1
|
Yan S, Wang J, Zhang J, Ning J, Chen S, Xie S. Bacterial community composition and function vary with farmland type and soil depth around a mining area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124510. [PMID: 39002750 DOI: 10.1016/j.envpol.2024.124510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/04/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Heavy metal pollution can have adverse impacts on microorganisms, plants and even human health. To date, the impact of heavy metals on bacteria in farmland has yielded poor attention, and there is a paucity of knowledge on the impact of land type on bacteria in mining area with heavy metal pollution. Around a metal-contaminated mining area, two soil depths in three types of farmlands were selected to explore the composition and function of bacteria and their correlations with the types and contents of heavy metals. The compositions and functions of bacterial communities at the three different agricultural sites were disparate to a certain extent. Some metabolic functions of bacterial community in the paddy field were up-regulated compared with those at other site. These results observed around mining area were different from those previously reported in conventional farmlands. In addition, bacterial community composition in the top soils was relatively complex, while in the deep soils it became more unitary and extracellular functional genes got enriched. Meanwhile, heavy metal pollution may stimulate the enrichment of certain bacteria to protect plants from damage. This finding may aid in understanding the indirect effect of metal contamination on plants and thus putting forward feasible strategies for the remediation of metal-contaminated sites. MAIN FINDINGS OF THE WORK: This was the first study to comprehensively explore the influence of heavy metal pollution on the soil bacterial communities and metabolic potentials in different agricultural land types and soil depths around a mining area.
Collapse
Affiliation(s)
- Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ji Wang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Jianqiang Zhang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Jialian Ning
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Sili Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China.
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Sreya PK, Hari Naga Papa Rao A, Suresh G, Sasikala C, Venkata Ramana C. Genomic and functional insights of a mucin foraging Rhodopirellula halodulae sp. nov. Syst Appl Microbiol 2024; 47:126523. [PMID: 38897058 DOI: 10.1016/j.syapm.2024.126523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Nine novel strains were obtained from various algal and seagrass samples. The analysis of the 16S rRNA gene-based phylogenetic tree revealed monophyletic placement of all novel strains within the Rhodopirellula genus. The type strain was identified as JC737T, which shared 99.1 % 16S rRNA gene sequence identity with Rhodopirellula baltica SH1T, while strain JC740 was designated as an additional strain. The genome sizes of strains JC737T and JC740 were 6.6 and 6.7 Mb, respectively, and the G + C content was 56.2 %. The strains cladded distinctly in the phylogenomic tree, and the ANI and dDDH values of the strain JC737T were 75.8-76.1 % and 20.8-21.3 %, respectively, in comparison to other Rhodopirellula members. The strain demonstrated a versatile degradation capability, exhibiting a diverse array of complex polysaccharides, including mucin which had not been previously identified within the members of the phylum Planctomycetota. The phylogenomic, pan-genomic, morphological, physiological, and genomic characterization of the strain lead to the proposal to describe the strain as Rhodopirellula halodulae sp. nov.
Collapse
Affiliation(s)
- P K Sreya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Atham Hari Naga Papa Rao
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Gandham Suresh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | | | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India.
| |
Collapse
|
3
|
Klimek D, Herold M, Calusinska M. Comparative genomic analysis of Planctomycetota potential for polysaccharide degradation identifies biotechnologically relevant microbes. BMC Genomics 2024; 25:523. [PMID: 38802741 PMCID: PMC11131199 DOI: 10.1186/s12864-024-10413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Members of the Planctomycetota phylum harbour an outstanding potential for carbohydrate degradation given the abundance and diversity of carbohydrate-active enzymes (CAZymes) encoded in their genomes. However, mainly members of the Planctomycetia class have been characterised up to now, and little is known about the degrading capacities of the other Planctomycetota. Here, we present a comprehensive comparative analysis of all available planctomycetotal genome representatives and detail encoded carbohydrolytic potential across phylogenetic groups and different habitats. RESULTS Our in-depth characterisation of the available planctomycetotal genomic resources increases our knowledge of the carbohydrolytic capacities of Planctomycetota. We show that this single phylum encompasses a wide variety of the currently known CAZyme diversity assigned to glycoside hydrolase families and that many members encode a versatile enzymatic machinery towards complex carbohydrate degradation, including lignocellulose. We highlight members of the Isosphaerales, Pirellulales, Sedimentisphaerales and Tepidisphaerales orders as having the highest encoded hydrolytic potential of the Planctomycetota. Furthermore, members of a yet uncultivated group affiliated to the Phycisphaerales order could represent an interesting source of novel lytic polysaccharide monooxygenases to boost lignocellulose degradation. Surprisingly, many Planctomycetota from anaerobic digestion reactors encode CAZymes targeting algal polysaccharides - this opens new perspectives for algal biomass valorisation in biogas processes. CONCLUSIONS Our study provides a new perspective on planctomycetotal carbohydrolytic potential, highlighting distinct phylogenetic groups which could provide a wealth of diverse, potentially novel CAZymes of industrial interest.
