1
|
Fautt C, Couradeau E, Hockett KL. Naïve Bayes Classifiers and accompanying dataset for Pseudomonas syringae isolate characterization. Sci Data 2024; 11:178. [PMID: 38326362 PMCID: PMC10850129 DOI: 10.1038/s41597-024-03003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
The Pseudomonas syringae species complex (PSSC) is a diverse group of plant pathogens with a collective host range encompassing almost every food crop grown today. As a threat to global food security, rapid detection and characterization of epidemic and emerging pathogenic lineages is essential. However, phylogenetic identification is often complicated by an unclarified and ever-changing taxonomy, making practical use of available databases and the proper training of classifiers difficult. As such, while amplicon sequencing is a common method for routine identification of PSSC isolates, there is no efficient method for accurate classification based on this data. Here we present a suite of five Naïve bayes classifiers for PCR primer sets widely used for PSSC identification, trained on in-silico amplicon data from 2,161 published PSSC genomes using the life identification number (LIN) hierarchical clustering algorithm in place of traditional Linnaean taxonomy. Additionally, we include a dataset for translating classification results back into traditional taxonomic nomenclature (i.e. species, phylogroup, pathovar), and for predicting virulence factor repertoires.
Collapse
Affiliation(s)
- Chad Fautt
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, USA.
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA.
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Estelle Couradeau
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA.
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Kevin L Hockett
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, USA.
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
2
|
Bundalovic-Torma C, Lonjon F, Desveaux D, Guttman DS. Diversity, Evolution, and Function of Pseudomonas syringae Effectoromes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:211-236. [PMID: 35537470 DOI: 10.1146/annurev-phyto-021621-121935] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pseudomonas syringae is an evolutionarily diverse bacterial species complex and a preeminent model for the study of plant-pathogen interactions due in part to its remarkably broad host range. A critical feature of P. syringae virulence is the employment of suites of type III secreted effector (T3SE) proteins, which vary widely in composition and function. These effectors act on a variety of plant intracellular targets to promote pathogenesis but can also be avirulence factors when detected by host immune complexes. In this review, we survey the phylogenetic diversity (PD) of the P. syringae effectorome, comprising 70 distinct T3SE families identified to date, and highlight how avoidance of host immune detection has shaped effectorome diversity through functional redundancy, diversification, and horizontal transfer. We present emerging avenues for research and novel insights that can be gained via future investigations of plant-pathogen interactions through the fusion of large-scale interaction screens and phylogenomic approaches.
Collapse
Affiliation(s)
| | - Fabien Lonjon
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Dillon MM, Ruiz-Bedoya T, Bundalovic-Torma C, Guttman KM, Kwak H, Middleton MA, Wang PW, Horuz S, Aysan Y, Guttman DS. Comparative genomic insights into the epidemiology and virulence of plant pathogenic pseudomonads from Turkey. Microb Genom 2021; 7:000585. [PMID: 34227931 PMCID: PMC8477409 DOI: 10.1099/mgen.0.000585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas is a highly diverse genus that includes species that cause disease in both plants and animals. Recently, pathogenic pseudomonads from the Pseudomonas syringae and Pseudomonas fluorescens species complexes have caused significant outbreaks in several agronomically important crops in Turkey, including tomato, citrus, artichoke and melon. We characterized 169 pathogenic Pseudomonas strains associated with recent outbreaks in Turkey via multilocus sequence analysis and whole-genome sequencing, then used comparative and evolutionary genomics to characterize putative virulence mechanisms. Most of the isolates are closely related to other plant pathogens distributed among the primary phylogroups of P. syringae, although there are significant numbers of P. fluorescens isolates, which is a species better known as a rhizosphere-inhabiting plant-growth promoter. We found that all 39 citrus blast pathogens cluster in P. syringae phylogroup 2, although strains isolated from the same host do not cluster monophyletically, with lemon, mandarin orange and sweet orange isolates all being intermixed throughout the phylogroup. In contrast, 20 tomato pith pathogens are found in two independent lineages: one in the P. syringae secondary phylogroups, and the other from the P. fluorescens species complex. These divergent pith necrosis strains lack characteristic virulence factors like the canonical tripartite type III secretion system, large effector repertoires and the ability to synthesize multiple bacterial phytotoxins, suggesting they have alternative molecular mechanisms to cause disease. These findings highlight the complex nature of host specificity among plant pathogenic pseudomonads.
