9) was significantly higher than M-PSCAs groups. The logistic regression analyses showed that the M-PSCAs was an independent risk factor of postoperative cerebral hyperperfusion (CHP) syndrome (OR 6.235, 95% CI1.018-38.170, P = 0.048) in MMD.ConclusionOur results indicate that M-PSCAs adult MMD patients had thinner intima than non-MCAs adult MMD patients in the PSCAs. More importantly, HIF-1α and MMP-9 were overexpressed in non-M-PSCAs vascular specimens.
Collapse
|
16
|
Increase of Circulating Endothelial Progenitor Cells and Released Angiogenic Factors in Children with Moyamoya Arteriopathy. Int J Mol Sci 2023; 24:ijms24021233. [PMID: 36674749 PMCID: PMC9865311 DOI: 10.3390/ijms24021233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Moyamoya arteriopathy (MMA) is a rare cerebrovascular disorder that causes recurrent ischemic and hemorrhagic strokes, leading young patients to severe neurological deficits. The pathogenesis of MMA is still unknown. The disease onset in a wide number of pediatric cases raises the question of the role of genetic factors in the disease's pathogenesis. In these patients, MMA's clinical course, or progression, is largely unclear. By performing a comprehensive molecular and cellular profile in the plasma and CSF, respectively, of MMA pediatric patients, our study is aimed at assessing the levels of circulating endothelial progenitor cells (cEPC) and the release of selected proteins at an early disease stage to clarify MMA pathogenesis and progression. We employed cytofluorimetric methods and immunoassays in pediatric MMA patients and matched control subjects by age and sex. We detected increased levels of cEPC in peripheral blood and an upregulation of angiogenic markers in CSF (i.e., angiopoietin-2 and VEGF-A). This finding is probably associated with deregulated angiogenesis, as stated by the moderate severity of collateral vessel network development (Suzuki III-IV). The absence of significant modulation of neurofilament light in CSF led us to rule out the presence of substantial neuronal injury in MMA children. Despite the limited cohort of pediatric patients, we found some peculiar cellular and molecular characteristics in their blood and CSF samples. Our findings may be confirmed by wider and perspective studies to identify predictive or prognostic circulating biomarkers and potential therapeutic targets for personalized care of MMA pediatric patients.
Collapse
|
17
|
Lehman LL, Kaseka ML, Stout J, See AP, Pabst L, Sun LR, Hassanein SA, Waak M, Vossough A, Smith ER, Dlamini N. Pediatric Moyamoya Biomarkers: Narrowing the Knowledge Gap. Semin Pediatr Neurol 2022; 43:101002. [PMID: 36344019 DOI: 10.1016/j.spen.2022.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Moyamoya is a progressive cerebrovascular disorder that leads to stenosis of the arteries in the distal internal carotid, proximal middle cerebral and proximal anterior cerebral arteries of the circle of Willis. Typically a network of collaterals form to bypass the stenosis and maintain cerebral blood flow. As moyamoya progresses it affects the anterior circulation more commonly than posterior circulation, and cerebral blood flow becomes increasingly reliant on external carotid supply. Children with moyamoya are at increased risk for ischemic symptoms including stroke and transient ischemic attacks (TIA). In addition, cognitive decline may occur over time, even in the absence of clinical stroke. Standard of care for stroke prevention in children with symptomatic moyamoya is revascularization surgery. Treatment of children with asymptomatic moyamoya with revascularization surgery however remains more controversial. Therefore, biomarkers are needed to assist with not only diagnosis but also with determining ischemic risk and identifying best surgical candidates. In this review we will discuss the current knowledge as well as gaps in research in relation to pediatric moyamoya biomarkers including neurologic presentation, cognitive, neuroimaging, genetic and biologic biomarkers of disease severity and ischemic risk.
Collapse
Affiliation(s)
- Laura L Lehman
- Department of Neurology, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | - Matsanga Leyila Kaseka
- Department of Neurology, CHU Sainte-Justine, Montreal, Quebec, Canada; Université de Montréal, Montreal, Quebec, Canada
| | - Jeffery Stout
- Harvard Medical School, Boston, MA; Newborn Medicine, Boston Children's Hospital, Boston, MA
| | - Alfred P See
- Harvard Medical School, Boston, MA; Department of Neurosurgery, Boston Children's Hospital, Boston, MA; Department of Radiology, Boston Children's Hospital, Boston, MA
| | - Lisa Pabst
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH
| | - Lisa R Sun
- Division of Pediatric Neurology, Division of Cerebrovascular Neurology, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Sahar A Hassanein
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Michaela Waak
- Department of Paediatric Intensive Care, Queensland Children's Hospital; Centre for Child Health Research, The University of Queensland, Brisbane, Australia
| | - Arastoo Vossough
- Department of Radiology, Children's Hospital of Philadelphia, University of Philadelphia, Philadelphia, Pennsylvania
| | - Edward R Smith
- Harvard Medical School, Boston, MA; Department of Neurosurgery, Boston Children's Hospital, Boston, MA
| | - Nomazulu Dlamini
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada; Faculty of Medicine, University of Toronto, Canada
| |
Collapse
|
18
|
Hong JM, Choi MH, Park GH, Shin HS, Lee SJ, Lee JS, Lim YC. Transdural Revascularization by Multiple Burrhole After Erythropoietin in Stroke Patients With Cerebral Hypoperfusion: A Randomized Controlled Trial. Stroke 2022; 53:2739-2748. [PMID: 35579016 PMCID: PMC9389942 DOI: 10.1161/strokeaha.122.038650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In patients with acute symptomatic stroke, reinforcement of transdural angiogenesis using multiple burr hole (MBH) procedures after EPO (erythropoietin) treatment has rarely been addressed. We aimed to investigate the efficacy and safety of cranial MBH procedures under local anesthesia for augmenting transdural revascularization after EPO treatment in patients with stroke with perfusion impairments.
Collapse
Affiliation(s)
- Ji Man Hong
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea. (J.M.H., M.H.C., G.H.P., S.-J.L., J.S.L)
| | - Mun Hee Choi
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea. (J.M.H., M.H.C., G.H.P., S.-J.L., J.S.L)
| | - Geun Hwa Park
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea. (J.M.H., M.H.C., G.H.P., S.-J.L., J.S.L)
| | - Hee Sun Shin
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea (H.S.S.)
| | - Seong-Joon Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea. (J.M.H., M.H.C., G.H.P., S.-J.L., J.S.L)
| | - Jin Soo Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea. (J.M.H., M.H.C., G.H.P., S.-J.L., J.S.L)
| | - Yong Cheol Lim
- Department of Neurosurgery, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea. (Y.C.L.)
| |
Collapse
|
19
|
Chen JY, Tu XK. Research Progress on Postoperative Transient Neurological Dysfunction in Pediatric and Adult Patients with Moyamoya Disease after Revascularization Surgery. Clin Neurol Neurosurg 2022; 217:107254. [DOI: 10.1016/j.clineuro.2022.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/03/2022]
|
20
|
Tokairin K, Sugiyama T, Ito M, Fujimura M. Intraoperative Early Venous Filling Phenomenon as an Intrinsic Sign of the Local Hemodynamic Change after Revascularization Surgery in a Patient with Adult Moyamoya Disease: Implications of a Potential Arteriovenous Shunt. NMC Case Rep J 2022; 8:755-760. [PMID: 35079544 PMCID: PMC8769467 DOI: 10.2176/nmccrj.cr.2021-0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/23/2021] [Indexed: 11/27/2022] Open
Abstract
After revascularization surgery for patients with moyamoya disease (MMD), local and global hemodynamic changes occur intraoperatively and in the early postoperative period. Local cerebral hyperperfusion and watershed shift ischemia are well-known perioperative pathologies after revascularization for MMD, but early venous filling phenomenon is markedly rare. We report the case of a 19-year-old woman with hemorrhagic-onset MMD who presented with grand mal seizure and subarachnoid hemorrhage. She underwent superficial temporal artery (STA)–middle cerebral artery (MCA) anastomosis combined with indirect pial synangiosis on the affected hemisphere. Intraoperatively, notable early arterial blood filling in the fine cortical vein was observed around the site of anastomosis right after the STA–MCA anastomosis under the surgical microscope and fluorescence indocyanine green video angiography. Recovery of consciousness after general anesthesia was normal, although she exhibited a focal seizure 1 hour later. Postoperative magnetic resonance imaging was not remarkable, and cerebral hemodynamics significantly improved in the acute stage after surgical revascularization. Considering the intrinsic vulnerability of the microvascular anatomy of MMD, the present case is notable because early venous filling was observed intraoperatively. This phenomenon suggests the existence of a potential arteriovenous shunt as an underlying pathology of MMD, but its implications in the early postoperative course should be further verified in a larger number of MMD patients undergoing surgical revascularization.
