1
|
Koll R, Theilen J, Hauten E, Woodhouse JN, Thiel R, Möllmann C, Fabrizius A. Network-based integration of omics, physiological and environmental data in real-world Elbe estuarine Zander. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173656. [PMID: 38830414 DOI: 10.1016/j.scitotenv.2024.173656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Coastal and estuarine environments are under endogenic and exogenic pressures jeopardizing survival and diversity of inhabiting biota. Information of possible synergistic effects of multiple (a)biotic stressors and holobiont interaction are largely missing in estuaries like the Elbe but are of importance to estimate unforeseen effects on animals' physiology. Here, we seek to leverage host-transcriptional RNA-seq and gill mucus microbial 16S rRNA metabarcoding data coupled with physiological and abiotic measurements in a network analysis approach to decipher the impact of multiple stressors on the health of juvenile Sander lucioperca along one of the largest European estuaries. We find mesohaline areas characterized by gill tissue specific transcriptional responses matching osmosensing and tissue remodeling. Liver transcriptomes instead emphasized that zander from highly turbid areas were undergoing starvation which was supported by compromised body condition. Potential pathogenic bacteria, including Shewanella, Acinetobacter, Aeromonas and Chryseobacterium, dominated the gill microbiome along the freshwater transition and oxygen minimum zone. Their occurrence coincided with a strong adaptive and innate transcriptional immune response in host gill and enhanced energy demand in liver tissue supporting their potential pathogenicity. Taken together, we show physiological responses of a fish species and its microbiome to abiotic factors whose impact is expected to increase with consequences of climate change. We further present a method for the close-meshed detection of the main stressors and bacterial species with disease potential in a highly productive ecosystem.
Collapse
Affiliation(s)
- Raphael Koll
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany.
| | - Jesse Theilen
- University of Hamburg, Department of Biology, Biodiversity Research, Germany
| | - Elena Hauten
- University of Hamburg, Institute of Marine Ecosystem and Fishery Science, Marine ecosystem dynamics, Germany
| | - Jason Nicholas Woodhouse
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Microbial and phytoplankton Ecology, Germany
| | - Ralf Thiel
- Leibniz Institute for the Analysis of Biodiversity Change (LIB) - Hamburg site, Centre for Taxonomy & Morphology, Zoological Museum, Germany; University of Hamburg, Department of Biology, Biodiversity Research, Germany
| | - Christian Möllmann
- University of Hamburg, Institute of Marine Ecosystem and Fishery Science, Marine ecosystem dynamics, Germany
| | - Andrej Fabrizius
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany
| |
Collapse
|
2
|
Duman M, Altun S, Saticioglu IB, Romalde JL. A review of bacterial disease outbreaks in rainbow trout (Oncorhynchus mykiss) reported from 2010 to 2022. JOURNAL OF FISH DISEASES 2023. [PMID: 37965781 DOI: 10.1111/jfd.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Outbreaks of bacterial infections in aquaculture have emerged as significant threats to the sustainable production of rainbow trout (Oncorhynchus mykiss) worldwide. Understanding the dynamics of these outbreaks and the bacteria involved is crucial for implementing effective management strategies. This comprehensive review presents an update on outbreaks of bacteria isolated from rainbow trout reported between 2010 and 2022. A systematic literature survey was conducted to identify relevant studies reporting bacterial outbreaks in rainbow trout during the specified time frame. More than 150 published studies in PubMed, Web of Science, Scopus, Google Scholar and relevant databases met the inclusion criteria, encompassing diverse geographical regions and aquaculture systems. The main bacterial pathogens implicated in the outbreaks belong to both gram-negative, namely Chryseobacterium, Citrobacter, Deefgea Flavobacterium, Janthinobacterium, Plesiomonas, Pseudomonas, Shewanella, and gram-positive genera, including Lactococcus and Weissella, and comprise 36 new emerging species that are presented by means of pathogenicity and disturbance worldwide. We highlight the main characteristics of species to shed light on potential challenges in treatment strategies. Moreover, we investigate the role of various risk factors in the outbreaks, such as environmental conditions, fish density, water quality, and stressors that potentially cause outbreaks of these species. Insights into the temporal and spatial patterns of bacterial outbreaks in rainbow trout aquaculture are provided. Furthermore, the implications of these findings for developing sustainable and targeted disease prevention and control measures are discussed. The presented study serves as a comprehensive update on the state of bacterial outbreaks in rainbow trout aquaculture, emphasizing the importance of continued surveillance and research to sustain the health and productivity of this economically valuable species.
