2
|
Fallico M, Raciti G, Longo A, Reibaldi M, Bonfiglio V, Russo A, Caltabiano R, Gattuso G, Falzone L, Avitabile T. Current molecular and clinical insights into uveal melanoma (Review). Int J Oncol 2021; 58:10. [PMID: 33649778 PMCID: PMC7910016 DOI: 10.3892/ijo.2021.5190] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Uveal melanoma (UM) represents the most prominent primary eye cancer in adults. With an incidence of approximately 5 cases per million individuals annually in the United States, UM could be considered a relatively rare cancer. The 90-95% of UM cases arise from the choroid. Diagnosis is based mainly on a clinical examination and ancillary tests, with ocular ultrasonography being of greatest value. Differential diagnosis can prove challenging in the case of indeterminate choroidal lesions and, sometimes, monitoring for documented growth may be the proper approach. Fine needle aspiration biopsy tends to be performed with a prognostic purpose, often in combination with radiotherapy. Gene expression profiling has allowed for the grading of UMs into two classes, which feature different metastatic risks. Patients with UM require a specialized multidisciplinary management. Primary tumor treatment can be either enucleation or globe preserving. Usually, enucleation is reserved for larger tumors, while radiotherapy is preferred for small/medium melanomas. The prognosis is unfavorable due to the high mortality rate and high tendency to metastasize. Following the development of metastatic disease, the mortality rate increases to 80% within one year, due to both the absence of an effective treatment and the aggressiveness of the condition. Novel molecular studies have allowed for a better understanding of the genetic and epigenetic mechanisms involved in UM biological activity, which differs compared to skin melanomas. The most commonly mutated genes are GNAQ, GNA11 and BAP1. Research in this field could help to identify effective diagnostic and prognostic biomarkers, as well as novel therapeutic targets.
Collapse
Affiliation(s)
- Matteo Fallico
- Department of Ophthalmology, University of Catania, I‑95123 Catania, Italy
| | - Giuseppina Raciti
- Department of Drug Sciences, Section of Biochemistry, University of Catania, I‑95125 Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, University of Catania, I‑95123 Catania, Italy
| | - Michele Reibaldi
- Department of Surgical Sciences, Eye Clinic Section, University of Turin, I‑10122 Turin, Italy
| | - Vincenza Bonfiglio
- Department of Experimental Biomedicine and Clinical Neuroscience, Ophthalmology Section, University of Palermo, I‑90127 Palermo, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, I‑95123 Catania, Italy
| | - Rosario Caltabiano
- Department 'G.F. Ingrassia', Section of Anatomic Pathology, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori 'Fondazione G. Pascale', I‑80131 Naples, Italy
| | - Teresio Avitabile
- Department of Ophthalmology, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
3
|
Exosomes: Insights from Retinoblastoma and Other Eye Cancers. Int J Mol Sci 2020; 21:ijms21197055. [PMID: 32992741 PMCID: PMC7582726 DOI: 10.3390/ijms21197055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes, considered as cell debris or garbage bags, have been later characterized as nanometer-sized extracellular double-membrane lipid bilayer bio-vesicles secreted by the fusion of vesicular bodies with the plasma membrane. The constituents and the rate of exosomes formation differ in different pathophysiological conditions. Exosomes are also observed and studied in different parts of the eye, like the retina, cornea, aqueous, and vitreous humor. Tear fluid consists of exosomes that are shown to regulate various cellular processes. The role of exosomes in eye cancers, especially retinoblastoma (RB), is not well explored, although few studies point towards their presence. Retinoblastoma is an intraocular tumor that constitutes 3% of cases of cancer in children. Diagnosis of RB may require invasive procedures, which might lead to the spread of the disease to other parts. Due to this reason, better ways of diagnosis are being explored. Studies on the exosomes in RB tumors and serum might help designing better diagnostic approaches for RB. In this article, we reviewed studies on exosomes in the eye, with a special emphasis on RB. We also reviewed miRNAs expressed in RB tumor, serum, and cell lines and analyzed the targets of these miRNAs from the proteins identified in the RB tumor exosomes. hsa-miR-494 and hsa-miR-9, upregulated and downregulated, respectively in RB, have the maximum number of targets. Although oppositely regulated, they share the same targets in the proteins identified in RB tumor exosomes. Overall this review provides the up-to-date progress in the area of eye exosome research, with an emphasis on RB.