Collapse
Affiliation(s)
- Kikutaro Tokairin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Taku Sugiyama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Masaki Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
21
|
Plasma Lipid Profiling Contributes to Untangle the Complexity of Moyamoya Arteriopathy. Int J Mol Sci 2021; 22:ijms222413410. [PMID: 34948203 PMCID: PMC8708587 DOI: 10.3390/ijms222413410] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/12/2022] Open
Abstract
Moyamoya arteriopathy (MA) is a rare cerebrovascular disorder characterized by ischemic/hemorrhagic strokes. The pathophysiology is unknown. A deregulation of vasculogenic/angiogenic/inflammatory pathways has been hypothesized as a possible pathophysiological mechanism. Since lipids are implicated in modulating neo-vascularization/angiogenesis and inflammation, their deregulation is potentially involved in MA. Our aim is to evaluate angiogenic/vasculogenic/inflammatory proteins and lipid profile in plasma of MA patients and control subjects (healthy donors HD or subjects with atherosclerotic cerebrovascular disease ACVD). Angiogenic and inflammatory protein levels were measured by ELISA and a complete lipidomic analysis was performed on plasma by mass spectrometry. ELISA showed a significant decrease for MMP-9 released in plasma of MA. The untargeted lipidomic analysis showed a cumulative depletion of lipid asset in plasma of MA as compared to HD. Specifically, a decrease in membrane complex glycosphingolipids peripherally circulating in MA plasma with respect to HD was observed, likely suggestive of cerebral cellular recruitment. The quantitative targeted approach demonstrated an increase in free sphingoid bases, likely associated with a deregulated angiogenesis. Our findings indicate that lipid signature could play a central role in MA and that a detailed biomarker profile may contribute to untangle the complex, and still obscure, pathogenesis of MA.
Collapse
|
22
|
Ozaki D, Endo H, Tashiro R, Sugimura K, Tatebe S, Yasuda S, Tomata Y, Endo T, Tominaga K, Niizuma K, Fujimura M, Tominaga T. Association between RNF213 c.14576G>A Variant (rs112735431) and Peripheral Pulmonary Artery Stenosis in Moyamoya Disease. Cerebrovasc Dis 2021; 51:282-287. [PMID: 34710878 DOI: 10.1159/000519717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Moyamoya disease (MMD) and peripheral pulmonary artery stenosis (PPAS) are relatively rare and demonstrate steno-occlusive vascular lesions in different organs. Genetic studies identified RNF213 polymorphism c.14576G>A (rs112735431) as a susceptibility variant for East Asian MMD. RNF213 polymorphism c.14576G>A is further associated with various vascular lesions of other organs. In this study, we aimed to clarify the incidence and clinical manifestations of PPAS in MMD patients and analyze the correlation between RNF213 genotype and PPAS. METHODS This retrospective case-control study investigated the association between RNF213 polymorphism and PPAS in 306 MMD/quasi-MMD patients, reviewing the medical charts and imaging records of consecutive patients with MMD admitted from January 2015 to December 2020. RESULTS PPAS was observed in 3 MMD/quasi-MMD patients (0.98%, 3/306). RNF213 polymorphism c.14576G>A was determined for all 306 MMD/quasi-MMD patients. The incidence of PPAS in RNF213-wildtype, RNF213-heterozygote, and RNF213-homozygote MMD/quasi-MMD patients was 0% (0/101), 0.5% (1/200), and 40% (2/5), respectively. The association between PPAS and homozygote polymorphism of RNF213 c.14576G>A was statistically significant in MMD/quasi-MMD patients (p = 0.0018). In all cases, pulmonary artery hypertension due to PPAS was evident during their childhood and young adolescent stages. Surgical indications for MMD were discouraged in 1 case due to her severe cardiopulmonary dysfunction. CONCLUSIONS The homozygote variant of RNF213 polymorphism c.14576G>A can be a potential predisposing factor for PPAS in MMD/quasi-MMD patients. Despite the relatively rare entity, PPAS should be noted to determine surgical indications for MMD/quasi-MMD patients.
Collapse
Affiliation(s)
- Dan Ozaki
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgery, Kohnan Hospital, Sendai, Japan.,Division of Advanced Cerebrovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryosuke Tashiro
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koichiro Sugimura
- Department of Cardiology, International University of Health and Welfare Narita Hospital, Narita, Chiba, Japan
| | - Shunsuke Tatebe
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasutake Tomata
- Faculty of Health and Social Services, Kanagawa University of Human Services, Yokosuka, Japan
| | - Toshiki Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keita Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
23
|
Santoro JD, Lee S, Wang AC, Ho E, Nagesh D, Khoshnood M, Tanna R, Durazo-Arvizu RA, Manning MA, Skotko BG, Steinberg GK, Rafii MS. Increased Autoimmunity in Individuals With Down Syndrome and Moyamoya Disease. Front Neurol 2021; 12:724969. [PMID: 34566869 PMCID: PMC8455812 DOI: 10.3389/fneur.2021.724969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Objective: To determine if elevated rates of autoimmune disease are present in children with both Down syndrome and moyamoya disease given the high rates of autoimmune disease reported in both conditions and unknown etiology of angiopathy in this population. Methods: A multi-center retrospective case-control study of children with Down syndrome and moyamoya syndrome, idiopathic moyamoya disease, and Down syndrome without cerebrovascular disease was performed. Outcome measures included presence of autoimmune disease, presence of autoantibodies and angiopathy severity data. Comparisons across groups was performed using the Kruskal-Wallis, χ2 and multivariate Poisson regression. Results: The prevalence of autoimmune disease were 57.7, 20.3, and 35.3% in persons with Down syndrome and moyamoya syndrome, idiopathic moyamoya disease, and Down syndrome only groups, respectively (p < 0.001). The prevalence of autoimmune disease among children with Down syndrome and moyamoya syndrome is 3.2 times (p < 0.001, 95% CI: 1.82-5.58) higher than the idiopathic moyamoya group and 1.5 times (p = 0.002, 95% CI: 1.17-1.99) higher than the Down syndrome only group when adjusting for age and sex. The most common autoimmune diseases were thyroid disorders, type I diabetes and Celiac disease. No individuals with idiopathic moyamoya disease had more than one type of autoimmune disorder while 15.4% of individuals with Down syndrome and moyamoya syndrome and 4.8% of individuals with Down syndrome only had >1 disorder (p = 0.05, 95%CI: 1.08-6.08). Interpretation: This study reports elevated rates of autoimmune disease in persons with Down syndrome and moyamoya syndrome providing a nidus for study of the role of autoimmunity in angiopathy in this population.
Collapse
Affiliation(s)
- Jonathan D. Santoro
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States,Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States,*Correspondence: Jonathan D. Santoro
| | - Sarah Lee
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Anthony C. Wang
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Eugenia Ho
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States,Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States
| | - Deepti Nagesh
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States,Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States
| | - Mellad Khoshnood
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Runi Tanna
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Ramon A. Durazo-Arvizu
- Biostatistics Core, Department of Pediatrics, Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States
| | - Melanie A. Manning
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States,Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Brian G. Skotko
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States,Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
| | - Gary K. Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Michael S. Rafii
- Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States,Alzheimer's Therapeutic Research Institute (ATRI), Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
24
|
Sudhir BJ, Keelara AG, Venkat EH, Kazumata K, Sundararaman A. The mechanobiological theory: a unifying hypothesis on the pathogenesis of moyamoya disease based on a systematic review. Neurosurg Focus 2021; 51:E6. [PMID: 34469862 DOI: 10.3171/2021.6.focus21281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Moyamoya angiopathy (MMA) affects the distal internal carotid artery and is designated as moyamoya disease (MMD) when predisposing conditions are absent, or moyamoya syndrome (MMS) when it occurs secondary to other causes. The authors aimed to investigate the reason for this anatomical site predilection of MMA. There is compelling evidence to suggest that MMA is a phenomenon that occurs due to stereotyped mechanobiological processes. Literature regarding MMD and MMS was systematically reviewed to decipher a common pattern relating to the development of MMA. METHODS A systematic review was conducted to understand the pathogenesis of MMA in accordance with PRISMA guidelines. PubMed MEDLINE and Scopus were searched using "moyamoya" and "pathogenesis" as common keywords and specific keywords related to six identified key factors. Additionally, a literature search was performed for MMS using "moyamoya" and "pathogenesis" combined with reported associations. A progressive search of the literature was also performed using the keywords "matrix metalloprotease," "tissue inhibitor of matrix metalloprotease," "endothelial cell," "smooth muscle cell," "cytokines," "endothelin," and "transforming growth factor" to infer the missing links in molecular pathogenesis of MMA. Studies conforming to the inclusion criteria were reviewed. RESULTS The literature search yielded 44 published articles on MMD by using keywords classified under the six key factors, namely arterial tortuosity, vascular angles, wall shear stress, molecular factors, blood rheology/viscosity, and blood vessel wall strength, and 477 published articles on MMS associations. Information obtained from 51 articles that matched the inclusion criteria and additional information derived from the progressive search mentioned above were used to connect the key factors to derive a network pattern of pathogenesis. CONCLUSIONS Based on the available literature, the authors have proposed a unifying theory for the pathogenesis of MMA. The moyamoya phenomenon appears to be the culmination of an interplay of vascular anatomy, hemodynamics, rheology, blood vessel wall strength, and a plethora of intricately linked mechanobiological molecular mediators that ultimately results in the mechanical process of occlusion of the blood vessel, stimulating angiogenesis and collateral blood supply in an attempt to perfuse the compromised brain.
