1
|
Giri PM, Kumar A, Salu P, Sathish V, Reindl K, Mallik S, Layek B. Nanocarrier mediated entinostat and oxaliplatin combination therapy displayed enhanced efficacy against pancreatic cancer. Biomed Pharmacother 2024; 175:116743. [PMID: 38759290 PMCID: PMC11268367 DOI: 10.1016/j.biopha.2024.116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related death in the United States, with a 5-year survival rate of only 12%. The poor prognosis of pancreatic cancer is primarily attributed to the lack of early detection, the aggressiveness of the disease, and its resistance to conventional chemotherapeutics. The use of combination chemotherapy targeting different key pathways has emerged as a potential strategy to minimize drug resistance while improving therapeutic outcomes. Here, we evaluated a novel approach to treating pancreatic cancer using entinostat (ENT), a selective class I and IV HDAC inhibitor, and oxaliplatin (OXP) administered at considerably lower dosages. Combination therapy exhibited strong synergistic interaction against human (PANC-1) and murine (KPC) pancreatic cancer cells. As expected, ENT treatment enhanced acetylated histone H3 and H4 expression in treated cells, which was even augmented in the presence of OXP. Similarly, cells treated with a combination therapy showed higher expression of cleaved caspase 3 and increased apoptosis compared to monotherapy. To further improve the efficacy of the combination treatment, we encapsulated OXP and ENT into bovine serum albumin and poly(lactic-co-glycolic) acid nanoparticles. Both nanocarriers showed suitable physicochemical properties with respect to size, charge, polydispersity index, and loading. Besides, the combination of OXP and ENT nanoparticles showed similar or even better synergistic effects compared to free drugs during in vitro cytotoxicity and colony formation assays towards pancreatic cancer cells.
Collapse
Affiliation(s)
- Paras Mani Giri
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, United States
| | - Ashish Kumar
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, United States
| | - Philip Salu
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58105, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, United States
| | - Katie Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58105, United States
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, United States
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, United States.
| |
Collapse
|
2
|
Isaac-Lam MF. Chlorin Conjugates in Photodynamic Chemotherapy for Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2024; 17:576. [PMID: 38794146 PMCID: PMC11124301 DOI: 10.3390/ph17050576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer (BC) is the most common type of cancer in women and the number of new cases in the US is still increasing each year. Triple-negative breast cancer (TNBC), which comprises 15-20% of all breast cancer, is a heterogeneous disease and is considered the most aggressive type of breast cancer due to the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expressions for treatments. Traditional chemotherapy is the standard protocol for the treatment of TNBC. Toxicity and multidrug resistance are major drawbacks to chemotherapy. The lack of molecular targets and poor prognosis for TNBC prompts an urgent need to discover novel therapeutic strategies to improve clinical outcomes and quality of life for patients. Photodynamic therapy (PDT) or light treatment is a binary anti-cancer procedure that uses a photosensitizer (PS) that, upon light activation, produces cytotoxic oxygen species, destroying tumor cells. PDT is minimally invasive and can be repeated a few times without accumulating significant toxicity in the surrounding tissues. The primary goal of this study was to investigate in vitro photodynamic chemotherapy as a ternary combination therapy using our synthesized photosensitizers (chlorin-vitamin conjugates and their corresponding indium complexes) co-treated with known chemotherapeutic agents (taxol, doxorubicin, cisplatin, fluorouracil, or methotrexate) in the presence of light and determine the optimum conditions as a pre-clinical study of an enhanced tumoricidal effect against TNBC. Our results indicated that the best combination for an effective chemophotodynamic effect involves a ternary treatment of the indium complex of the chlorin-lipoic acid conjugate (InCLA) co-treated with taxol, which exhibited strong synergism at the nanomolar concentration when combined in the presence of visible light irradiation. Other ternary combinations containing taxol with a synergistic anti-tumor effect against TNBC include chlorin-pantothenic acid (CPA) and chlorin-biotin (CBTN) conjugates. Several other ternary combinations containing InCLA, CBTN, and CPA with either cisplatin, fluorouracil, or methotrexate were identified to generate a synergistic or additive effect. The light dosage remained constant, but the dosages of photosensitizers and chemotherapy drugs were varied to obtain the lowest possible concentration for the desired effect. The synergistic, additive or antagonistic effects of the drug combinations were determined based on the Chou-Talalay method, with InCLA-taxol having the lowest combination index (CI) of 0.25. Fluorescence and transmission electron microscopy (TEM) images provided evidence of apoptosis as the preferred mode of cell death. Our study demonstrated the combination of PDT and chemotherapy as a potential treatment option for TNBC patients.
