1
|
Takahashi M, Hoshino K, Hamada M, Tamura T, Moriuchi R, Dohra H, Nakagawa Y, Kokubo S, Yamazaki M, Nakagawa H, Hayakawa M, Kodani S, Yamamura H. Streptomyces yaizuensis sp. nov., a berninamycin C-producing actinomycete isolated from sponge. J Antibiot (Tokyo) 2025; 78:35-44. [PMID: 39443749 DOI: 10.1038/s41429-024-00782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
While screening for antibiotics in a marine sample, we discovered a berninamycin C-producing actinomycete, designated YSPA8T, isolated from a sponge. A polyphasic approach was used to determine the taxonomic position of the strain. Strain YSPA8T formed sympodially branched aerial mycelia that ultimately segment into chains of spores. Comparative and phylogenetic analyses of the 16S rRNA gene sequence showed that strain YSPA8T were closely related to Streptomyces clavuligerus ATCC 27064T (99.66%), Streptomyces amakusaensis NRRL B-3351T (98.69%), Streptomyces inusitatus NBRC 13601T (98.48%), and 'Streptomyces jumonjinensis' JCM 4947 (98.41%). The phylogenetic tree using the 16S rRNA gene sequences, and both phylogenomic trees suggested that the closest relative of strain YSPA8T was S. clavuligerus ATCC 27064T. The average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values between strain YSPA8T and S. clavuligerus ATCC 27064T were 84.1%, 28.9%, and 82.5%, respectively, which were below the thresholds of 95%, 70%, and 95% for a prokaryotic conspecific assignment. The G + C of the strain YSPA8T was 72.6%. Whole-cell hydrolysates of strain YSPA8T contained LL-diaminopimelic acid. The predominant menaquinones were MK-9(H6) (49%) and MK-9(H8) (48%), and the major fatty acids were C16:0 (26.8%), C16:1 ω7c/ω6c (17.2%), iso-C16:0 (16.0%), and iso-C15:0 (12.5%). The major phospholipids were diphosphatidylglycerol, phosphatidylethanolamine, and other unidentified phospholipids. Based on the phenotypic, phylogenetic, genomic, and chemotaxonomic data, strain YSPA8T represents a novel species of the genus Streptomyces, and the proposed name for this species is Streptomyces yaizuensis sp. nov. The type strain is YSPA8T (=NBRC 115866T = TBRC 17196T).
Collapse
Affiliation(s)
- Miku Takahashi
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Kanata Hoshino
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Faculty of Agriculture, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Moriyuki Hamada
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Kisarazu, Chiba, Japan
| | - Tomohiko Tamura
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Kisarazu, Chiba, Japan
| | - Ryota Moriuchi
- Shizuoka Instrumental Analysis Center, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Hideo Dohra
- Shizuoka Instrumental Analysis Center, Shizuoka University, Suruga-ku, Shizuoka, Japan
- Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Suruga-ku, Shizuoka, Japan
- Academic Institute, Shizuoka University, Suruga-ku, Shizuoka, Japan
- Research Institute of Green Sceience and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Youji Nakagawa
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Susumu Kokubo
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Motoyuki Yamazaki
- Shizuoka Prefectural Research Institute of Fishery and Ocean, Yaizu, Shizuoka, Japan
| | - Hiroyuki Nakagawa
- Research Center for Advanced Analysis, Core Technology Research Headquarters, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Masayuki Hayakawa
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
- Yamanashi Prefectural University, Kofu, Japan
| | - Shinya Kodani
- Faculty of Agriculture, Shizuoka University, Suruga-ku, Shizuoka, Japan.
- Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Suruga-ku, Shizuoka, Japan.
- Academic Institute, Shizuoka University, Suruga-ku, Shizuoka, Japan.
| | - Hideki Yamamura
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan.
| |
Collapse
|
2
|
Burbick CR, Lawhon SD, Bukouras B, Lazzerini G, Munson E. An update on novel taxa and revised taxonomic status of bacteria isolated from aquatic host species described in 2022-2023. J Clin Microbiol 2024; 62:e0104324. [PMID: 39445811 PMCID: PMC11558999 DOI: 10.1128/jcm.01043-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The description of new taxa and nomenclature updates to currently known taxa from aquatic animal species continues. After a review of the literature from 2022 and 2023, multiple lists of bacteria, including members of Phylum Planctomycetota, were compiled. As with the previous review, most bacteria are oxidase-positive Gram-negative bacilli with familiar families including new taxa in Aeromonadaceae, Flavobacteriaceae, and Vibrionaceae. A number of Gram-positive bacilli are described including new taxa in the Nocardioides, Paenibacillus, and Streptomyces genera. Two anaerobic species are listed, and one new member of Family Planctomycetaceae is noted. Revised taxa are briefly mentioned. The majority of new and revised taxa are isolated from healthy aquatic animals, and therefore, the role of these new bacteria in health and disease is unknown. Bacteria with pathogenic association and potential production of bioactive substances are highlighted.