Collapse
Affiliation(s)
- Bhanu Jayanand Sudhir
- 1Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala State, India
| | - Arun Gowda Keelara
- 1Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala State, India
| | - Easwer Harihara Venkat
- 1Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala State, India
| | - Ken Kazumata
- 2Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan; and
| | - Ananthalakshmy Sundararaman
- 3Department of Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala State, India
| |
Collapse
|
25
|
Tashiro R, Fujimura M, Katsuki M, Nishizawa T, Tomata Y, Niizuma K, Tominaga T. Prolonged/delayed cerebral hyperperfusion in adult patients with moyamoya disease with RNF213 gene polymorphism c.14576G>A (rs112735431) after superficial temporal artery-middle cerebral artery anastomosis. J Neurosurg 2021; 135:417-424. [PMID: 33096527 DOI: 10.3171/2020.6.jns201037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/08/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis is the standard surgical management for moyamoya disease (MMD), whereas cerebral hyperperfusion (CHP) is one of the potential complications of this procedure that can result in delayed intracerebral hemorrhage and/or neurological deterioration. Recent advances in perioperative management in the early postoperative period have significantly reduced the risk of CHP syndrome, but delayed intracerebral hemorrhage and prolonged/delayed CHP are still major clinical issues. The clinical implication of RNF213 gene polymorphism c.14576G>A (rs112735431), a susceptibility variant for MMD, includes early disease onset and a more severe form of MMD, but its significance in perioperative pathology is unknown. Thus, the authors investigated the role of RNF213 polymorphism in perioperative hemodynamics after STA-MCA anastomosis for MMD. METHODS Among 96 consecutive adult patients with MMD comprising 105 hemispheres who underwent serial quantitative cerebral blood flow (CBF) analysis by N-isopropyl-p-[123I]iodoamphetamine SPECT after STA-MCA anastomosis, 66 patients consented to genetic analysis of RNF213. Patients were routinely maintained under strict blood pressure control during and after surgery. The local CBF values were quantified at the vascular territory supplied by the bypass on postoperative days (PODs) 1 and 7. The authors defined the radiological CHP phenomenon as a local CBF increase of more than 150% compared with the preoperative values, and then they investigated the correlation between RNF213 polymorphism and the development of CHP. RESULTS CHP at POD 1 was observed in 23 hemispheres (23/73 hemispheres [31.5%]), and its incidence was not statistically different between groups (15/41 [36.6%] in RNF213-mutant group vs 8/32 [25.0%] in RNF213-wild type (WT) group; p = 0.321). CHP on POD 7, which is a relatively late period of the CHP phenomenon in MMD, was evident in 9 patients (9/73 hemispheres [12.3%]) after STA-MCA anastomosis. This prolonged/delayed CHP was exclusively observed in the RNF213-mutant group (9/41 [22.0%] in the RNF213-mutant group vs 0/32 [0.0%] in the RNF213-WT group; p = 0.004). Multivariate analysis revealed that RNF213 polymorphism was significantly associated with CBF increase on POD 7 (OR 5.47, 95% CI 1.06-28.35; p = 0.043). CONCLUSIONS Prolonged/delayed CHP after revascularization surgery was exclusively found in the RNF213-mutant group. Although the exact mechanism underlying the contribution of RNF213 polymorphism to the prolonged/delayed CBF increase in patients with MMD is unclear, the current study suggests that genetic analysis of RNF213 is useful for predicting the perioperative pathology of patients with MMD.
Collapse
Affiliation(s)
- Ryosuke Tashiro
- 1Department of Neurosurgery, Kohnan Hospital, Sendai
- 2Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai; and
| | - Miki Fujimura
- 1Department of Neurosurgery, Kohnan Hospital, Sendai
| | - Masahito Katsuki
- 1Department of Neurosurgery, Kohnan Hospital, Sendai
- 2Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai; and
| | | | - Yasutake Tomata
- 3Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University School of Public Health, Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kuniyasu Niizuma
- 2Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai; and
| | - Teiji Tominaga
- 2Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai; and
| |
Collapse
|
26
|
Sesen J, Driscoll J, Moses-Gardner A, Orbach DB, Zurakowski D, Smith ER. Non-invasive Urinary Biomarkers in Moyamoya Disease. Front Neurol 2021; 12:661952. [PMID: 33868159 PMCID: PMC8047329 DOI: 10.3389/fneur.2021.661952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: A major difficulty in treating moyamoya disease is the lack of effective methods to detect novel or progressive disease prior to the onset of disabling stroke. More importantly, a tool to better stratify operative candidates and quantify response to therapy could substantively complement existing methods. Here, we present proof-of-principle data supporting the use of urinary biomarkers as diagnostic adjuncts in pediatric moyamoya patients. Methods: Urine and cerebrospinal fluid specimens were collected from pediatric patients with moyamoya disease and a cohort of age and sex-matched control patients. Clinical and radiographic data were paired with measurements of a previously validated panel of angiogenic proteins quantified by ELISA. Results were compared to age and sex-matched controls and subjected to statistical analyses. Results: Evaluation of a specific panel of urinary and cerebrospinal fluid biomarkers by ELISA demonstrated significant elevations of angiogenic proteins in samples from moyamoya patients compared to matched controls. ROC curves for individual urinary biomarkers, including MMP-2, MMP-9, MMP-9/NGAL, and VEGF, showed excellent discrimination. The optimal urinary biomarker was MMP-2, providing a sensitivity of 88%, specificity of 100%, and overall accuracy of 91%. Biomarker levels changed in response to therapy and correlated with radiographic evidence of revascularization. Conclusions: We report, for the first time, identification of a panel of urinary biomarkers that predicts the presence of moyamoya disease. These biomarkers correlate with presence of disease and can be tracked from the central nervous system to urine. These data support the hypothesis that urinary proteins are useful predictors of the presence of moyamoya disease and may provide a basis for a novel, non-invasive method to identify new disease and monitor known patients following treatment.
Collapse
Affiliation(s)
- Julie Sesen
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jessica Driscoll
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Alexander Moses-Gardner
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Darren B Orbach
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - David Zurakowski
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.,Departments of Surgery and Anesthesiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Edward R Smith
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
27
|
Dorschel KB, Wanebo JE. Genetic and Proteomic Contributions to the Pathophysiology of Moyamoya Angiopathy and Related Vascular Diseases. Appl Clin Genet 2021; 14:145-171. [PMID: 33776470 PMCID: PMC7987310 DOI: 10.2147/tacg.s252736] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 12/26/2020] [Indexed: 12/13/2022] Open
Abstract
RATIONALE This literature review describes the pathophysiological mechanisms of the current classes of proteins, cells, genes, and signaling pathways relevant to moyamoya angiopathy (MA), along with future research directions and implementation of current knowledge in clinical practice. OBJECTIVE This article is intended for physicians diagnosing, treating, and researching MA. METHODS AND RESULTS References were identified using a PubMed/Medline systematic computerized search of the medical literature from January 1, 1957, through August 4, 2020, conducted by the authors, using the key words and various combinations of the key words "moyamoya disease," "moyamoya syndrome," "biomarker," "proteome," "genetics," "stroke," "angiogenesis," "cerebral arteriopathy," "pathophysiology," and "etiology." Relevant articles and supplemental basic science articles published in English were included. Intimal hyperplasia, medial thinning, irregular elastic lamina, and creation of moyamoya vessels are the end pathologies of many distinct molecular and genetic processes. Currently, 8 primary classes of proteins are implicated in the pathophysiology of MA: gene-mutation products, enzymes, growth factors, transcription factors, adhesion molecules, inflammatory/coagulation peptides, immune-related factors, and novel biomarker candidate proteins. We anticipate that this article will need to be updated in 5 years. CONCLUSION It is increasingly apparent that MA encompasses a variety of distinct pathophysiologic conditions. Continued research into biomarkers, genetics, and signaling pathways associated with MA will improve and refine our understanding of moyamoya's complex pathophysiology. Future efforts will benefit from multicenter studies, family-based analyses, comparative trials, and close collaboration between the clinical setting and laboratory research.