Collapse
Affiliation(s)
- Meden F Isaac-Lam
- Department of Chemistry and Physics, Purdue University Northwest, Westville, IN 46391, USA
| |
Collapse
|
3
|
Kaur N, Sharma P, Mimansa, Jaganathan M, Munawara R, Aggarwal A, Shanavas A. Glycol chitosan stabilized nanomedicine of lapatinib and doxorubicin for the management of metastatic breast tumor. Drug Deliv Transl Res 2023; 13:2520-2532. [PMID: 36971999 DOI: 10.1007/s13346-023-01335-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Advanced breast cancer is known to be highly evasive to conventional therapeutic regimes with a 5-year survival rate of less than 30% compared to over 90% for early stages. Although several new approaches are being explored to improve the survival outcome, there is still some room for equipping existing drugs such as lapatinib (LAPA) and doxorubicin (DOX) to fight the systemic disease. LAPA is associated with poorer clinical outcomes in HER2-negative patients. However its ability to also target EGFR has warranted its use in recent clinical trials. Nevertheless, the drug is poorly absorbed post oral administration and possess low aqueous solubility. DOX on the other hand is avoided in vulnerable patients in advanced stages due to its pronounced off-target toxicity. To overcome the pitfalls of the drugs, we have fabricated a nanomedicine co-loaded with LAPA & DOX and stabilized with glycol chitosan, a biocompatible polyelectrolyte. With a loading content of ~ 11.5% and ~ 15% respectively, LAPA and DOX in a single nanomedicine showed synergistic action against triple-negative breast cancer cells in comparison to physically mixed free drugs. The nanomedicine showed a time-dependent association with cancer cells thereon inducing apoptosis leading to ~ 80% cell death. The nanomedicine was found to be acutely safe in healthy Balb/c mice and could negate DOX-induced cardio toxicity. The combination nanomedicine significantly inhibited both the primary 4T1 breast tumor and its spread to the lung, liver, heart, and kidney compared to pristine drug controls. These preliminary data indicate bright prospects for the nanomedicine to be effective against metastatic breast cancer.
Collapse
Affiliation(s)
- Navneet Kaur
- Inorganic & Organic Nanomedicine Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India
| | - Priyanka Sharma
- Inorganic & Organic Nanomedicine Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India
| | - Mimansa
- Inorganic & Organic Nanomedicine Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India
| | - Mahendran Jaganathan
- Inorganic & Organic Nanomedicine Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India
| | - Rafika Munawara
- Department of Anatomy, Post Graduate Institute of Medical Education and Research, Madhya Marg, Sector 12, Chandigarh, 160012, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research, Madhya Marg, Sector 12, Chandigarh, 160012, India
| | - Asifkhan Shanavas
- Inorganic & Organic Nanomedicine Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| |
Collapse
|
4
|
Wang F, Kong BLH, Tang YS, Lee HK, Shaw PC. Bioassay guided isolation of caffeoylquinic acids from the leaves of Ilex pubescens Hook. et Arn. and investigation of their anti-influenza mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116322. [PMID: 36868436 DOI: 10.1016/j.jep.2023.116322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ilex pubescens Hook. et Arn. (Maodongqing, MDQ) is a common herbal tea ingredient in Southern China for heat clearance and anti-inflammation. Our preliminary screening showed that 50% ethanol extract of its leaves has anti-influenza virus activity. In this report, we proceed to identify the active components and clarify the related anti-influenza mechanisms. AIM We aim to isolate and identify the anti-influenza virus phytochemicals from the extract of the MDQ leaves, and study their anti-influenza virus mechanism. MATERIAL AND METHODS Plaque reduction assay was used to test the anti-influenza virus activity of fractions and compounds. Neuraminidase inhibitory assay was used to confirm the target protein. Molecular docking and reverse genetics were used to confirm the acting site of caffeoylquinic acids (CQAs) on viral neuraminidase. RESULTS Eight CQAs, 3,5-di-O-caffeoylquinic acid methyl ester (Me 3,5-DCQA), 3,4-di-O-caffeoylquinic acid methyl ester (Me 3,4-DCQA), 3,4,5-tri-O-caffeoylquinic acid methyl ester (Me 3,4,5-TCQA), 3,4,5-tri-O-caffeoylquinic acid (3,4,5-TCQA), 4,5-di-O-caffeoylquinic acid (4,5-DCQA), 3,5-di-O-caffeoylquinic acid (3,5-DCQA), 3,4-di-O-caffeoylquinic acid (3,4-DCQA), and 3,5-di-O-caffeoyl-epi-quinic acid (3,5-epi-DCQA) were identified from the MDQ leaves, in which Me 3,5-DCQA, 3,4,5-TCQA and 3,5-epi-DCQA were isolated for the first time. All these eight compounds were found to inhibit neuraminidase (NA) of influenza A virus. The results of molecular docking and reverse genetics indicated that 3,4,5-TCQA interacted with Tyr100, Gln412 and Arg419 of influenza NA, and a novel NA binding groove was found. CONCLUSION Eight CQAs isolated from the leaves of MDQ were found to inhibit influenza A virus. 3,4,5-TCQA was found to interact with Tyr100, Gln412 and Arg419 of influenza NA. This study provided scientific evidence on the use of MDQ for treating influenza virus infection, and laid the foundation for the development of CQA derivatives as potential antiviral agents.
