1
|
|
2
|
Campista-León S, Rivera-Serrano BV, Garcia-Guerrero JT, Peinado-Guevara LI. Phylogenetic characterization and multidrug resistance of bacteria isolated from seafood cocktails. Arch Microbiol 2021; 203:3317-3330. [PMID: 33864113 DOI: 10.1007/s00203-021-02319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
The continual increase in resistance to antibacterial drugs has become a major public health problem, and their indiscriminate use in agriculture, aquaculture, and the treatment of human and animal diseases has severely contributed to the occurrence and spread of multidrug resistance genes. This study phylogenetically characterized multidrug-resistant bacteria isolated from seafood cocktails. Seafood cocktail dishes from 20 establishments on public roads were sampled. Samples were grown on TCBS agar and blood agar. Forty colonies with different macro- and microscopic characteristics were isolated. The 16S rRNA gene V4 and V6 hypervariable regions were amplified, sequenced and phylogenetically analyzed. Antibacterial drug resistance was determined by disk diffusion assay. Isolated bacteria were identical to species of the genera Enterococcus, Proteus, Vibrio, Staphylococcus, Lactococcus, Vagococcus, Micrococcus, Acinetobacter, Enterobacter, and Brevibacterium, with 75-100% presenting resistance or intermediate resistance to dicloxacillin, ampicillin, and penicillin; 50-70% to cephalosporins; 30-67.5% to amikacin, netilmicin and gentamicin; 40% to nitrofurantoin and other antibacterial drugs; 25% to chloramphenicol; and 2.5% to trimethoprim with sulfamethoxazole. In general, 80% of the bacteria showed resistance to multiple antibiotics. The high degree of bacterial resistance to antibacterial drugs indicates that their use in producing raw material for marine foods requires established guidelines and the implementation of good practices.
Collapse
Affiliation(s)
- Samuel Campista-León
- Laboratory of Microbiology and Applied Biology, Faculty of Biology, Autonomous University of Sinaloa, Av. Universitarios, University City, 80013, Culiacan Rosales, Sinaloa, Mexico
| | - Bianca V Rivera-Serrano
- Laboratory of Microbiology and Applied Biology, Faculty of Biology, Autonomous University of Sinaloa, Av. Universitarios, University City, 80013, Culiacan Rosales, Sinaloa, Mexico
| | - Joel T Garcia-Guerrero
- Laboratory of Microbiology and Applied Biology, Faculty of Biology, Autonomous University of Sinaloa, Av. Universitarios, University City, 80013, Culiacan Rosales, Sinaloa, Mexico
| | - Luz I Peinado-Guevara
- Laboratory of Microbiology and Applied Biology, Faculty of Biology, Autonomous University of Sinaloa, Av. Universitarios, University City, 80013, Culiacan Rosales, Sinaloa, Mexico.
| |
Collapse
|
3
|
Madhaiyan M, Wirth JS, Saravanan VS. Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. Int J Syst Evol Microbiol 2020; 70:5926-5936. [DOI: 10.1099/ijsem.0.004498] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic analyses based on 16S rRNA gene sequences of members of the family
Staphylococcaceae
showed the presence of para- and polyphyletic genera. This finding prompted a thorough investigation into the taxonomy of the
Staphylococcaceae
family by analysing their core genome phylogeny complemented with genome-based indices such as digital DNA–DNA hybridization, average nucleotide identity and average amino acid identity. The resulting data suggested the following proposals:
Auricoccus indicus
was reduced in taxonomic rank as a later heterotypic synonym of
Abyssicoccus albus
;
Staphylococcus petrasii
subsp.
jettensis
as a later heterotypic synonym of
Staphylococcus petrasii
subsp.
petrasii
; the unification of
Staphylococcus aureus
subsp.
anaerobius
and
Staphylococcus aureus
subsp.
aureus
as
Staphylococcus aureus
; the unification of
Staphylococcus carnosus
subsp.
utilis
and
Staphylococcus carnosus
subsp.
carnosus
as
Staphylococcus carnosus
; the unification of
Staphylococcus saprophyticus
subsp.
bovis
and
Staphylococcus saprophyticus
subsp.
saprophyticus
as
Staphylococcus saprophyticus
; Staphylococcus succinis subsp. casei as the novel species Staphylococcus casei;
Staphylococcus schleiferi
subsp.