Collapse
Affiliation(s)
- Dominika Klimek
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, Belvaux, L-4422, Luxembourg.
- The Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, 2 Avenue de l'Université, Esch-sur-Alzette, L-4365, Luxembourg.
| | - Malte Herold
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, Belvaux, L-4422, Luxembourg
| | - Magdalena Calusinska
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
4
|
Gao Z, Zheng Y, Li Z, Ruan A. Effects of 17β-Estradiol Pollution on Microbial Communities and Methane Emissions in Aerobic Water Bodies. TOXICS 2024; 12:373. [PMID: 38787152 PMCID: PMC11126138 DOI: 10.3390/toxics12050373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
17β-Estradiol (E2) is a widely present trace pollutant in aquatic environments. However, its impact on microbial communities in aerobic lake waters, which are crucial for methane (CH4) production, remains unclear. This study conducted an E2 contamination experiment by constructing laboratory-simulated aerobic microecosystems. Using 16S rRNA high-throughput sequencing, the effects of E2 on bacterial and archaeal communities were systematically examined. Combined with gas chromatography, the patterns and mechanisms of E2's impact on CH4 emissions in aerobic aquatic systems were uncovered for the first time. Generally, E2 contamination increased the randomness of bacterial and archaeal community assemblies and weakened microbial interactions. Furthermore, changes occurred in the composition and ecological functions of bacterial and archaeal communities under E2 pollution. Specifically, two days after exposure to E2, the relative abundance of Proteobacteria in the low-concentration (L) and high-concentration (H) groups decreased by 6.99% and 4.01%, respectively, compared to the control group (C). Conversely, the relative abundance of Planctomycetota was 1.81% and 1.60% higher in the L and H groups, respectively. E2 contamination led to an increase in the relative abundance of the methanogenesis functional group and a decrease in that of the methanotrophy functional group. These changes led to an increase in CH4 emissions. This study comprehensively investigated the ecotoxicological effects of E2 pollution on microbial communities in aerobic water bodies and filled the knowledge gap regarding aerobic methane production under E2 contamination.
Collapse
Affiliation(s)
- Zihao Gao
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; (Z.G.); (Y.Z.); (Z.L.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yu Zheng
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; (Z.G.); (Y.Z.); (Z.L.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Zhendong Li
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; (Z.G.); (Y.Z.); (Z.L.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Aidong Ruan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; (Z.G.); (Y.Z.); (Z.L.)
- College of Geography and Remote Sensing, Hohai University, Nanjing 210098, China
| |
Collapse
|
5
|
George C, Lim CXQ, Tong Y, Pointing SB. Community structure of thermophilic photosynthetic microbial mats and flocs at Sembawang Hot Spring, Singapore. Front Microbiol 2023; 14:1189468. [PMID: 37396374 PMCID: PMC10313338 DOI: 10.3389/fmicb.2023.1189468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
The Sembawang Hot Spring in Singapore lies at the foot of a major regional geological feature called the Bentong-Raub Suture Zone. Amid an extensively managed surface geothermal park, an undisturbed hot spring emerges with source water at 61°C, pH 6.8, and 1 mg/L dissolved sulfide. A small main pool at the source supported orange-green benthic flocs, whereas the outflow channel with gradually less extreme environmental stress supported extensive vivid green microbial mats. Microscopy revealed that cyanobacterial morphotypes were distinct in flocs and mats at several intervals along the environmental gradient, and we describe a spiraling pattern in the oscillatorian cyanobacteria that may reflect response to poly-extreme stress. Estimation of diversity using 16S rRNA gene sequencing revealed assemblages that were dominated by phototrophic bacteria. The most abundant taxa in flocs at 61°C/1 mg/L sulfide were Roseiflexus sp. and Thermosynechococcus elongatus, whilst the mats at 45.7-55.3°C/0-0.5 mg/L sulfide were dominated by Oscillatoriales cyanobacterium MTP1 and Chloroflexus sp. Occurrence of diverse chemoautotrophs and heterotrophs reflected known thermal ranges for taxa, and of note was the high abundance of thermophilic cellulolytic bacteria that likely reflected the large allochthonous leaf input. A clear shift in ASV-defined putative ecotypes occurred along the environmental stress gradient of the hot spring and overall diversity was inversely correlated to environmental stress. Significant correlations for abiotic variables with observed biotic diversity were identified for temperature, sulfide, and carbonate. A network analysis revealed three putative modules of biotic interactions that also reflected the taxonomic composition at intervals along the environmental gradient. Overall, the data indicated that three distinct microbial communities were supported within a small spatial scale along the poly-extreme environmental gradient. The findings add to the growing inventory of hot spring microbiomes and address an important biogeographic knowledge gap for the region.