Collapse
Affiliation(s)
- Kirsten B Dorschel
- Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, USA
| |
Collapse
|
28
|
Fang YC, Wei LF, Hu CJ, Tu YK. Pathological Circulating Factors in Moyamoya Disease. Int J Mol Sci 2021; 22:ijms22041696. [PMID: 33567654 PMCID: PMC7915927 DOI: 10.3390/ijms22041696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Moyamoya disease (MMD) is a cerebrovascular disease that presents with vascular stenosis and a hazy network of collateral formations in angiography. However, the detailed pathogenic pathway remains unknown. Studies have indicated that in addition to variations in the of genetic factor RNF213, unusual circulating angiogenetic factors observed in patients with MMD may play a critical role in producing “Moyamoya vessels”. Circulating angiogenetic factors, such as growth factors, vascular progenitor cells, cytokines, inflammatory factors, and other circulating proteins, could promote intimal hyperplasia in vessels and excessive collateral formation with defect structures through endothelial hyperplasia, smooth muscle migration, and atypical neovascularization. This study summarizes the hypothesized pathophysiology of how these circulating factors affect MMD and the interactive modulation between them.
Collapse
Affiliation(s)
- Yao-Ching Fang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.F.); (L.-F.W.)
| | - Ling-Fei Wei
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.F.); (L.-F.W.)
| | - Chaur-Jong Hu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.F.); (L.-F.W.)
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: (C.-J.H.); (Y.-K.T.); Tel.: +88-6222490088-561 (C.-J.H.); +88-6222490088-8120 (Y.-K.T.); Fax: +88-6222490088-8120 (C.-J.H.); +88-6222490088-8120 (Y.-K.T.)
| | - Yong-Kwang Tu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.F.); (L.-F.W.)
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: (C.-J.H.); (Y.-K.T.); Tel.: +88-6222490088-561 (C.-J.H.); +88-6222490088-8120 (Y.-K.T.); Fax: +88-6222490088-8120 (C.-J.H.); +88-6222490088-8120 (Y.-K.T.)
| |
Collapse
|
29
|
TASHIRO R, FUJIMURA M, NISHIZAWA T, SAITO A, TOMINAGA T. Cerebral Hyperperfusion and Concomitant Reversible Lesion at the Splenium after Direct Revascularization Surgery for Adult Moyamoya Disease: Possible Involvement of MERS and Watershed Shift Phenomenon. NMC Case Rep J 2021; 8:451-456. [PMID: 35079503 PMCID: PMC8769435 DOI: 10.2176/nmccrj.cr.2020-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/13/2021] [Indexed: 11/20/2022] Open
Abstract
Superficial temporal artery (STA)–middle cerebral artery (MCA) bypass is the standard surgical treatment for moyamoya disease (MMD). Local cerebral hyperperfusion (CHP) is one of the potential complications, which could enhance intrinsic inflammation and oxidative stress in MMD patients and accompany concomitant watershed shift (WS) phenomenon, defined as the paradoxical decrease in the cerebral blood flow (CBF) near the site of CHP. However, CHP and simultaneous remote reversible lesion at the splenium have never been reported. A 22-year-old man with ischemic-onset MMD underwent left STA–MCA bypass. Although asymptomatic, local CHP and a paradoxical CBF decrease at the splenium were evident on N-isopropyl-p-[123I] iodoamphetamine single-photon emission computed tomography 1 day after surgery. The patient was maintained under strict blood pressure control, but he subsequently developed transient delirium 4 days after surgery. MRI revealed a high-signal-intensity lesion with a low apparent diffusion coefficient at the splenium. After continued intensive management, the splenial lesion disappeared 14 days after surgery. The patient was discharged without neurological deficits. Catheter angiography 2 months later confirmed marked regression of posterior-to-anterior collaterals via the posterior pericallosal artery, suggesting dynamic watershed shift between blood flow supplies from the posterior and anterior circulation. Mild encephalitis/encephalopathy with a reversible splenial lesion could explain the pathophysiology of the postoperative splenial lesion in this case, which is associated with generation of oxidative stress, enhanced inflammation, and metabolic abnormalities. Rapid postoperative hemodynamic changes, including local CHP and concomitant WS phenomenon, might participate in the formation of the splenial lesion.
Collapse
Affiliation(s)
- Ryosuke TASHIRO
- Department of Neurosurgery, Kohnan Hospital, Sendai, Miyagi, Japan
| | - Miki FUJIMURA
- Department of Neurosurgery, Kohnan Hospital, Sendai, Miyagi, Japan
| | - Taketo NISHIZAWA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Atsushi SAITO
- Department of Neurosurgery, Kohnan Hospital, Sendai, Miyagi, Japan
| | - Teiji TOMINAGA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
30
|
Abstract
Moyamoya disease (MMD) is a chronic, occlusive cerebrovascular disease with unknown etiology, which is characterized by progressive steno-occlusive changes at the terminal portion of the internal carotid artery and an abnormal vascular network formation at the base of the brain. MMD has an intrinsic temporal nature to attempt a gradual conversion of the vascular supply for the brain from intracranial/internal carotid (IC) system to extracranial/external carotid (EC) system, so called "IC-EC conversion." Compatible cerebrovascular angio-architecture could be found in association with a variety of conditions such as neuro-fibromatosis type-1, Down's syndrome and cranial irradiation, which is called as moyamoya syndrome, akin/quasi MMD, or secondary MMD. Diagnosis of moyamoya vasculopathy, either idiopathic or secondary, is clinically important because flow-augmentation bypass is markedly beneficial for this entity to prevent cerebral ischemic attack by improving cerebral blood flow. Moreover, recent evidence indicated that flow-augmentation bypass could prevent re-bleeding in hemorrhagic MMD patients. Based on these backgrounds, there is a worldwide increase in the number of MMD patients undergoing bypass surgery. We sought to demonstrate our standard surgical procedure of superficial temporal artery-middle cerebral artery bypass with indirect pial synangiosis for MMD and its technical pitfall. We also discuss the intrinsic peri-operative hemodynamics of MMD after bypass surgery, including local cerebral hyper-perfusion and characteristic hemodynamic ischemia caused by watershed shift phenomenon. The aim of this review article is to understand the basic pathology of MMD, which is essential for complication avoidance while conducting flow-augmentation bypass for MMD.
Collapse
Affiliation(s)
- Miki Fujimura
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan - .,Division of Advanced Cerebrovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan -
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
31
|
Decreased cortical perfusion in areas with blood-brain barrier dysfunction in Moyamoya disease. Acta Neurochir (Wien) 2020; 162:2565-2572. [PMID: 32700079 DOI: 10.1007/s00701-020-04480-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/30/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Recently, several studies have focused on the relationship between blood-brain barrier (BBB) impairment and the etiology of Moyamoya disease (MMD). However, in vivo studies investigating about BBB impairment and cortical perfusion in MMD patients were really rare. METHODS This study included 16 patients diagnosed with MMD and 9 patients with atherosclerotic cerebrovascular disease (ACVD); all of who were treated with superficial temporal artery-middle cerebral artery (STA-MCA) bypass. Cortical perfusion was assessed using intraoperative indocyanine green (ICG) videoangiography by calculating the blood flow index (BFI). In addition, we used sodium fluorescein (NaFl) to evaluate the permeability of BBB in vivo during operation. RESULTS The results showed that BBB impairment in MMD patients was more significant than that in ACVD patients, whereas, the cortical perfusion was comparable between two groups. BFI was significantly improved after STA-MCA bypass both in the MMD group (post-operation vs pre-operation: 109.2 ± 67.7 vs 64.3 ± 35.0, p = 0.004) and the ACVD group (post-operation vs pre-operation: 137.6 ± 89.6 vs 90.8 ± 58.3, p = 0.015). Moreover, BFI was significantly decreased in the cortex with BBB impairment as compared with that in the cortex with intact BBB (impaired BBB vs intact BBB: 55.7 ± 26.5 vs 87.6 ± 55.1, p = 0.025). Following bypass, the cortical perfusion significantly improved in the area of BBB impairment (post-operation vs pre-operation: 93.8 ± 75.2 vs 55.7 ± 26.5, p = 0.004), which was not observed in the BBB intact area (post-operation vs pre-operation: 92.4 ± 50.4 vs 87.6 ± 55.1, p = 0.58). CONCLUSION In summary, we observed that BBB impairment in MMD patients was more significant than that in ACVD patients. This study also demonstrated for the first time that cortical perfusion was significantly decreased in the cortex with BBB impairment as compared with that in the cortex with intact BBB in MMD patients. We also observed that After STA-MCA bypass, the cortical perfusion was significantly improved in the cortex with BBB impairment. These results may provide a new insight for BBB impairment and cortical perfusion in the etiology of MMD.