Collapse
Affiliation(s)
- Muhammed Duman
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Soner Altun
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Izzet Burcin Saticioglu
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Jesús L Romalde
- Cross-disciplinary Research Center in Environmental Technologies (CRETUS), Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Burbick CR, Munson E, Lawhon SD, Zapp A, Villaflor M, Thelen E. An Update on Novel Taxa and Revised Taxonomic Status of Bacteria (Including Members of the Phylum Planctomycetota) Isolated from Aquatic Host Species Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0142622. [PMID: 36719221 PMCID: PMC9945501 DOI: 10.1128/jcm.01426-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Increased interest in farmed aquatic species, aquatic conservation measures, and microbial metabolic end-product utilization have translated into a need for awareness and recognition of novel microbial species and revisions to bacterial taxonomy. Because this need has largely been unmet, through a 4-year literature review, we present lists of novel and revised bacterial species (including members of the phylum Planctomycetota) derived from aquatic hosts that can serve as a baseline for future biennial summaries of taxonomic revisions in this field. Most new and revised taxa were noted within oxidase-positive and/or nonglucose fermentative Gram-negative bacilli, including members of the Tenacibaculum, Flavobacterium, and Vibrio genera. Valid and effectively published novel members of the Streptococcus, Erysipelothrix, and Photobacterium genera are additionally described from disease pathogenesis perspectives.
Collapse
Affiliation(s)
- Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Aydin F, Karakaya E, Kayman T, Abay S, Saticioglu IB. Helicobacter turcicus sp. nov., a catalase-negative new member of the Helicobacter genus, isolated from Anatolian Ground Squirrel (Spermophilus xanthoprymnus) in Turkey. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eleven Gram-negative, curved and S-shaped, oxidase activity positive, catalase activity negative bacterial isolates recovered from faeces of Anatolian ground squirrel (Spermophilus xanthoprymnus) in the city of Kayseri, Turkey, were subjected to a polyphasic taxonomic study. Results of a genus-specific PCR revealed that these isolates belonged to the genus
Helicobacter
. The 16S rRNA gene sequence analysis revealed that the 11 isolates had over 99 % sequence identity with each other and were most closely related to
Helicobacter ganmani
CMRI H02T with 97.0–97.1 % identity levels and they formed a novel phylogenetic line within the genus
Helicobacter
. Faydin-H64 and Faydin-H70T strains were subjected to gyrA and atpA gene and whole genome sequence analyses. These two
Helicobacter
strains formed separate phylogenetic clades, divergent from other known
Helicobacter
species. The DNA G+C content and genome size of the strain Faydin-H70T were 35.3 mol% and 1.7 Mb, respectively. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between strain Faydin-H70T and its close phylogenetic neighbour H. winghamensis ATCC BAA-430T were determined as 81.7 and 34.9 %, respectively. Pairwise sequence comparison showed that it was closely related to
H. ganmani
CMRI H02T however it shared the highest ANI and dDDH values with H. winghamensis ATCC BAA-430T. The data obtained from the polyphasic taxonomy approach, including phenotypic characterization and whole-genome sequences, revealed that these strains represent a novel species within the genus
Helicobacter
, for which the name Helicobacter turcicus sp. nov., is proposed with Faydin-H70T as the type strain (=DSM 112556T=LMG 32335T).