Collapse
Affiliation(s)
- Christaline George
- Yale-NUS College, National University of Singapore, Singapore, Singapore
| | - Chloe Xue Qi Lim
- Yale-NUS College, National University of Singapore, Singapore, Singapore
| | - Yan Tong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Stephen Brian Pointing
- Yale-NUS College, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Tian Z, Li G, Bai M, Hou X, Li X, Zhao C, Zhu Q, Du C, Li M, Liu W, Zhang L. Microbial mechanisms of refractory organics degradation in old landfill leachate by a combined process of UASB-A/O-USSB. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157737. [PMID: 35926627 DOI: 10.1016/j.scitotenv.2022.157737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
A combined process of anaerobic digestion (UASB), shortcut nitrification-denitrification (A/O), and semi-anoxic co-metabolism (operated by an up-flow semi-anoxic sludge bed; USSB) was constructed for the treatment of old landfill leachate (>10 years). The performance and mechanism of refractory organics degradation by the combined process (UASB-A/O-USSB) were investigated. The results showed that the semi-anoxic co-metabolism contributes 57 % of the totally degraded refractory organics. Specific microorganisms and their corresponding metabolic functions drive the degradation of refractory organics in each unit of the UASB-A/O-USSB process. In detail, organics with simple molecular structures were preferentially degraded by anaerobic digestion and shortcut denitrification, whereas those with complex structures were subsequently degraded in the oxic tanks and USSB reactor by shortcut nitrification and semi-anoxic co-metabolism. The structural equation model showed that the combined process of shortcut nitrification and semi-anoxic co-metabolism had a better effect on the degradation of recalcitrant organics than the single process. These findings provide information on how refractory organics are metabolically degraded in a combined process.
Collapse
Affiliation(s)
- Zhenjun Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Guowen Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miaoxin Bai
- Inner Mongolia Enterprise Key Laboratory of Damaged Environment Appraisal, Evaluation and Restoration, Hohhot 010020, China; Inner Mongolia Ecological Environment Scientific Research Institute Limited, Hohhot 010020, China
| | - Xiaolin Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoguang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiuheng Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Caili Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Maotong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Wenjie Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lieyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
7
|
Naumoff DG, Kulichevskaya IS, Dedysh SN. Genetic Determinants of Xylan Utilization in Humisphaera borealis M1803T, a Planctomycete of the Class Phycisphaerae. Microbiology (Reading) 2022. [DOI: 10.1134/s002626172230004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abstract—
Planctomycetes of the class Phycisphaerae are aerobic and anaerobic heterotrophic bacteria that colonize a wide range of marine and terrestrial habitats. Their functional roles in the environment, however, are still poorly understood. Humisphaera borealis M1803T is one of the very few characterized planctomycetes of this class. It is also the first described representative of the previously uncultured group WD2101, which is commonly detected in soils and peatlands. This work analyzed the genetic determinants that define the ability of Humisphaera borealis M1803T to grow on xylan, one of the plant cell wall polymers. The whole genome sequence analysis of this planctomycete resulted in identification of five genes encoding the proteins homologous to previously described endo-β-xylanases. For two of these proteins, evolutionarily closer experimentally characterized homologs with other substrate specificities were found. In a member of the GH10 family of glycoside hydrolases, the active center of the enzyme was destroyed. We consider two proteins from GH62 and GH141 families as the most likely candidates for the role of β-xylanase responsible for xylan utilization. Phylogenetic analysis of proteins of GH10, GH62, and GH141 families was carried out. The role of lateral transfers in the evolution of the genes for glycoside hydrolases and their close homologs is discussed.
Collapse
|
8
|
Vitorino IR, Lage OM. The Planctomycetia: an overview of the currently largest class within the phylum Planctomycetes. Antonie van Leeuwenhoek 2022; 115:169-201. [PMID: 35037113 DOI: 10.1007/s10482-021-01699-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023]
Abstract
The phylum Planctomycetes comprises bacteria with uncommon features among prokaryotes, such as cell division by budding, absence of the bacterial tubulin-homolog cell division protein FtsZ and complex cell plans with invaginations of the cytoplasmic membrane. Although planctomycetes are ubiquitous, the number of described species and isolated strains available as axenic cultures is still low compared to the diversity observed in metagenomes or environmental studies. An increasing interest in planctomycetes is reflected by the recent description of a large number of new species and their increasing accessibility in terms of pure cultures. In this review, data from all taxonomically described species belonging to Planctomycetia, the class with the currently highest number of characterized members within the phylum Planctomycetes, is summarized. Phylogeny, morphology, physiology, ecology and genomic traits of its members are discussed. This comprehensive overview will help to acknowledge several aspects of the biology of these fascinating bacteria.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| |
Collapse
|