Collapse
Affiliation(s)
- Marcus M. Dillon
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Present address: Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Tatiana Ruiz-Bedoya
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Kevin M. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Haejin Kwak
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Maggie A. Middleton
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Pauline W. Wang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Sumer Horuz
- Department of Plant Protection, Erciyes University, Kayseri, Turkey
| | - Yesim Aysan
- Department of Plant Protection, University of Çukurova, Adana, Turkey
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Koceja ME, Bledsoe RB, Goodwillie C, Peralta AL. Distinct microbial communities alter litter decomposition rates in a fertilized coastal plain wetland. Ecosphere 2021. [DOI: 10.1002/ecs2.3619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Megan E. Koceja
- Department of Biology East Carolina University Howell Science ComplexMail Stop 551 Greenville North Carolina27858USA
| | - Regina B. Bledsoe
- Department of Biology East Carolina University Howell Science ComplexMail Stop 551 Greenville North Carolina27858USA
| | - Carol Goodwillie
- Department of Biology East Carolina University Howell Science ComplexMail Stop 551 Greenville North Carolina27858USA
| | - Ariane L. Peralta
- Department of Biology East Carolina University Howell Science ComplexMail Stop 551 Greenville North Carolina27858USA
| |
Collapse
|
5
|
Liu F, McDonald M, Schwessinger B, Joe A, Pruitt R, Erickson T, Zhao X, Stewart V, Ronald PC. Variation and inheritance of the Xanthomonas raxX-raxSTAB gene cluster required for activation of XA21-mediated immunity. MOLECULAR PLANT PATHOLOGY 2019; 20:656-672. [PMID: 30773771 PMCID: PMC6637879 DOI: 10.1111/mpp.12783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The rice XA21-mediated immune response is activated on recognition of the RaxX peptide produced by the bacterium Xanthomonas oryzae pv. oryzae (Xoo). The 60-residue RaxX precursor is post-translationally modified to form a sulfated tyrosine peptide that shares sequence and functional similarity with the plant sulfated tyrosine (PSY) peptide hormones. The 5-kb raxX-raxSTAB gene cluster of Xoo encodes RaxX, the RaxST tyrosylprotein sulfotransferase, and the RaxA and RaxB components of a predicted type I secretion system. To assess raxX-raxSTAB gene cluster evolution and to determine its phylogenetic distribution, we first identified rax gene homologues in other genomes. We detected the complete raxX-raxSTAB gene cluster only in Xanthomonas spp., in five distinct lineages in addition to X. oryzae. The phylogenetic distribution of the raxX-raxSTAB gene cluster is consistent with the occurrence of multiple lateral (horizontal) gene transfer events during Xanthomonas speciation. RaxX natural variants contain a restricted set of missense substitutions, as expected if selection acts to maintain peptide hormone-like function. Indeed, eight RaxX variants tested all failed to activate the XA21-mediated immune response, yet retained peptide hormone activity. Together, these observations support the hypothesis that the XA21 receptor evolved specifically to recognize Xoo RaxX.
Collapse
Affiliation(s)
- Furong Liu
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCA95616USA
| | - Megan McDonald
- Research School of BiologyAustralian National UniversityCanberra0200Australia
| | - Benjamin Schwessinger
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCA95616USA
- Research School of BiologyAustralian National UniversityCanberra0200Australia
| | - Anna Joe
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCA95616USA
| | - Rory Pruitt
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCA95616USA
| | - Teresa Erickson
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCA95616USA
| | - Xiuxiang Zhao
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCA95616USA
| | - Valley Stewart
- Department of Microbiology & Molecular GeneticsUniversity of CaliforniaDavisCA95616USA
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCA95616USA
| |
Collapse
|
6
|
Recombination of ecologically and evolutionarily significant loci maintains genetic cohesion in the Pseudomonas syringae species complex. Genome Biol 2019; 20:3. [PMID: 30606234 PMCID: PMC6317194 DOI: 10.1186/s13059-018-1606-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 12/06/2018] [Indexed: 01/25/2023] Open
Abstract