coagulans
as the novel species Staphylococcus coagulans;
Staphylococcus petrasii
subsp.
croceilyticus
as the novel species Staphylococcus croceilyticus;
Staphylococcus petrasii
subsp.
pragensis
as the novel species Staphylococcus pragensis;
Staphylococcus cohnii
subsp.
urealyticus
as the novel species Staphylococcus urealyticus; the reassignment of
Staphylococcus sciuri
,
Staphylococcus fleurettii
,
Staphylococcus lentus
,
Staphylococcus stepanovicii
and
Staphylococcus vitulinus
to the novel genus Mammaliicoccus with Mammaliicoccus sciuri as the type species; and the formal assignment of
Nosocomiicoccus
as a member of the family
Staphylococcaceae
.
Collapse
Affiliation(s)
- Munusamy Madhaiyan
- Department of Agricultural Microbiology, Tamilnadu Agricultural University, Coimbatore 641 003, Tamilnadu, India
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Joseph S. Wirth
- Department of Biology, Harvey Mudd College Claremont, CA 91711, USA
| | | |
Collapse
|
4
|
Performance and Application of 16S rRNA Gene Cycle Sequencing for Routine Identification of Bacteria in the Clinical Microbiology Laboratory. Clin Microbiol Rev 2020; 33:33/4/e00053-19. [PMID: 32907806 DOI: 10.1128/cmr.00053-19] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review provides a state-of-the-art description of the performance of Sanger cycle sequencing of the 16S rRNA gene for routine identification of bacteria in the clinical microbiology laboratory. A detailed description of the technology and current methodology is outlined with a major focus on proper data analyses and interpretation of sequences. The remainder of the article is focused on a comprehensive evaluation of the application of this method for identification of bacterial pathogens based on analyses of 16S multialignment sequences. In particular, the existing limitations of similarity within 16S for genus- and species-level differentiation of clinically relevant pathogens and the lack of sequence data currently available in public databases is highlighted. A multiyear experience is described of a large regional clinical microbiology service with direct 16S broad-range PCR followed by cycle sequencing for direct detection of pathogens in appropriate clinical samples. The ability of proteomics (matrix-assisted desorption ionization-time of flight) versus 16S sequencing for bacterial identification and genotyping is compared. Finally, the potential for whole-genome analysis by next-generation sequencing (NGS) to replace 16S sequencing for routine diagnostic use is presented for several applications, including the barriers that must be overcome to fully implement newer genomic methods in clinical microbiology. A future challenge for large clinical, reference, and research laboratories, as well as for industry, will be the translation of vast amounts of accrued NGS microbial data into convenient algorithm testing schemes for various applications (i.e., microbial identification, genotyping, and metagenomics and microbiome analyses) so that clinically relevant information can be reported to physicians in a format that is understood and actionable. These challenges will not be faced by clinical microbiologists alone but by every scientist involved in a domain where natural diversity of genes and gene sequences plays a critical role in disease, health, pathogenicity, epidemiology, and other aspects of life-forms. Overcoming these challenges will require global multidisciplinary efforts across fields that do not normally interact with the clinical arena to make vast amounts of sequencing data clinically interpretable and actionable at the bedside.
Collapse
|
5
|
Rossi CC, Pereira MF, Giambiagi-deMarval M. Underrated Staphylococcus species and their role in antimicrobial resistance spreading. Genet Mol Biol 2020; 43:e20190065. [PMID: 32052827 PMCID: PMC7198029 DOI: 10.1590/1678-4685-gmb-2019-0065] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/06/2019] [Indexed: 01/06/2023] Open
Abstract
The increasing threat of antimicrobial resistance has shed light on the interconnection between humans, animals, the environment, and their roles in the exchange and spreading of resistance genes. In this review, we present evidences that show that Staphylococcus species, usually referred to as harmless or opportunistic pathogens, represent a threat to human and animal health for acting as reservoirs of antimicrobial resistance genes. The capacity of genetic exchange between isolates of different sources and species of the Staphylococcus genus is discussed with emphasis on mobile genetic elements, the contribution of biofilm formation, and evidences obtained either experimentally or through genome analyses. We also discuss the involvement of CRISPR-Cas systems in the limitation of horizontal gene transfer and its suitability as a molecular clock to describe the history of genetic exchange between staphylococci.