Collapse
|
32
|
Pre-operative higher hematocrit and lower total protein levels are independent risk factors for cerebral hyperperfusion syndrome after superficial temporal artery-middle cerebral artery anastomosis with pial synangiosis in adult moyamoya disease patients-case-control study. Neurosurg Rev 2020; 44:2191-2200. [PMID: 32968846 DOI: 10.1007/s10143-020-01395-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/18/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Superficial temporal artery (STA)-middle cerebral artery (MCA) anastomosis is a standard treatment for adult moyamoya disease (MMD) patients. Cerebral hyperperfusion (CHP) syndrome is one of the most serious complications of this procedure that can result in deleterious outcomes, but predicting CHP before revascularization surgery remains challenging. Furthermore, the hematological/serological factors associated with CHP syndrome are unknown. To investigate the correlation between pre-operative hematological/serological factors and the development of CHP syndrome after STA-MCA anastomosis with encephalo-duro-myo-synangiosis (EDMS) for MMD., a pre-operative peripheral blood test was performed within 5 days before surgery. Local cerebral blood flow (CBF) at the site of anastomosis was quantified by N-isopropyl-p-[123I] iodoamphetamine single-photon emission computed tomography 1 and 7 days after surgery, and the pre-operative CBF value at the corresponding area was measured. We defined CHP syndrome as a local CBF increase over 150% compared with the pre-operative value, which was responsible for delayed intracranial hemorrhage, transient focal neurological deterioration, and/or seizure. Then, we retrospectively investigated the correlation between peripheral blood test results and the development of CHP syndrome. CHP syndrome 1 day after STA-MCA anastomosis with EDMS was observed in nine patients (9/114 hemispheres; 7.9%). Multivariate analysis with multiple imputation revealed that higher hematocrit value and lower total protein level were significantly associated with the development of CHP syndrome (p value: 0.028 and 0.043, respectively). Higher pre-operative hematocrit levels and lower pre-operative total protein levels are novel risk factors for CHP syndrome after direct revascularization surgery in adult MMD patients.
Collapse
|
33
|
Significance of Serum Angiopoietin-2 in Patients with Hemorrhage in Adult-Onset Moyamoya Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8209313. [PMID: 32802878 PMCID: PMC7424502 DOI: 10.1155/2020/8209313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/18/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022]
Abstract
Background Moyamoya disease (MMD) is a progressive occlusive cerebrovascular disease that is characterized by abnormal angiogenesis at the base of the brain. This pathological abnormal angiogenesis is susceptible to disturbances, including spontaneous hemorrhage and vasogenic edema. However, the underlying mechanisms of pathological angiogenesis and occurrence of hemorrhage are unclear. Angiopoietins play a fundamental role in the pathophysiology of central nervous system disorders in angiogenesis. This study was aimed at examining whether angiopoietins are associated with formation of abnormal collateral vessels and the occurrence of hemorrhage in adult-onset moyamoya disease (HMMD). Methods A total of 27 consecutive adult patients with HMMD were enrolled from June 2011 to May 2017. Serum levels of angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) were examined by enzyme-linked immunosorbent assay. Patients with HMMD were compared with those with spontaneous hemorrhage (controls) and nonhemorrhagic-onset MMD (NHMMD). Results Serum Ang-2 levels were significantly higher in patients with adult HMMD than in those with spontaneous hemorrhage and NHMMD. The ROC curve identified that a baseline serum Ang-2 level > 1230 ng/ml may be associated with adult HMMD with 88.39% sensitivity and 70.37% specificity (area under the curve (AUC), 0.89; 95% CI, 0.808-0.973; P < 0.001). Moreover, serum Ang-2 levels were significantly elevated in stages II, III, and IV. In subgroup analysis of a high and low degree of moyamoya vessels, serum Ang-2 levels were significantly higher in the high moyamoya vessel group than in the low moyamoya vessel group. Serum Ang-2 levels were also significantly higher in the low moyamoya vessel group compared with the control group. Serum Ang-1 levels were not significantly different among the groups. Conclusion Increased serum Ang-2 levels may contribute to pathological abnormal angiogenesis and/or to the instability of vascular structure and function, thus causing brain hemorrhage in adult HMMD.
Collapse
|
34
|
Ge P, Zhang Q, Ye X, Liu X, Deng X, Wang J, Wang R, Zhang Y, Zhang D, Zhao J. Modifiable Risk Factors Associated With Moyamoya Disease: A Case-Control Study. Stroke 2020; 51:2472-2479. [PMID: 32640948 DOI: 10.1161/strokeaha.120.030027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE The cause of moyamoya disease (MMD) remains unknown. We aimed to investigate the association between modifiable risk factors and MMD in a prospective, case-control study. METHODS Clinical and laboratory characteristics were evaluated in consecutively recruited adult patients with MMD and age-matched healthy control individuals. The potential risk factors for MMD were estimated by logistic regression analysis. RESULTS Our prospective study included 138 adult patients and 138 healthy control subjects. Logistic regression analyses showed that increased body mass index (odds ratio [OR], 1.121 [95% CI, 1.018-1.234]; P=0.020) and homocysteine (OR, 1.201 [95% CI, 1.081-1.334]; P=0.001) were associated with higher risk of MMD. Whereas increased albumin (OR, 1.043 [95% CI, 1.004-1.082]; P=0.028) and high-density lipoprotein cholesterol (OR, 1.043 [95% CI, 1.004-1.082]; P=0.028) were correlated with a lower risk of MMD. Furthermore, homocysteine (OR, 1.070 [95% CI, 1.010-1.134]; P=0.023) was significantly related to unilateral lesions. CONCLUSIONS Increased body mass index and homocysteine were associated with a higher risk of MMD. In contrast, increased albumin and high-density lipoprotein cholesterol were correlated with a lower risk of MMD. Furthermore, increased homocysteine was related to a higher prevalence of unilateral MMD. More attention should be paid to the modifiable risk factors of MMD, as these might help us finding its cause and new therapeutic regimen. Registration: URL: http://www.chictr.org. Unique identifier: ChiCTR2000031412.
Collapse
Affiliation(s)
- Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Center of Stroke, Beijing Institute for Brain Disorders, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.)
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Center of Stroke, Beijing Institute for Brain Disorders, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.)
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Center of Stroke, Beijing Institute for Brain Disorders, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.)
| | - Xingju Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Center of Stroke, Beijing Institute for Brain Disorders, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.)
| | - Xiaofeng Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Center of Stroke, Beijing Institute for Brain Disorders, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.)
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Center of Stroke, Beijing Institute for Brain Disorders, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.)
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Center of Stroke, Beijing Institute for Brain Disorders, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.)
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Center of Stroke, Beijing Institute for Brain Disorders, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.)
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Center of Stroke, Beijing Institute for Brain Disorders, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.)
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Center of Stroke, Beijing Institute for Brain Disorders, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, China (P.G., Q.Z., X.Y., X.L., X.D., J.W., R.W., Y.Z., D.Z., J.Z.).,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China (J.Z.)
| |
Collapse
|
35
|
Gu X, Jiang D, Yang Y, Zhang P, Wan G, Gu W, Shi J, Jiang L, Chen B, Zheng Y, Liu D, Guo S, Lu C. Construction and Comprehensive Analysis of Dysregulated Long Noncoding RNA-Associated Competing Endogenous RNA Network in Moyamoya Disease. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:2018214. [PMID: 32617116 PMCID: PMC7306867 DOI: 10.1155/2020/2018214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by chronic progressive stenosis or occlusion of the bilateral internal carotid artery (ICA), the anterior cerebral artery (ACA), and the middle cerebral artery (MCA). MMD is secondary to the formation of an abnormal vascular network at the base of the skull. However, the etiology and pathogenesis of MMD remain poorly understood. METHODS A competing endogenous RNA (ceRNA) network was constructed by analyzing sample-matched messenger RNA (mRNA), long non-coding RNA (lncRNA), and microRNA (miRNA) expression profiles from MMD patients and control samples. Then, a protein-protein interaction (PPI) network was constructed to identify crucial genes associated with MMD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were employed with the DAVID database to investigate the underlying functions of differentially expressed mRNAs (DEmRNAs) involved in the ceRNA network. CMap was used to identify potential small drug molecules. RESULTS A total of 94 miRNAs, 3649 lncRNAs, and 2294 mRNAs were differentially expressed between MMD patients and control samples. A synergistic ceRNA lncRNA-miRNA-mRNA regulatory network was constructed. Core regulatory miRNAs (miR-107 and miR-423-5p) and key mRNAs (STAT5B, FOSL2, CEBPB, and CXCL16) involved in the ceRNA network were identified. GO and KEGG analyses indicated that the DEmRNAs were involved in the regulation of the immune system and inflammation in MMD. Finally, two potential small molecule drugs, CAY-10415 and indirubin, were identified by CMap as candidate drugs for treating MMD. CONCLUSIONS The present study used bioinformatics analysis of candidate RNAs to identify a series of clearly altered miRNAs, lncRNAs, and mRNAs involved in MMD. Furthermore, a ceRNA lncRNA-miRNA-mRNA regulatory network was constructed, which provides insights into the novel molecular pathogenesis of MMD, thus giving promising clues for clinical therapy.