Background Pseudomonas syringae is a highly diverse bacterial species complex capable of causing a wide range of serious diseases on numerous agronomically important crops. We examine the evolutionary relationships of 391 agricultural and environmental strains using whole-genome sequencing and evolutionary genomic analyses. Results We describe the phylogenetic distribution of all 77,728 orthologous gene families in the pan-genome, reconstruct the core genome phylogeny using the 2410 core genes, hierarchically cluster the accessory genome, identify the diversity and distribution of type III secretion systems and their effectors, predict ecologically and evolutionary relevant loci, and establish the molecular evolutionary processes operating on gene families. Phylogenetic and recombination analyses reveals that the species complex is subdivided into primary and secondary phylogroups, with the former primarily comprised of agricultural isolates, including all of the well-studied P. syringae strains. In contrast, the secondary phylogroups include numerous environmental isolates. These phylogroups also have levels of genetic diversity typically found among distinct species. An analysis of rates of recombination within and between phylogroups revealed a higher rate of recombination within primary phylogroups than between primary and secondary phylogroups. We also find that “ecologically significant” virulence-associated loci and “evolutionarily significant” loci under positive selection are over-represented among loci that undergo inter-phylogroup genetic exchange. Conclusions While inter-phylogroup recombination occurs relatively rarely, it is an important force maintaining the genetic cohesion of the species complex, particularly among primary phylogroup strains. This level of genetic cohesion, and the shared plant-associated niche, argues for considering the primary phylogroups as a single biological species. Electronic supplementary material The online version of this article (10.1186/s13059-018-1606-y) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Gomila M, Busquets A, Mulet M, García-Valdés E, Lalucat J. Clarification of Taxonomic Status within the Pseudomonas syringae Species Group Based on a Phylogenomic Analysis. Front Microbiol 2017; 8:2422. [PMID: 29270162 PMCID: PMC5725466 DOI: 10.3389/fmicb.2017.02422] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/22/2017] [Indexed: 11/13/2022] Open
Abstract
The Pseudomonas syringae phylogenetic group comprises 15 recognized bacterial species and more than 60 pathovars. The classification and identification of strains is relevant for practical reasons but also for understanding the epidemiology and ecology of this group of plant pathogenic bacteria. Genome-based taxonomic analyses have been introduced recently to clarify the taxonomy of the whole genus. A set of 139 draft and complete genome sequences of strains belonging to all species of the P. syringae group available in public databases were analyzed, together with the genomes of closely related species used as outgroups. Comparative genomics based on the genome sequences of the species type strains in the group allowed the delineation of phylogenomic species and demonstrated that a high proportion of strains included in the study are misclassified. Furthermore, representatives of at least 7 putative novel species were detected. It was also confirmed that P. ficuserectae, P. meliae, and P. savastanoi are later synonyms of P. amygdali and that “P. coronafaciens” should be revived as a nomenspecies.
Collapse
Affiliation(s)
- Margarita Gomila
- Microbiology, Department of Biology, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Antonio Busquets
- Microbiology, Department of Biology, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Magdalena Mulet
- Microbiology, Department of Biology, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Elena García-Valdés
- Microbiology, Department of Biology, Universitat de les Illes Balears, Palma de Mallorca, Spain.,Institut Mediterrani d'Estudis Avançats (Consejo Superior de Investigaciones Científicas-Universidad de las Islas Baleares), Palma de Mallorca, Spain
| | - Jorge Lalucat
- Microbiology, Department of Biology, Universitat de les Illes Balears, Palma de Mallorca, Spain.,Institut Mediterrani d'Estudis Avançats (Consejo Superior de Investigaciones Científicas-Universidad de las Islas Baleares), Palma de Mallorca, Spain
| |
Collapse
|
8
|
Baltrus DA, McCann HC, Guttman DS. Evolution, genomics and epidemiology of Pseudomonas syringae: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2017; 18:152-168. [PMID: 27798954 PMCID: PMC6638251 DOI: 10.1111/mpp.12506] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 05/12/2023]
Abstract
A remarkable shift in our understanding of plant-pathogenic bacteria is underway. Until recently, nearly all research on phytopathogenic bacteria was focused on a small number of model strains, which provided a deep, but narrow, perspective on plant-microbe interactions. Advances in genome sequencing technologies have changed this by enabling the incorporation of much greater diversity into comparative and functional research. We are now moving beyond a typological understanding of a select collection of strains to a more generalized appreciation of the breadth and scope of plant-microbe interactions. The study of natural populations and evolution has particularly benefited from the expansion of genomic data. We are beginning to have a much deeper understanding of the natural genetic diversity, niche breadth, ecological constraints and defining characteristics of phytopathogenic species. Given this expanding genomic and ecological knowledge, we believe the time is ripe to evaluate what we know about the evolutionary dynamics of plant pathogens.