Collapse
Affiliation(s)
- Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Brittany Bukouras
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Giovanna Lazzerini
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Seo JW, Habiba SU, Munni YA, Choi HJ, Aktar A, Mazumder K, Nah DY, Yang IJ, Moon IS. Protective Effects of Anethole in Foeniculum vulgare Mill. Seed Ethanol Extract on Hypoxia/Reoxygenation Injury in H9C2 Heart Myoblast Cells. Antioxidants (Basel) 2024; 13:1161. [PMID: 39456415 PMCID: PMC11504384 DOI: 10.3390/antiox13101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/13/2024] [Accepted: 09/22/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Active compounds from plants and herbs are increasingly incorporated into modern medical systems to address cardiovascular diseases (CVDs). Foeniculum vulgare Mill., commonly known as fennel, is an aromatic medicinal plant and culinary herb that is popular worldwide. METHODS Protective effects against cellular damage were assessed in the H9C2 cardiomyocyte hypoxia/reoxygenation (H/R) experimental model. The identities of phytochemicals in FVSE were determined by GC-MS analysis. The phytochemical's potential for nutrients and pharmacokinetic properties was assessed by ADMET analysis. RESULTS GC-MS analysis of the ethanol extracts of F. vulgare identified 41 bioactive compounds, with four prominent ones: anethole, 1-(4-methoxyphenyl)-2-propanone, ethoxydimethylphenylsilane, and para-anisaldehyde diethyl acetal. Among these, anethole stands out due to its potential for nutrients and pharmacokinetic properties assessed by ADMET analysis, such as bioavailability, lipophilicity, flexibility, and compliance with Lipinski's Rule of Five. In the H/R injury model of H9C2 heart myoblast cells, FVSE and anethole suppressed H/R-induced reactive oxygen species (ROS) generation, DNA double-strand break damage, nuclear condensation, and the dissipation of mitochondrial membrane potential (ΔΨm). CONCLUSIONS These findings highlight the therapeutic potential of FVSE and its prominent component, anethole, in the treatment of CVDs, particularly those associated with hypoxia-induced damage.
Collapse
Affiliation(s)
- Jeong Won Seo
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (J.W.S.); (D.-Y.N.)
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.U.H.); (Y.A.M.); (H.J.C.)
| | - Sarmin Ummey Habiba
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.U.H.); (Y.A.M.); (H.J.C.)
| | - Yeasmin Akter Munni
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.U.H.); (Y.A.M.); (H.J.C.)
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| | - Ho Jin Choi
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.U.H.); (Y.A.M.); (H.J.C.)
- Medical Institute of Dongguk University, Gyeongju 38066, Republic of Korea
| | - Asma Aktar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (K.M.)
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (K.M.)
| | - Deuk-Young Nah
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (J.W.S.); (D.-Y.N.)
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.U.H.); (Y.A.M.); (H.J.C.)
| |
Collapse
|
4
|
Widén T, Rangel AT, Lombard V, Drula E, Mazurkewich S, Terrapon N, Kerkhoven EJ, Larsbrink J. Streptomyces castrisilvae sp. nov. and Streptomyces glycanivorans sp. nov., novel soil streptomycetes metabolizing mutan and alternan. Int J Syst Evol Microbiol 2024; 74:006514. [PMID: 39264701 PMCID: PMC11475409 DOI: 10.1099/ijsem.0.006514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Six bacterial strains, Mut1T, Mut2, Alt1, Alt2, Alt3T, and Alt4, were isolated from soil samples collected in parks in Gothenburg, Sweden, based on their ability to utilize the insoluble polysaccharides α-1,3-glucan (mutan; Mut strains) or the mixed-linkage α-1,3/α-1,6-glucan (alternan; Alt strains). Analysis of 16S rRNA gene sequences identified all strains as members of the genus Streptomyces. The genomes of the strains were sequenced and subsequent phylogenetic analyses identified Mut2 as a strain of Streptomyces laculatispora and Alt1, Alt2 and Alt4 as strains of Streptomyces poriferorum, while Mut1T and Alt3T were most closely related to the type strains Streptomyces drozdowiczii NBRC 101007T and Streptomyces atroolivaceus NRRL ISP-5137T, respectively. Comprehensive genomic and biochemical characterizations were conducted, highlighting typical features of Streptomyces, such as large genomes (8.0-9.6 Mb) with high G+C content (70.5-72.0%). All six strains also encode a wide repertoire of putative carbohydrate-active enzymes, indicating a capability to utilize various complex polysaccharides as carbon sources such as starch, mutan, and cellulose, which was confirmed experimentally. Based on phylogenetic and phenotypic characterization, our study suggests that strains Mut1T and Alt3T represent novel species in the genus Streptomyces for which the names Streptomyces castrisilvae sp. nov. and Streptomyces glycanivorans sp. nov. are proposed, with strains Mut1T (=DSM 117248T=CCUG 77596T) and Alt3T (=DSM 117252T=CCUG 77600T) representing the respective type strains.