Collapse
|
4
|
Abdel-Rahman MH, Sample KM, Pilarski R, Walsh T, Grosel T, Kinnamon D, Boru G, Massengill JB, Schoenfield L, Kelly B, Gordon D, Johansson P, DeBenedictis MJ, Singh A, Casadei S, Davidorf FH, White P, Stacey AW, Scarth J, Fewings E, Tischkowitz M, King MC, Hayward NK, Cebulla CM. Whole Exome Sequencing Identifies Candidate Genes Associated with Hereditary Predisposition to Uveal Melanoma. Ophthalmology 2019; 127:668-678. [PMID: 32081490 DOI: 10.1016/j.ophtha.2019.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/13/2019] [Accepted: 11/11/2019] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To identify susceptibility genes associated with hereditary predisposition to uveal melanoma (UM) in patients with no detectable germline BAP1 alterations. DESIGN Retrospective case series from academic referral centers. PARTICIPANTS Cohort of 154 UM patients with high risk of hereditary cancer defined as patients with 1 or more of the following: (1) familial UM, (2) young age (<35 years) at diagnosis, (3) personal history of other primary cancers, and (4) family history of 2 or more primary cancers with no detectable mutation or deletion in BAP1 gene. METHODS Whole exome sequencing, a cancer gene panel, or both were carried out. Probands included 27 patients with familial UM, 1 patient with bilateral UM, 1 patient with congenital UM, and 125 UM patients with strong personal or family histories, or both, of cancer. Functional validation of variants was carried out by immunohistochemistry, reverse-transcriptase polymerase chain reaction, and genotyping. MAIN OUTCOME MEASURES Clinical characterization of UM patients with germline alterations in known cancer genes. RESULTS We identified actionable pathogenic variants in 8 known hereditary cancer predisposition genes (PALB2, MLH1, MSH6, CHEK2, SMARCE1, ATM, BRCA1, and CTNNA1) in 9 patients, including 3 of 27 patients (11%) with familial UM and 6 of 127 patients (4.7%) with a high risk for cancer. Two patients showed pathogenic variants in CHEK2 and PALB2, whereas variants in the other genes each occurred in 1 patient. Biallelic inactivation of PALB2 and MLH1 was observed in tumors from the respective patients. The frequencies of pathogenic variants in PALB2, MLH1, and SMARCE1 in UM patients were significantly higher than the observed frequencies in noncancer controls (PALB2: P = 0.02; odds ratio, 8.9; 95% confidence interval, 1.5-30.6; MLH1: P = 0.04; odds ratio, 25.4; 95% confidence interval, 1.2-143; SMARCE1: P = 0.001; odds ratio, 2047; 95% confidence interval, 52-4.5e15, respectively). CONCLUSIONS The study provided moderate evidence of gene and disease association of germline mutations in PALB2 and MLH1 with hereditary predisposition to UM. It also identified several other candidate susceptibility genes. The results suggest locus heterogeneity in predisposition to UM. Genetic testing for hereditary predisposition to cancer is warranted in UM patients with strong personal or family history of cancers, or both.