Collapse
Affiliation(s)
| | - Honour C. McCann
- New Zealand Institute for Advanced StudyMassey UniversityAuckland 0632New Zealand
| | - David S. Guttman
- Department of Cell and Systems BiologyUniversity of TorontoTorontoON M5S 3B2Canada
- Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoON M5S 3B2Canada
| |
Collapse
|
9
|
Hong JC, Norman DJ, Reed DL, Momol MT, Jones JB. Diversity among Ralstonia solanacearum strains isolated from the southeastern United States. PHYTOPATHOLOGY 2012; 102:924-936. [PMID: 22957819 DOI: 10.1094/phyto-12-11-0342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This is the first comprehensive study of a collection of Ralstonia solanacearum strains from the southeastern United States to be characterized based on biovar, pathogenicity, hypersensitive reaction on tobacco, and phylogenetic analyses of the egl sequence. Rigorous phylogenetic analysis of the commonly used egl gene produced robust phylogenies that differed significantly from a neighbor-joining tree differed from and previously published phylogenies for R. solanacearum strains. These robust trees placed phylotype IV within the phylotype I clade, which may suggest that phylogenies based solely on egl may be misleading. As a result of phylogenetic analyses in this study, we determined that U.S. strains from Georgia, North Carolina, South Carolina, and older Florida strains isolated from solanaceous crops all belong to phylotype II sequevar 7. However, many strains recently isolated in Florida from tomato and other crops were more diverse than the southeastern United States population. These unique Florida strains grouped with strains mostly originating from the Caribbean and Central America. One of the exotic strains, which in a previous study was determined to be established in northern Florida, was characterized more extensively. Upon using Musa-specific multiplex polymerase chain reaction, this strain produced a unique banding pattern, which has not previously been reported. Inoculation of this strain into Musa spp. did not result in wilt symptoms; however, the plants were stunted and root masses were significantly reduced. Furthermore, following root inoculation, the bacterium, unlike a typical Florida race 1 biovar 1 strain, was recovered from the roots and stems, indicating systemic movement. This is the first report of an R. solanacearum strain isolated in the United States that is deleterious to the growth of Musa plants.
Collapse
Affiliation(s)
- Jason C Hong
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
10
|
Young JM. Sinorhizobium versus Ensifer: may a taxonomy subcommittee of the ICSP contradict the Judicial Commission? Int J Syst Evol Microbiol 2010; 60:1711-1713. [DOI: 10.1099/ijs.0.025163-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In response to a Request for an Opinion, the Judicial Commission (Opinion 84) confirmed the earlier synonym, Ensifer, as the correct name for the genus better known as Sinorhizobium. The Judicial Commission considered that this decision would not cause sufficient confusion to justify the conservation of the latter name. The Subcommittee on the Taxonomy of Agrobacterium and Rhizobium of the International Committee on Systematics of Prokaryotes (ICSP) publicly disagreed with this conclusion. Was it justified in doing this?
Collapse
Affiliation(s)
- J. M. Young
- Landcare Research, Auckland, Private Bag 92170, New Zealand
| |
Collapse
|
11
|
Comparison of traditional phenotypic identification methods with partial 5' 16S rRNA gene sequencing for species-level identification of nonfermenting Gram-negative bacilli. J Clin Microbiol 2010; 48:1442-4. [PMID: 20164273 DOI: 10.1128/jcm.00169-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Correct identification of nonfermenting Gram-negative bacilli (NFB) is crucial for patient management. We compared phenotypic identifications of 96 clinical NFB isolates with identifications obtained by 5' 16S rRNA gene sequencing. Sequencing identified 88 isolates (91.7%) with >99% similarity to a sequence from the assigned species; 61.5% of sequencing results were concordant with phenotypic results, indicating the usability of sequencing to identify NFB.
Collapse
|
12
|
Young JM. Legitimacy is an essential concept of the International Code of Nomenclature of Prokaryotes - a major revision of the Code is called for. Int J Syst Evol Microbiol 2009; 59:1252-7. [PMID: 19406827 DOI: 10.1099/ijs.0.011601-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tindall [Int J Syst Evol Microbiol 58 (2008), 1979-1986] claimed that the International Code of Nomenclature of Prokaryotes (the Code) creates a paradox in the application of the term 'legitimate' in relation to valid publication, that the term is dispensable and that the paradox would be resolved by revising the Code to avoid its use. Although it is not clearly explained in the Code, the concept of legitimacy is central to the proposal of names. Discarding the concept would fundamentally alter the conceptual structure of the Code and obscure significant distinctions in formal nomenclature. The text of the Code itself is not clear and a careful reading suggests that it would be enhanced by a critical overview involving textual revision and restructuring of some sections. The Judicial Commission is asked not to accept Tindall's suggested revision and it is proposed that the Editorial Board of the International Committee on Systematics of Prokaryotes re-examine the Code from first principles and make such revisions as will avoid in future the confusion, ambiguities and uncertainties indicated here.
Collapse
Affiliation(s)
- J M Young
- Landcare Research, Private Bag 92170, Auckland, New Zealand.
| |
Collapse
|