Collapse
Affiliation(s)
- Ciro César Rossi
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Microbiologia Molecular, Rio de Janeiro, RJ, Brazil
| | | | - Marcia Giambiagi-deMarval
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Microbiologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Miragaia M. Factors Contributing to the Evolution of mecA-Mediated β-lactam Resistance in Staphylococci: Update and New Insights From Whole Genome Sequencing (WGS). Front Microbiol 2018; 9:2723. [PMID: 30483235 PMCID: PMC6243372 DOI: 10.3389/fmicb.2018.02723] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
The understanding of the mechanisms of antibiotic resistance development are fundamental to alert and preview beforehand, the large scale dissemination of resistance to antibiotics, enabling the design of strategies to prevent its spread. The mecA-mediated methicillin resistance conferring resistance to broad-spectrum β-lactams is globally spread in staphylococci including hospitals, farms and community environments, turning ineffective the most widely used and efficient class of antibiotics to treat staphylococcal infections. The use of whole genome sequencing (WGS) technologies at a bacterial population level has provided a considerable progress in the identification of key steps that led to mecA-mediated β-lactam resistance development and dissemination. Data obtained from multiple studies indicated that mecA developed from a harmless core gene (mecA1) encoding the penicillin-binding protein D (PbpD) from staphylococcal species of animal origin (S. sciuri group) due to extensive β-lactams use in human created environments. Emergence of the resistance determinant involved distortion of PbpD active site, increase in mecA1 expression, addition of regulators (mecR1, mecI) and integration into a mobile genetic element (SCCmec). SCCmec was then transferred into species of coagulase-negative staphylococci (CoNS) that are able to colonize both animals and humans and subsequently transferred to S. aureus of human origin. Adaptation of S. aureus to the exogenously acquired SCCmec involved, deletion and mutation of genes implicated in general metabolism (auxiliary genes) and general stress response and the adjustment of metabolic networks, what was accompanied by an increase in β-lactams minimal inhibitory concentration and the transition from a heterogeneous to homogeneous resistance profile. Nowadays, methicillin-resistant S. aureus (MRSA) carrying SCCmec constitutes one of the most important worldwide pandemics. The stages of development of mecA-mediated β-lactam resistance described here may serve as a model for previewing and preventing the emergence of resistance to other classes of antibiotics.
Collapse
Affiliation(s)
- Maria Miragaia
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
7
|
The effects of pre-and post-slaughter spray application with organic acids on microbial population reductions on beef carcasses. Meat Sci 2018; 137:16-23. [DOI: 10.1016/j.meatsci.2017.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 11/16/2022]
|
8
|
A Look into the Melting Pot: The mecC-Harboring Region Is a Recombination Hot Spot in Staphylococcus stepanovicii. PLoS One 2016; 11:e0147150. [PMID: 26799070 PMCID: PMC4723332 DOI: 10.1371/journal.pone.0147150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/29/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction Horizontal gene transfer (HGT) is an important driver for resistance- and virulence factor accumulation in pathogenic bacteria such as Staphylococcus aureus. Methods Here, we have investigated the downstream region of the bacterial chromosomal attachment site (attB) for the staphylococcal cassette chromosome mec (SCCmec) element of a commensal mecC-positive Staphylococcus stepanovicii strain (IMT28705; ODD4) with respect to genetic composition and indications of HGT. S. stepanovicii IMT28705 was isolated from a fecal sample of a trapped wild bank vole (Myodes glareolus) during a screening study (National Network on “Rodent-Borne Pathogens”) in Germany. Whole genome sequencing (WGS) of IMT28705 together with the mecC-negative type strain CM7717 was conducted in order to comparatively investigate the genomic region downstream of attB (GenBank accession no. KR732654 and KR732653). Results The bank vole isolate (IMT28705) harbors a mecC gene which shares 99.2% nucleotide (and 98.5% amino acid) sequence identity with mecC of MRSA_LGA251. In addition, the mecC-encoding region harbors the typical blaZ-mecC-mecR1-mecI structure, corresponding with the class E mec complex. While the sequences downstream of attB in both S. stepanovicii isolates (IMT28705 and CM7717) are partitioned by 15 bp direct repeats, further comparison revealed a remarkable low concordance of gene content, indicating a chromosomal “hot spot” for foreign DNA integration and exchange. Conclusion Our data highlight the necessity for further research on transmission routes of resistance encoding factors from the environmental and wildlife resistome.