Collapse
Affiliation(s)
- Xuefeng Gu
- Research Department, Shanghai University of Medicine & Health Science Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Dongyang Jiang
- Department of Cardiology, Pan-Vascular Medicine Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yue Yang
- Key Laboratory of Cancer Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, China
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Peng Zhang
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Guoqing Wan
- Research Department, Shanghai University of Medicine & Health Science Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Wangxian Gu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Junfeng Shi
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Liying Jiang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Bing Chen
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yanjun Zheng
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Dingsheng Liu
- Department of Oncology and Hematology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, China
| | - Sufen Guo
- Key Laboratory of Cancer Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, China
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
36
|
Persistent Local Vasogenic Edema with Dynamic Change in the Regional Cerebral Blood Flow after STA-MCA Bypass for Adult Moyamoya Disease. J Stroke Cerebrovasc Dis 2020; 29:104625. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.104625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 11/23/2022] Open
|
37
|
Yu J, Zhang J, Li J, Zhang J, Chen J. Cerebral Hyperperfusion Syndrome After Revascularization Surgery in Patients with Moyamoya Disease: Systematic Review and Meta-Analysis. World Neurosurg 2019; 135:357-366.e4. [PMID: 31759149 DOI: 10.1016/j.wneu.2019.11.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Cerebral hyperperfusion syndrome (CHS) after bypass surgery is known as a complication of moyamoya disease (MMD). However, the incidence of CHS has not been accurately reported, and there is no consensus on related risk factors. OBJECTIVE To evaluate the incidence and characteristics of CHS in patients with MMD after revascularization surgery via meta-analysis. METHODS Relevant cohort studies were retrieved through a literature search of PubMed, Embase, and Ovid until December 1, 2018. Eligible studies were identified per search criteria. A systematic review and meta-analysis were used to assess the CHS total incidence, incidence in pediatric patients with MMD and adult patients with MMD, incidence for direct and combined bypass surgery, progress rate, and proportion of each symptom (including transient neurologic deficits [TNDs], hemorrhage, and seizure). RESULTS A total of 27 cohort studies with 2225 patients were included in this meta-analysis. The weighted proportions per random-effects model were 16.5% (range, 11.3%-22.3%) for CHS total incidence, 3.8% (range, 0.3%-9.6%) for pediatric patients with MMD, 19.9% (range, 11.7%-29.4%) for adult patients with MMD, 15.4% (range, 5.4%-28.8%) for direct bypass surgery, and 15.2% (range, 8.4%-23.2%) for combined bypass surgery. Progress rate was 39.5% (range, 28.7%-50.8%). The most common CHS-related symptom was TNDs (70.2%; range, 56.3%-82.7%), followed by hemorrhage (15.0%; range, 5.5%-26.9%) and seizure (5.3%; range, 0.6%-12.9%). CONCLUSIONS CHS is a common complication after revascularization surgery in MMD. It is more frequently seen in adult patients. The most common CHS-related symptom was TNDs, followed by hemorrhage and seizure.
Collapse
Affiliation(s)
- Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jibo Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jieli Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
38
|
Peng X, Zhang Z, Ye D, Xing P, Zou Z, Lei H, Duan L. Gene dysregulation in peripheral blood of moyamoya disease and comparison with other vascular disorders. PLoS One 2019; 14:e0221811. [PMID: 31532776 PMCID: PMC6750579 DOI: 10.1371/journal.pone.0221811] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022] Open
Abstract
Objective Moyamoya disease (MMD) is a chronic occlusive cerebrovascular disease with unknown etiology, sharing many similar clinical symptoms with other vascular disorders. This study aimed to investigate gene dysregulation in peripheral blood of MMD and compare it with other vascular disorders. Methods Transcriptomic profiles of 12 MMD patients and 8 healthy controls were obtained using RNA sequencing. Differentially expressed genes (DEGs) were identified and several were validated by quantitative real-time PCR in independent samples. Biological pathway enrichment analysis of DEGs and deconvolution of leukocyte subsets in peripheral blood were performed. Expression profiles for other vascular diseases were downloaded from public database and consistent DEGs were calculated. Gene set enrichment analysis (GSEA) was conducted to compare gene dysregulation pattern between MMD and other vascular diseases. Results A total of 533 DEGs were identified for MMD. Up-regulated genes were mainly involved in extracellular matrix (ECM) organization, whereas down-regulated genes were primarily associated with inflammatory and immune responses. As for cell populations, significantly increased naïve B cells and naïve CD4 cells as well as obviously decreased resting natural killer cells were observed in peripheral blood of MMD patients. GSEA analysis indicated that only up-regulated genes of ischemic stroke and down-regulated genes of coronary artery disease and myocardial infarction were enriched in up-regulated and down-regulated genes of MMD, respectively. Conclusion Dysregulated genes in peripheral blood of MMD mainly played key roles in ECM organization, inflammatory and immune responses. This gene dysregulation pattern was specific compared with other vascular diseases. Besides, naïve B cells, naïve CD4 cells and resting natural killer cells were aberrantly disrupted in peripheral blood of MMD patients. These results will help elucidate the complicated pathogenic mechanism of MMD.
Collapse
Affiliation(s)
- Xing Peng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhengshan Zhang
- Department of Neurosurgery, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dongqing Ye
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Peiqi Xing
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhengxing Zou
- Department of Neurosurgery, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Lian Duan
- Department of Neurosurgery, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
39
|
Mikami T, Suzuki H, Komatsu K, Mikuni N. Influence of Inflammatory Disease on the Pathophysiology of Moyamoya Disease and Quasi-moyamoya Disease. Neurol Med Chir (Tokyo) 2019; 59:361-370. [PMID: 31281171 PMCID: PMC6796064 DOI: 10.2176/nmc.ra.2019-0059] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Moyamoya disease is a unique cerebrovascular disease that is characterized by progressive bilateral stenotic alteration at the terminal portion of the internal carotid arteries. These changes induce the formation of an abnormal vascular network composed of collateral pathways known as moyamoya vessels. In quasi-moyamoya disease, a similar stenotic vascular abnormality is associated with an underlying disease, which is sometimes an inflammatory disease. Recent advances in moyamoya disease research implicate genetic background and immunological mediators, and postulate an association with inflammatory disease as a cause of, or progressive factor in, quasi-moyamoya disease. Although this disease has well-defined clinical and radiological characteristics, the role of inflammation has not been rigorously explored. Herein, we focused on reviewing two main themes: (1) molecular biology of inflammation in moyamoya disease, and (2) clinical significance of inflammation in quasi-moyamoya disease. We have summarized the findings of the former theme according to the following topics: (1) inflammatory biomarkers, (2) genetic background of inflammatory response, (3) endothelial progenitor cells, and (4) noncoding ribonucleic acids. Under the latter theme, we summarized the findings according to the following topics: (1) influence of inflammatory disease, (2) vascular remodeling, and (3) mechanisms gleaned from clinical cases. This review includes articles published up to February 2019 and provides novel insights for the treatment of the moyamoya disease and quasi-moyamoya disease.
Collapse
Affiliation(s)
| | - Hime Suzuki
- Department of Neurosurgery, Sapporo Medical University
| | | | | |
Collapse
|
40
|
Narducci A, Yasuyuki K, Onken J, Blecharz K, Vajkoczy P. In vivo demonstration of blood-brain barrier impairment in Moyamoya disease. Acta Neurochir (Wien) 2019; 161:371-378. [PMID: 30675657 DOI: 10.1007/s00701-019-03811-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/12/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Moyamoya disease (MMD) is a cerebrovascular disorder characterized by fragile vascular system. Previous studies suggested that the blood-brain barrier (BBB) destabilizing cytokine angiopoietin-2 plays a critical role in increasing vascular plasticity and endothelial disintegration in MMD. The aim of this study was to assess cerebrovascular integrity in vivo in patients affected by MMD. METHODS We retrospectively analyzed 11 patients that underwent bypass for MMD (MMD group), 11 patients that underwent bypass for atherosclerotic cerebrovascular disease (ACVD-control group I), and 5 patients that underwent clipping for unruptured aneurysms (non-ischemic-control group II). Sodium fluorescein (NaFL) extravasation was evaluated during videoangiography when checking for bypass patency. A grading system (0, +, ++, +++) was used to define the extent of extravasation. Frequency and intensity of leakage was compared among different groups. RESULTS NaFL extravasation appeared in 10/11 (91%) patients with MMD and in 8/11 (73%) patients with ACVD during bypass procedures. Extravasation was observed in none of the patients undergoing clipping for unruptured aneurysms. Although both chronic ischemic patient groups showed a comparably high incidence of NaFL extravasation, the MMD group was characterized by a much greater intensity of NaFL extravasation (grade +++ in 82%) than the ACVD group (grade +++ in 27%, p < 0.05). CONCLUSIONS We demonstrate blood-brain barrier impairment in MMD patients for the first time in vivo. This may be due to mechanisms intrinsic to the unique pathology of MMD, probably explaining the higher association with hemorrhage and post-operative hyperperfusion.
Collapse
Affiliation(s)
- Alessandro Narducci
- Department of Neurosurgery, Charitè-Universitätsmedizin Berlin, Berlin, Germany
| | - Kaku Yasuyuki
- Department of Neurosurgery, Charitè-Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Onken
- Department of Neurosurgery, Charitè-Universitätsmedizin Berlin, Berlin, Germany
| | - Kinga Blecharz
- Department of Neurosurgery, Charitè-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charitè-Universitätsmedizin Berlin, Berlin, Germany.
- Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
41
|
Fujimura M, Tominaga T. Hemorrhagic Moyamoya Disease : A Recent Update. J Korean Neurosurg Soc 2018; 62:136-143. [PMID: 30428637 PMCID: PMC6411564 DOI: 10.3340/jkns.2018.0101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 11/30/2022] Open
Abstract
Moyamoya disease (MMD) is a progressive cerebrovascular disease with unknown etiology, characterized by bilateral stenoocclusive changes at the terminal portion of the internal carotid artery and an abnormal vascular network formation at the base of the brain. MMD has an intrinsic nature to convert the vascular supply for the brain from internal carotid (IC) system to the external carotid (EC) system, as indicated by Suzuki’s angiographic staging. Insufficiency of this ‘IC-EC conversion system’ could result not only in cerebral ischemia, but also in intracranial hemorrhage from inadequate collateral anastomosis, both of which represent the clinical manifestation of MMD. Surgical revascularization prevents cerebral ischemic attack by improving cerebral blood flow, and recent evidence further suggests that extracranial-intracranial bypass could powerfully reduce the risk of re-bleeding in MMD patients with posterior hemorrhage, who were known to have extremely high re-bleeding risk. Although the exact mechanism underlying the hemorrhagic presentation in MMD is undetermined, most recent angiographic analysis revealed the characteristic angio-architecture related to high re-bleeding risk, such as the extension and dilatation of choroidal collaterals and posterior cerebral artery involvement. We sought to update the current management strategy for hemorrhagic MMD, including the outcome of surgical revascularization for hemorrhagic MMD in our institute. Further investigations will clarify the optimal surgical strategy to prevent hemorrhagic manifestation in patients with MMD.
Collapse
Affiliation(s)
- Miki Fujimura
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University, Sendai, Japan
| |
Collapse
|
42
|
Blecharz-Lang KG, Prinz V, Burek M, Frey D, Schenkel T, Krug SM, Fromm M, Vajkoczy P. Gelatinolytic activity of autocrine matrix metalloproteinase-9 leads to endothelial de-arrangement in Moyamoya disease. J Cereb Blood Flow Metab 2018; 38:1940-1953. [PMID: 29633884 PMCID: PMC6259317 DOI: 10.1177/0271678x18768443] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Moyamoya disease (MMD) is a rare steno-occlusive cerebrovascular disorder. Mechanisms driving the formation of aberrant MMD vessels remain elusive. We collected serum and vessel specimens from MMD and atherosclerotic cerebrovascular disease (ACVD) patients serving as controls due to the same hypoxic stimulus but substantial differences in terms of vascular features. Based on patient material and an in vitro model mimicking ACVD and MMD conditions, matrix metalloproteinase-9 (MMP-9) and vascular-endothelial growth factor (VEGF) were tested for their potential involvement in cerebrovascular disintegration. While serum concentration of both molecules did not significantly differ in both patient groups, excessive collagenase activity and lowered collagen IV protein amount in MMD vessels pointed to a focal MMP-9 activity at the affected vessel sites. We observed overexpressed and autocrinely secreted MMP-9 and VEGF along with disturbances of EC-matrix interactions in MMD but not ACVD serum-treated cEND cells. These seemingly brain-specific effects were partially attenuated by VEGF signaling inhibition suggesting its role in the MMD etiology. In conclusion, our findings support the understanding of the high incidence of hemorrhagic and ischemic events in MMD and provide the basis for novel therapeutic strategies stopping or slowing the development of fragile cerebrovasculature or micro-bleeds characterizing the disease.
Collapse
Affiliation(s)
- Kinga G Blecharz-Lang
- 1 Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vincent Prinz
- 2 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Małgorzata Burek
- 3 Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Dietmar Frey
- 2 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Schenkel
- 1 Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne M Krug
- 4 Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Fromm
- 4 Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- 1 Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,2 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,5 Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
43
|
Sung HY, Lee JY, Park AK, Moon YJ, Jo I, Park EM, Wang KC, Phi JH, Ahn JH, Kim SK. Aberrant Promoter Hypomethylation of Sortilin 1: A Moyamoya Disease Biomarker. J Stroke 2018; 20:350-361. [PMID: 30309230 PMCID: PMC6186926 DOI: 10.5853/jos.2018.00962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE The pathogenesis of moyamoya disease (MMD) remains poorly understood, and no reliable molecular biomarkers for MMD have been identified to date. The present study aimed to identify epigenetic biomarkers for use in the diagnosis of MMD. METHODS We performed integrated analyses of gene expression profiles and DNA methylation profiles in endothelial colony forming cells (ECFCs) from three patients with MMD and two healthy individuals. Candidate gene mRNA expression and DNA methylation status were further validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and pyrosequencing analysis of an expanded ECFC sample set from nine patients with MMD and ten controls. We evaluated the diagnostic accuracy of the potential biomarkers identified here using receiver operating characteristic curve analyses and further measured major angiogenic factor expression levels using a tube formation assay and RT-qPCR. RESULTS Five candidate genes were selected via integrated analysis; all five were upregulated by hypomethylation of specific promoter CpG sites. After further validation in an expanded sample set, we identified a candidate biomarker gene, sortilin 1 (SORT1). DNA methylation status at a specific SORT1 promoter CpG site in ECFCs readily distinguished patients with MMD from the normal controls with high accuracy (area under the curve 0.98, sensitivity 83.33%, specificity 100%). Furthermore, SORT1 overexpression suppressed endothelial cell tube formation and modulated major angiogenic factor and matrix metalloproteinase-9 expression, implying SORT1 involvement in MMD pathogenesis. CONCLUSION s Our findings suggest that DNA methylation status at the SORT1 promoter CpG site may be a potential biomarker for MMD.
Collapse
Affiliation(s)
- Hye Youn Sung
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul, Korea
| | - Ji Yeoun Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea.,Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ae Kyung Park
- Suncheon National University College of Pharmacy, Suncheon, Korea
| | - Youn Joo Moon
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Eun-Mi Park
- Department of Pharmacology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Hyuck Ahn
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul, Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Ishii D, Matsushige T, Okazaki T, Shinagawa K, Sakamoto S, Oshita J, Kurisu K. Marked Changes in Blood-Brain Barrier Biomarkers After Direct Bypass Surgery for Moyamoya Angiopathy: Preliminary Study. World Neurosurg 2018; 120:e611-e616. [PMID: 30165210 DOI: 10.1016/j.wneu.2018.08.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The blood-brain barrier (BBB) of patients with moyamoya angiopathy (MMA) is unstable, which may contribute to transient neurologic symptoms (TNS) after direct bypass surgery. However, BBB-related proteins have never been investigated. The purpose of this study was to evaluate the perioperative serum levels of biomarkers representing BBB function in MMA patients based on the hypothesis that postoperative hemodynamic change may disrupt the BBB. METHODS A total of 12 hemispheres in 11 patients with MMA were prospectively examined. Direct revascularization surgery was performed for all cases. The serum levels of tight junction (occludin and claudin 5), adherens junction (vascular endothelial-cadherin) proteins, and matrix metalloproteinase (MMP)-2 and MMP-9 were measured quantitatively 1 day before surgery and on postoperative days 1, 4, and 7. RESULTS Successful patency of the direct bypass was achieved in all. The serum level of occludin was significantly increased on postoperative day 1, and the levels in 2 cases with TNS were markedly elevated over 10-fold higher than baseline. Furthermore, the postoperative MMP-9 levels were significantly elevated on each day. On the other hand, there was no significant fluctuation in claudin 5, vascular endothelial-cadherin, and MMP-2 level. CONCLUSIONS Marked changes in biomarkers representing the tight junction of the BBB were observed. These preliminary results suggest that marked hemodynamic change and TNS in some patients are associated with disruption of the BBB after direct bypass surgery for MMA.
Collapse
Affiliation(s)
- Daizo Ishii
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshinori Matsushige
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Takahito Okazaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsuhiro Shinagawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeyuki Sakamoto
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Jumpei Oshita
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kaoru Kurisu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
45
|
Park W, Park ES, Lee S, Park JC, Chung J, Lee JM, Ahn JS. Intracranial Hemorrhage After Superficial Temporal Artery-Middle Cerebral Artery Direct Anastomosis for Adults with Moyamoya Disease. World Neurosurg 2018; 119:e774-e782. [PMID: 30096496 DOI: 10.1016/j.wneu.2018.07.266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Intracranial hemorrhage, such as intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SAH), and intraventricular hemorrhage (IVH), is an extremely rare complication after surgical revascularization for moyamoya disease (MMD). However, the incidence, timing, prognosis, possible mechanism, and prevention are not well known. METHODS Adult patients with MMD who underwent direct bypass or combined bypass and experienced ICH, SAH, or IVH within 7 days postoperatively were enrolled in this study. The medical records and radiologic findings of these patients, together with their intraoperative video recordings, were reviewed retrospectively. RESULTS Direct superficial temporal artery (STA)-middle cerebral artery (MCA) bypass or combined bypass was performed for 222 hemispheres in 193 adult patients with MMD between January 2001 and December 2016. Intracranial hemorrhage occurred perioperatively in 8 hemispheres (3.6%) in 8 patients. The hemorrhages developed immediately after STA-MCA direct anastomosis during surgery in 3 patients. Hemorrhage on computed tomography and neurologic deterioration were also observed immediately postoperatively in 2 patients and during the postoperative period in 3 patients. Although 4 patients received medical management, neurosurgical treatment was needed in the other 4 patients. One patient died, and 6 patients were left with moderate or severe disabilities. CONCLUSIONS Intracranial hemorrhage (ICH, IVH, or SAH) after direct bypass for adult patients with MMD is an extremely rare but fatal complication. Although these hemorrhages can be associated with hyperperfusion syndrome, no effective prevention has been established.