Collapse
Affiliation(s)
- Tove Widén
- Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Albert Tafur Rangel
- Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, USC 1408 INRAE, UMR 7257 AMU, CNRS, FR-13288 Marseille, France
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques, USC 1408 INRAE, UMR 7257 AMU, CNRS, FR-13288 Marseille, France
- INRAE, Biodiversité et Biotechnologie Fongiques, UMR 1163, Aix Marseille Université, Marseille, France
| | - Scott Mazurkewich
- Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, USC 1408 INRAE, UMR 7257 AMU, CNRS, FR-13288 Marseille, France
| | - Eduard J. Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Johan Larsbrink
- Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| |
Collapse
|
5
|
Malfent F, Zehl M, Kirkegaard RH, Oberhofer M, Zotchev SB. Genomes and secondary metabolomes of Streptomyces spp. isolated from Leontopodium nivale ssp. alpinum. Front Microbiol 2024; 15:1408479. [PMID: 38946903 PMCID: PMC11212599 DOI: 10.3389/fmicb.2024.1408479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024] Open
Abstract
Bacterial endophytes dwelling in medicinal plants represent an as yet underexplored source of bioactive natural products with the potential to be developed into drugs against various human diseases. For the first time, several Streptomyces spp. were isolated from the rare and endangered traditional medicinal plant Leontopodium nivale ssp. alpinum, also known as Edelweiss. In the search for novel natural products, nine endophytic Streptomyces spp. from Edelweiss were investigated via genome sequencing and analysis, followed by fermentation in different media and investigation of secondary metabolomes. A total of 214 secondary metabolite biosynthetic gene clusters (BGCs), of which 35 are presumably unique, were identified by the bioinformatics tool antiSMASH in the genomes of these isolates. LC-MS analyses of the secondary metabolomes of these isolates revealed their potential to produce both known and presumably novel secondary metabolites, whereby most of the identified molecules could be linked to their cognate BGCs. This work sets the stage for further investigation of endophytic streptomycetes from Edelweiss aimed at the discovery and characterization of novel bioactive natural products.
Collapse
Affiliation(s)
- Fabian Malfent
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Vienna, Austria
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Rasmus H. Kirkegaard
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Martina Oberhofer
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Sergey B. Zotchev
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Somphong A, Polyiam W, Suriyachadkun C, Sripreechasak P, Harunari E, Igarashi Y, Tanasupawat S, Phongsopitanun W. Streptomyces pyxinae sp. nov. and Streptomyces pyxinicus sp. nov. isolated from lichen Pyxine cocoes (Sw.) Nyl. Int J Syst Evol Microbiol 2024; 74. [PMID: 38713186 DOI: 10.1099/ijsem.0.006364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Two novel actinobacteria, designated as LP05-1T and LP11T, were isolated from the lichen Pyxine cocoes (Sw.) Nyl. collected in Bangkok, Thailand. Genotypic and phenotypic analyses revealed that both strains represented members of the genus Streptomyces. The 16S rRNA gene of LP05-1T showed the highest similarity to the genome of Streptomyces gelaticus (98.41 %), while the 16S rRNA gene of LP11T was most similar to that of Streptomyces cinerochromogenes (98.93 %). The major menaquinones in LP05-1T were MK-9(H8), MK-9(H6), MK-9(H4) and MK-9(H2), and in LP11T, they were MK-9(H8) and MK-9(H6). Both strains exhibited the major fatty acids iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0, with LP05-1T also possessing iso-C17 : 0. The polar lipids of LP05-1T included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and an unidentified lipid, while those of LP11T consisted of phosphatidylethanolamine, lyso-phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, an unidentified aminolipid and an unidentified glycolipid. The digital DNA-DNA hybridisation (dDDH) and average nucleotide identity (ANI) values indicated that both strains are distinct from each other with values below 70 and 95 %, respectively. dDDH, ANI by blast (ANIb) and ANI by MUMmer (ANIm) values between LP05-1T and its closely related type strains were 26.07-26.80 %, 81.24-82.01 % and 86.82-86.96 %, respectively, while those for LP11T and its closely related type strains were 30.70-31.70 %, 84.09-85.31 % and 88.02-88.39 %, respectively. The results of the taxonomic investigation, including dDDH and ANI values, indicate that LP05-1T and LP11T are novel type strains of two novel species within the genus Streptomyces. The names proposed are Streptomyces pyxinae sp. nov. for strain LP05-1T (=TBRC 15494T, =NBRC 115434T) and Streptomyces pyxinicus sp. nov. for strain LP11T (=TBRC 15493T, =NBRC 115421T).