Collapse
Affiliation(s)
- Mohamed H Abdel-Rahman
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio; Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio.
| | - Klarke M Sample
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| | - Robert Pilarski
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Tomas Walsh
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Timothy Grosel
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| | - Daniel Kinnamon
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Getachew Boru
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| | - James B Massengill
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| | - Lynn Schoenfield
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Ben Kelly
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - David Gordon
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Peter Johansson
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Meghan J DeBenedictis
- Department of Ophthalmic Oncology, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | - Arun Singh
- Department of Ophthalmic Oncology, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | - Silvia Casadei
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Frederick H Davidorf
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| | - Peter White
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Andrew W Stacey
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - James Scarth
- Academic Laboratory of Medical Genetics and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Ellie Fewings
- Academic Laboratory of Medical Genetics and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Marc Tischkowitz
- Academic Laboratory of Medical Genetics and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; East Anglian Medical Genetics Service, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Mary-Claire King
- Department of Genome Sciences, University of Washington, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | | | - Colleen M Cebulla
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| |
Collapse
|
5
|
Maniar A, Jakati S, Kaliki S. Congenital choroidal melanocytoma in a child with ocular melanocytosis. BMJ Case Rep 2019; 12:12/10/e231376. [PMID: 31666252 DOI: 10.1136/bcr-2019-231376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 1-day-old child was brought to the clinic for evaluation of enlarged right eye (OD). On examination, OD showed buphthalmos with diffuse scleral melanocytosis, fleshy blackish-brown extrascleral mass with corneal extension, and secondary glaucoma. Anterior segment evaluation revealed darkly pigmented iris and fundus evaluation OD revealed a darkly pigmented choroidal lesion. The left eye was within normal limits. A clinical diagnosis of choroidal melanocytoma with ocular melanocytosis was made. Enucleation OD followed by orbital implant was performed. Histopathology showed features of diffuse ocular melanocytosis involving limbus, iris, ciliary body, choroid, sclera, optic nerve head, optic nerve sheath, along with choroidal melanocytoma with extrascleral tumour extension. We presume that choroidal melanocytoma may have arisen from ocular melanocytosis.
Collapse
Affiliation(s)
- Arpita Maniar
- Ocular Oncology, LV Prasad Eye Institute, Hyderabad, India
| | - Saumya Jakati
- Ophthalmic Pathology, LV Prasad Eye Institute, Hyderabad, India
| | - Swathi Kaliki
- Ocular Oncology, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
6
|
Kaliki S, Shields CL. Uveal melanoma: relatively rare but deadly cancer. Eye (Lond) 2016; 31:241-257. [PMID: 27911450 DOI: 10.1038/eye.2016.275] [Citation(s) in RCA: 378] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/01/2016] [Indexed: 01/04/2023] Open
Abstract
Although it is a relatively rare disease, primarily found in the Caucasian population, uveal melanoma is the most common primary intraocular tumor in adults with a mean age-adjusted incidence of 5.1 cases per million per year. Tumors are located either in iris (4%), ciliary body (6%), or choroid (90%). The host susceptibility factors for uveal melanoma include fair skin, light eye color, inability to tan, ocular or oculodermal melanocytosis, cutaneous or iris or choroidal nevus, and BRCA1-associated protein 1 mutation. Currently, the most widely used first-line treatment options for this malignancy are resection, radiation therapy, and enucleation. There are two main types of radiation therapy: plaque brachytherapy (iodine-125, ruthenium-106, or palladium-103, or cobalt-60) and teletherapy (proton beam, helium ion, or stereotactic radiosurgery using cyber knife, gamma knife, or linear accelerator). The alternative to radiation is enucleation. Although these therapies achieve satisfactory local disease control, long-term survival rate for patients with uveal melanoma remains guarded, with risk for liver metastasis. There have been advances in early diagnosis over the past few years, and with the hope survival rates could improve as smaller tumors are treated. As in many other cancer indications, both early detection and early treatment could be critical for a positive long-term survival outcome in uveal melanoma. These observations call attention to an unmet medical need for the early treatment of small melanocytic lesions or small melanomas in the eye to achieve local disease control and vision preservation with the possibility to prevent metastases and improve overall patient survival.
Collapse
Affiliation(s)
- S Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India
| | - C L Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|