Collapse
Affiliation(s)
- Fuat Aydin
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, 38280, Kayseri, Turkey
| | - Emre Karakaya
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, 38280, Kayseri, Turkey
| | - Tuba Kayman
- Medical Microbiology Clinic, Şişli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, 34371 Istanbul, Turkey
| | - Secil Abay
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, 38280, Kayseri, Turkey
| | | |
Collapse
|
5
|
Aydin F, Saticioglu IB, Ay H, Kayman T, Karakaya E, Abay S. Description of the two novel species of the genus Helicobacter: Helicobacter anatolicus sp. nov., and Helicobacter kayseriensis sp. nov., isolated from feces of urban wild birds. Syst Appl Microbiol 2022; 45:126326. [DOI: 10.1016/j.syapm.2022.126326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
|
6
|
Fiedler G, Gieschler S, Kabisch J, Grimmler C, Brinks E, Wagner N, Hetzer B, Franz CMAP, Böhnlein C. Pseudomonas rustica sp. nov., isolated from bulk tank raw milk at a German dairy farm. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005288] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we present the description of a novel
Pseudomonas
species, designated Pseudomonas rustica sp. nov., which was isolated from raw milk samples obtained from Germany. Results of initial 16S rRNA gene sequence analysis assigned the strain into the genus
Pseudomonas
and showed
Pseudomonas helmanticensis
,
Pseudomonas neuropathica
and
Pseudomonas atagonensis
to be its closest relatives. Further studies including sequence analysis of the rpoB gene, multi-gene phylogenetic tree reconstruction, whole-genome sequence comparisons, cellular fatty acid analysis and chemotaxonomic characterization showed a clear separation from the known
Pseudomonas
species. Isolate MBT-4T was closely related to
Pseudomonas helmanticensis
, 'Pseudomonas crudilactis' and
Pseudomonas neuropathica
with average nucleotide identities based on blast values of 88.8, 88.8 and 88.6%, respectively. Therefore, the strain can be classified into the
Pseudomonas koreensis
subgroup of the
Pseudomonas fluorescens
group. The G+C content of strain MBT-4T was 58.9 mol%. The strain was catalase- and oxidase-positive, while the β-galactosidase reaction was negative. Growth occurred between 4 and 30 °C and at pH values from pH 6.0 to 8.0. In conclusion, strain MBT-4T belongs to a novel species, for which the name Pseudomonas rustica sp. nov. is proposed. The type strain is MBT-4T (=DSM 112348T=LMG 32241T) and strain MBT-17 is also a representative of this species.
Collapse
Affiliation(s)
- Gregor Fiedler
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - Stefanie Gieschler
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - Christina Grimmler
- Department of Safety and Quality of Meat, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, E.-C.-Baumann-Straße 20, 95326 Kulmbach, Germany
| | - Erik Brinks
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - Natalia Wagner
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - Birgit Hetzer
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Charles M. A. P. Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - Christina Böhnlein
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| |
Collapse
|
7
|
Atanasov KE, Galbis DM, Gallego J, Serpico A, Bosch M, Altabella T, Ferrer A. Pseudomonas germanica sp. nov., isolated from Iris germanica rhizomes. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Through bacterial plant–endophyte extraction from rhizomes of Iris germanica plant, a Gram-stain-negative, aerobic, catalase- and oxidase-positive gammaproteobacterial strain, referred to as FIT28T, was isolated. FIT28T shows vigorous growth on nutrient rich media within the temperature range of 4–35 °C, with optimal growth at 28 °C, a wide pH tolerance from pH 5 to 11, and salt tolerance up to 6 % (w/v) NaCl. Colonies are white-yellow and quickly become mucoid. The results of analysis of the 16S rRNA gene sequence placed the strain within the genus
Pseudomonas
, and multilocus sequence analysis (MLSA) using 16S rRNA, rpoB, gyrB and rpoD concatenated sequences revealed that the closest relatives of FIT28T are
Pseudomonas zeae
OE48.2T, '
Pseudomonas crudilactis
' UCMA 17988,
Pseudomonas tensinigenes
ZA5.3T,
Pseudomonas helmanticensis
OHA11T,
Pseudomonas baetica
a390T,
Pseudomonas iridis
P42T,
Pseudomonas atagonensis
PS14T and
Pseudomonas koreensis
Ps 9-14T, within the
Pseudomonas koreensis
subgroup of the
Pseudomonas fluorescens
lineage. The genome size of FIT28T is about 6.7 Mb with 59.09 mol% DNA G+C content. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values calculated from the genomic sequences of FIT28T, and the closely related
P. zeae
OE48.2T are 95.23 and 63.4 %, respectively. Biochemical, metabolic and chemotaxonomic studies further support our proposal that Pseudomonas germanica sp. nov., should be considered a novel species of the genus
Pseudomonas
. Hence, the type strain FIT28T (=LMG 32353T=DSM 112698T) has been deposited in public cell-type culture centres.