Collapse
Affiliation(s)
- Wonhyoung Park
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Suk Park
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Seungjoo Lee
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung Cheol Park
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jaewoo Chung
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung Min Lee
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Sung Ahn
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Tashiro R, Fujimura M, Mugikura S, Niizuma K, Endo H, Endo T, Tominaga T. Paradoxical Association of Symptomatic Local Vasogenic Edema with Global Cerebral Hypoperfusion after Direct Revascularization Surgery for Adult Moyamoya Disease. J Stroke Cerebrovasc Dis 2018; 27:e172-e176. [DOI: 10.1016/j.jstrokecerebrovasdis.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/08/2018] [Indexed: 11/28/2022] Open
|
47
|
Fujimura M, Fujimura T, Kakizaki A, Sato-Maeda M, Niizuma K, Tomata Y, Aiba S, Tominaga T. Increased serum production of soluble CD163 and CXCL5 in patients with moyamoya disease: Involvement of intrinsic immune reaction in its pathogenesis. Brain Res 2017; 1679:39-44. [PMID: 29174692 DOI: 10.1016/j.brainres.2017.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/21/2017] [Accepted: 11/15/2017] [Indexed: 02/08/2023]
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by a progressive stenosis at the terminal portion of the internal carotid artery and an abnormal vascular network at the base of the brain. Although its etiology is still unknown, intrinsic immune reactions such as autoimmune response has been implicated in the pathogenesis of MMD. Recently, the RING finger protein 213 (RNF213) was found to be an important risk gene for MMD, and is predominantly expressed in blood cells and the spleen. Thus, we hypothesized that patients with MMD represent an intrinsic autoimmune status mediated by M2-polarized macrophages, which play an important role in tissue remodeling and angiogenesis. We compared the serum level of soluble (s)CD163, an activating marker for CD163+ M2-polarized macrophages that has been implicated in a variety of autoimmune disorders, between MMD patients and healthy controls. We also analyzed serum levels of CXCL5, an augmented cytokines that has been correlated with the severity of autoimmune diseases. As a result, the serum sCD163 levels of MMD patients (281,465 pg/ml) were significantly higher than those of healthy controls (174,842 pg/ml) (p = .004). The serum CXCL5 levels of MMD patients (679.02 pg/ml) were significantly higher than those of healthy controls (401.79 pg/ml) (p = .046). There were no differences in the serum sCD163 and CXCL5 levels between each genotype of the RNF213 polymorphism (wild-type or variant) among MMD patients. Although this is a pilot study and further validation with larger number of samples is necessary, our results indicate that patients with MMD may have increased autoimmune activity, and our results shed light on the pathogenesis of MMD via CD163+ M2-polarized macrophages.
Collapse
Affiliation(s)
- Miki Fujimura
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Aya Kakizaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika Sato-Maeda
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasutake Tomata
- Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University School of Public Health, Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
48
|
Ishii D, Okazaki T, Matsushige T, Shinagawa K, Ichinose N, Sakamoto S, Kurisu K. Postoperative Dilatation of Superficial Temporal Artery Associated with Transient Neurologic Symptoms After Direct Bypass Surgery for Moyamoya Angiopathy. World Neurosurg 2017; 106:435-441. [PMID: 28720528 DOI: 10.1016/j.wneu.2017.07.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE In moyamoya angiopathy, transient neurologic symptoms (TNS) are occasionally observed after superficial temporal artery (STA)-middle cerebral artery direct bypass surgery. The purpose of this study was to investigate the correlation between TNS and postoperative magnetic resonance imaging as well as perform a perfusion study. METHODS We reviewed 52 hemispheres in 33 consecutive patients with moyamoya angiopathy. TNS were defined as reversible neurologic dysfunction without any apparent intracranial infarction or hemorrhage. All patients underwent magnetic resonance imaging and single-photon emission computed tomography before and within 5 days after surgery. Maximum diameter of STA on time-of-flight magnetic resonance angiography and the dilatation ratio of STA were calculated. The presence of signal changes on fluid-attenuated inversion recovery images and regional cerebral blood flow were also evaluated. RESULTS TNS were observed in 13 of 52 (25%) cases 1-16 days after surgery. The mean preoperative STA dilatation, postoperative STA dilatation, and dilatation ratio of STA were 1.33 mm ± 0.27, 1.67 mm ± 0.30, and 29.31% ± 28.13%. Postoperative intraparenchymal cortical hyperintensity lesions and high-intensity signals in the cortex sulci (ivy sign) were detected in 24 (46.2%) cases and 29 (55.8%) cases, respectively. Univariate analyses demonstrated no association between TNS and postoperative signal change on fluid-attenuated inversion recovery images as well as cerebral blood flow. Only >1.5-fold dilatation of STA was significantly correlated with TNS (P < 0.0001). CONCLUSIONS STA dilatation was correlated with TNS after direct bypass surgery for moyamoya angiopathy.
Collapse
Affiliation(s)
- Daizo Ishii
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Takahito Okazaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshinori Matsushige
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsuhiro Shinagawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuhiko Ichinose
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeyuki Sakamoto
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kaoru Kurisu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
49
|
Case of Familial Moyamoya Disease Presenting 10 Years After Initial Negative Magnetic Resonance Screening in Childhood. World Neurosurg 2017; 105:1035.e1-1035.e4. [PMID: 28619492 DOI: 10.1016/j.wneu.2017.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Both genetic and environmental factors are considered to contribute to the onset of moyamoya disease, but the exact mechanism has not yet been clarified. Furthermore, the typical time course of progression to vessel occlusion has not been established, even in the genetically high-risk population. CASE DESCRIPTION We present the case of a 21-year-old female with familial history of moyamoya disease. She underwent screening for moyamoya disease 10 years prior, but no abnormalities in magnetic resonance imaging or magnetic resonance angiography were found. She presented to our hospital for transient numbness of the left upper and lower extremities and dysarthria at the age of 21. She was diagnosed with moyamoya disease and underwent bilateral encephaloduroarteriosynangiosis. Gene analysis on the point mutation of RNF213, p.R4810K, was conducted for this patient, her younger sister with moyamoya disease, and their nonsymptomatic parents. A rare variant (p.R4810K) was positive in these sisters and their mother. CONCLUSION We show a case of familial moyamoya disease diagnosed 10 years after the magnetic resonance imaging screening in childhood. We must carefully consider when, how, and for whom screening for moyamoya disease should be performed, taking into account familial history of the disease.
Collapse
|
50
|
Tanaka R, Takahashi S, Okano S, Okayama A, Suzuki N, Kure S, Azuma H. Evolution into moyamoya disease in an infant with internal carotid artery aneurysms. eNeurologicalSci 2017; 6:80-82. [PMID: 29260015 PMCID: PMC5721575 DOI: 10.1016/j.ensci.2017.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/27/2016] [Accepted: 01/30/2017] [Indexed: 10/29/2022] Open
Abstract
Introduction Moyamoya disease (MMD) is characterized by progressive stenosis and occlusion in the terminal portion of both internal carotid arteries (ICAs) and the formation of an abnormal vascular network. Because of the fragile structure of the collateral vessels, MMD is frequently accompanied by intracranial aneurysms that are mainly located within the abnormal basal network or the circle of Willis. However, the association between MMD and aneurysms of the ICAs has never been reported previously. Case report A 1-month-old infant presented with a decreased level of consciousness and arterial infarction in the right frontal and temporal lobes. Brain computed tomography angiography results showed aneurysms in both ICAs and occlusions of the distal part of the aneurysms without moyamoya collateral vessels. Aspirin therapy was initiated, and his clinical status stabilized. At 12 months of age, collateral networks of small vessels were found in the distal part of both ICAs, and MMD had evolved. At 24 months of age, he remains on aspirin therapy, and no further ischemic events have occurred. Conclusions This is the first report of MMD in which ICA aneurysms and occlusions developed bilaterally in early infancy without moyamoya collateral vessels. Our case indicates that angiogenesis at the base of the brain may occur following extracellular matrix remodeling at the terminal portion of the ICAs.
Collapse
Affiliation(s)
- Ryosuke Tanaka
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Satomi Okano
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Akie Okayama
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Nao Suzuki
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Hiroshi Azuma
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|