Collapse
Affiliation(s)
- Achiraya Somphong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| | - Wetchasart Polyiam
- Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Chanwit Suriyachadkun
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120, Thailand
| | - Paranee Sripreechasak
- Office of Educational Affairs, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Wen Y, Zhang B, Zhang G, Wu M, Chen X, Chen T, Liu G, Zhang W. Comparative genomics reveals environmental adaptability and antimicrobial activity of a novel Streptomyces isolated from soil under black Gobi rocks. Antonie Van Leeuwenhoek 2023; 116:1407-1419. [PMID: 37847451 DOI: 10.1007/s10482-023-01882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
A novel Streptomyces strain, designated 3_2T, was isolated from soil under the black Gobi rock sample of Northwest China. The taxonomic position of this strain was revealed by a polyphasic approach. Comparative analysis of the 16S rRNA gene sequences indicated that 3_2T was closely related to the members of the genus Streptomyces, with the highest similarity to Streptomyces rimosus subsp. rimosus CGMCC 4.1438 (99.17%), Streptomyces sioyaensis DSM 40032 (98.97%). Strain 3_2T can grow in media up to 13% NaCl. The genomic DNA G + C content of strain 3_2T was 69.9%. We obtained the genomes of 22 Streptomyces strains similar to strain 3_2T, compared the average nucleotide similarity, dDDH and average amino acid identity, and found that the genomic similarity of the new isolate 3_2T to all strains was below the threshold for interspecies classification. Chemotaxonomic data revealed that strain 3_2T possessed MK-9 (H6) and MK-9 (H8) as the major menaquinones. The cell wall contained LL-diaminopimelic acid (LL-DAP) and the whole-cell sugars were ribose and glucose. The major fatty acid methyl esters were iso-C16:0 (23.6%) and anteiso-C15:0 (10.4%). The fermentation products of strain 3_2T were inhibitory to Staphylococcus aureus and Bacillus thuringiensi. The genome of 3_2T was further predicted using anti-smash and the strain was found to encode the production of 41 secondary metabolites, and these gene clusters may be key to the good inhibitory activity exhibited by the strain. Genomic analysis revealed that strain 3_2T can encode genes that produce a variety of genes in response to environmental stresses, including cold shock, detoxification, heat shock, osmotic stress, oxidative stress, and these genes may play a key role in the harsh environment in which the strain can survive. Therefore, this strain represents a novel Streptomyces species, for which the name Streptomyces halobius sp. nov. is proposed. The type strain is 3_2T (= JCM 34935T = GDMCC 4.217T).
Collapse
Affiliation(s)
- Ying Wen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Minghui Wu
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ximing Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.
| | - Wei Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
8
|
Marine Actinobacteria a New Source of Antibacterial Metabolites to Treat Acne Vulgaris Disease—A Systematic Literature Review. Antibiotics (Basel) 2022; 11:antibiotics11070965. [PMID: 35884220 PMCID: PMC9311749 DOI: 10.3390/antibiotics11070965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Acne vulgaris is a multifactorial disease that remains under-explored; up to date it is known that the bacterium Cutibacterium acnes is involved in the disease occurrence, also associated with a microbial dysbiosis. Antibiotics have become a mainstay treatment generating the emergence of antibiotic-resistant bacteria. In addition, there are some reported side effects of alternative treatments, which indicate the need to investigate a different therapeutic approach. Natural products continue to be an excellent option, especially those extracted from actinobacteria, which represent a prominent source of metabolites with a wide range of biological activities, particularly the marine actinobacteria, which have been less studied than their terrestrial counterparts. Therefore, this systematic review aimed to identify and evaluate the potential anti-infective activity of metabolites isolated from marine actinobacteria strains against bacteria related to the development of acne vulgaris disease. It was found that there is a variety of compounds with anti-infective activity against Staphylococcus aureus and Staphylococcus epidermidis, bacteria closely related to acne vulgaris development; nevertheless, there is no report of a compound with antibacterial activity or quorum-sensing inhibition toward C. acnes, which is a surprising result. Since two of the most widely used antibiotics for the treatment of acne targeting C. acnes were obtained from actinobacteria of the genus Streptomyces, this demonstrates a great opportunity to pursue further studies in this field, considering the potential of marine actinobacteria to produce new anti-infective compounds.
Collapse
|
9
|
Oren A, Garrity GM. Valid publication of new names and new combinations effectively published outside the IJSEM. Validation List no. 203. Int J Syst Evol Microbiol 2022; 72. [PMID: 35108178 DOI: 10.1099/ijsem.0.005167] [Citation(s) in RCA: 275] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|