Collapse
Affiliation(s)
- Kostadin Evgeniev Atanasov
- Department of Biology, Healthcare and the Environment, Plant Physiology Section, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
| | - David Miñana Galbis
- Department of Biology, Healthcare and the Environment, Microbiology Section, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Julia Gallego
- Applied Microbiology and Biotechnology Unit, LEITAT Technological Center, Terrassa, Spain
| | - Annabel Serpico
- Applied Microbiology and Biotechnology Unit, LEITAT Technological Center, Terrassa, Spain
| | - Montserrat Bosch
- Applied Microbiology and Biotechnology Unit, LEITAT Technological Center, Terrassa, Spain
| | - Teresa Altabella
- Department of Biology, Healthcare and the Environment, Plant Physiology Section, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
| | - Albert Ferrer
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
| |
Collapse
|
8
|
Aydin F, Abay S, Kayman T, Karakaya E, Mustak HK, Mustak IB, Bilgen N, Goncuoglu M, Duzler A, Guran O, Sahin O, Saticioglu IB. Campylobacter anatolicus sp. nov., a novel member of the genus Campylobacter isolated from feces of Anatolian Ground Squirrel (Spermophilus xanthoprymnus) in Turkey. Syst Appl Microbiol 2021; 44:126265. [PMID: 34624709 DOI: 10.1016/j.syapm.2021.126265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Seventy-four Gram-negative, motile, slightly curved rod-shaped, microaerophilic, oxidase-positive and catalase-negative isolates, recovered from fecal samples of the Anatolian ground squirrel (Spermophilus xanthoprymnus) in Kayseri, Turkey, were subjected to a polyphasic taxonomic study. Results of a genus-specific PCR indicated that all isolates belonged to the genus Campylobacter. 16S rRNA gene sequence analyses revealed the closest match as Campylobacter curvus DSM 6644T with identity levels of 96.41-96.70%. Based on the 16S rRNA gene phylogeny of the 74 isolates, six isolates (faydin-G24, faydin-G52, faydin-G105, faydin-G114, faydin-G129 and faydin-G140T) were chosen as representatives for further characterization. The overall genome relatedness indices for the strain faydin-G140T, compared to the most closely related type strain C. curvus ATCC 35224T, were calculated as 15.2%, 72.5%, and 83.7% for digital DNA-DNA hybridization (dDDH), and average nucleotide identity (ANIb and ANIm), respectively. The G+C content and genome size of the strains ranged between 35.2-35.4 mol% and 1.7-1.8 Mb, respectively. Based on data obtained from the polyphasic taxonomy approach, including phenotypic characterization as well as genomic and chemotaxonomic analyses, these strains are concluded to represent a novel species, for which the name Campylobacter anatolicus sp. nov. is proposed with faydin-G140T as the type strain (=DSM 112311T = LMG 32238T).
Collapse
Affiliation(s)
- Fuat Aydin
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, 38280 Kayseri, Turkey
| | - Secil Abay
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, 38280 Kayseri, Turkey
| | - Tuba Kayman
- Medical Microbiology Clinic, Şişli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, 34371 Istanbul, Turkey
| | - Emre Karakaya
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, 38280 Kayseri, Turkey
| | - Hamit Kaan Mustak
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, 06110 Ankara, Turkey
| | - Inci Basak Mustak
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, 06110 Ankara, Turkey
| | - Nuket Bilgen
- Department of Genetics, Faculty of Veterinary Medicine, Ankara University, 06110 Ankara, Turkey
| | - Muammer Goncuoglu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Ankara University, 06110 Ankara, Turkey
| | - Ayhan Duzler
- Department of Anatomy, Faculty of Veterinary Medicine, Erciyes University, 38280 Kayseri, Turkey
| | - Ozgur Guran
- Faculty of Veterinary Medicine, Ankara University, 06110 Ankara, Turkey
| | - Orhan Sahin
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 50011 Ames, Iowa, United States of America
| | - Izzet Burcin Saticioglu
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Erciyes University, 38280 Kayseri, Turkey
| |
Collapse
|
9
|
Oren A, Garrity GM. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2021; 71. [PMID: 34338186 DOI: 10.1099/ijsem.0.004846] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|