Collapse
|
9
|
The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes. Vet Microbiol 2014; 171:342-56. [DOI: 10.1016/j.vetmic.2014.02.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 11/18/2022]
|
10
|
Loncaric I, Kubber-Heiss A, Posautz A, Stalder GL, Hoffmann D, Rosengarten R, Walzer C. Characterization of methicillin-resistant Staphylococcus spp. carrying the mecC gene, isolated from wildlife. J Antimicrob Chemother 2013; 68:2222-5. [DOI: 10.1093/jac/dkt186] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Lamers RP, Muthukrishnan G, Castoe TA, Tafur S, Cole AM, Parkinson CL. Phylogenetic relationships among Staphylococcus species and refinement of cluster groups based on multilocus data. BMC Evol Biol 2012; 12:171. [PMID: 22950675 PMCID: PMC3464590 DOI: 10.1186/1471-2148-12-171] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 08/30/2012] [Indexed: 11/17/2022] Open
Abstract
Background Estimates of relationships among Staphylococcus species have been hampered by poor and inconsistent resolution of phylogenies based largely on single gene analyses incorporating only a limited taxon sample. As such, the evolutionary relationships and hierarchical classification schemes among species have not been confidently established. Here, we address these points through analyses of DNA sequence data from multiple loci (16S rRNA gene, dnaJ, rpoB, and tuf gene fragments) using multiple Bayesian and maximum likelihood phylogenetic approaches that incorporate nearly all recognized Staphylococcus taxa. Results We estimated the phylogeny of fifty-seven Staphylococcus taxa using partitioned-model Bayesian and maximum likelihood analysis, as well as Bayesian gene-tree species-tree methods. Regardless of methodology, we found broad agreement among methods that the current cluster groups require revision, although there was some disagreement among methods in resolution of higher order relationships. Based on our phylogenetic estimates, we propose a refined classification for Staphylococcus with species being classified into 15 cluster groups (based on molecular data) that adhere to six species groups (based on phenotypic properties). Conclusions Our findings are in general agreement with gene tree-based reports of the staphylococcal phylogeny, although we identify multiple previously unreported relationships among species. Our results support the general importance of such multilocus assessments as a standard in microbial studies to more robustly infer relationships among recognized and newly discovered lineages.
Collapse
Affiliation(s)
- Ryan P Lamers
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
| | | | | | | | | | | |
Collapse
|
12
|
List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2012. [DOI: 10.1099/ijs.0.044636-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send three copies of the pertinent reprint or photocopies thereof, or an electronic copy of the published paper, to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. It should be noted that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below, and these authors’ names will be included in the author index of the present issue. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in bacteriological nomenclature. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.
Collapse
|
13
|
Species identification of staphylococci by amplification and sequencing of the tuf gene compared to the gap gene and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur J Clin Microbiol Infect Dis 2010; 30:343-54. [PMID: 20967479 DOI: 10.1007/s10096-010-1091-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 10/01/2010] [Indexed: 10/18/2022]
Abstract
Staphylococcal species, notably, coagulase-negative staphylococci (CoNS), are frequently misidentified using phenotypic methods. The partial nucleotide sequences of the tuf and gap genes were determined in 47 reference strains to assess their suitability, practicability, and discriminatory power as target molecules for staphylococcal identification. The partial tuf gene sequence was selected and further assessed with a collection of 186 strains, including 35 species and subspecies. Then, to evaluate the efficacy of this genotyping method versus the technology of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), the 186 strains were identified using MALDI-TOF-MS (Axima® Shimadzu) coupled to the SARAMIS® database (AnagnosTec). The French National Reference Center for Staphylococci identification method was used as a reference. One hundred and eighty-four strains (98.9%) were correctly identified by tuf gene sequencing. Only one strain was misidentified and one was unidentified. MALDI-TOF-MS identified correctly 138 isolates (74.2%). Four strains were misidentified, 39 were unidentified, five were identified at the group (hominis/warneri) level, and one strain was identified at the genus level. These results confirm the value of MALDI-TOF-MS identification for common species in clinical laboratory practice and the value of the partial tuf gene sequence for the identification of all staphylococcal species as required in a reference laboratory.
Collapse
|