Collapse
Affiliation(s)
- Fan Wang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bobby Lim-Ho Kong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun-Sang Tang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hung-Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK) and Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Tan H, Zhang M, Xu L, Zhang X, Zhao Y. Gypensapogenin H suppresses tumor growth and cell migration in triple-negative breast cancer by regulating PI3K/AKT/NF-κB/MMP-9 signaling pathway. Bioorg Chem 2022; 126:105913. [DOI: 10.1016/j.bioorg.2022.105913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
|
6
|
Mehraj U, Wani NA, Hamid A, Alkhanani M, Almilaibary A, Mir MA. Adapalene inhibits the growth of triple-negative breast cancer cells by S-phase arrest and potentiates the antitumor efficacy of GDC-0941. Front Pharmacol 2022; 13:958443. [PMID: 36003501 PMCID: PMC9393306 DOI: 10.3389/fphar.2022.958443] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Although advances in diagnostics and therapeutics have prolonged the survival of triple-negative breast cancer (TNBC) patients, metastasis, therapeutic resistance, and lack of targeted therapies remain the foremost hurdle in the effective management of TNBC. Thus, evaluation of new therapeutic agents and their efficacy in combination therapy is urgently needed. The third-generation retinoid adapalene (ADA) has potent antitumor activity, and using ADA in combination with existing therapeutic regimens may improve the effectiveness and minimize the toxicities and drug resistance. The current study aimed to assess the anticancer efficacy of adapalene as a combination regimen with the PI3K inhibitor (GDC-0941) in TNBC in vitro models. The Chou–Talalay’s method evaluated the pharmacodynamic interactions (synergism, antagonism, or additivity) of binary drug combinations. Flow cytometry, Western blotting, and in silico studies were used to analyze the mechanism of GDC–ADA synergistic interactions in TNBC cells. The combination of GDC and ADA demonstrated a synergistic effect in inhibiting proliferation, migration, and colony formation of tumor cells. Accumulation of reactive oxygen species upon co-treatment with GDC and ADA promoted apoptosis and enhanced sensitivity to GDC in TNBC cells. The findings indicate that ADA is a promising therapeutic agent in treating advanced BC tumors and enhance sensitivity to GDC in inhibiting tumor growth in TNBC models while reducing therapeutic resistance.
Collapse
Affiliation(s)
- Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Abid Hamid
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Mustfa Alkhanani
- Biology Department, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Albaha University, Albaha, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
- *Correspondence: Manzoor Ahmad Mir,
| |
Collapse
|
7
|
Tan H, Li M, Han L, Zhao Y, Zhang X. Gypensapogenin I Suppresses Cell Proliferation in Triple-Negative Breast Cancer Via Triggering the Closure of AKT/GSK3β/β-Catenin and Notch-1 Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5438-5449. [PMID: 35465659 DOI: 10.1021/acs.jafc.2c02512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Jiaogulan (Gynostemma pentaphyllum) tea is a functional food that is commercially available worldwide. Gypensapogenin I (Gyp I), which is a natural damarane-type saponin, was obtained from the hydrolysates of total gypenosides. The present research was performed to investigate the potential antiproliferation effect of Gyp I in MDA-MB-231 cells and the underlying mechanisms. Here, we found that Gyp I attenuated survival, inhibited proliferation, and induced apoptosis in MDA-MB-231 cells. Target prediction by binding molecule docking and western blot assays confirmed the mechanism by which Gyp I inhibited the proliferation of breast cancer cells via the AKT/GSK3β/β-catenin signaling pathway. We also showed that Gyp I exhibited superior in vivo efficacy that was dose dependent. Tumor tissue transcriptome analysis indicated that Gyp I could decrease the expression levels of NOTCH1 and HES1, which was in contrast to the effect on MAML and NUMBL, indicating that our compound hindered the activation of the Notch-1 signaling pathway. In summary, we report for the first time that Gyp I shows excellent anti-breast cancer activity in vivo and in vitro and that its pathway of action is related to the AKT/GSK3β/β-catenin and Notch-1 signaling pathways. Therefore, Jiaogulan tea can not only be used as a health food but also possesses the possibility to treat triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Hongyan Tan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Minjie Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linlin Han
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuqing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoshu Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
8
|
A Low Dose Combination of Withaferin A and Caffeic Acid Phenethyl Ester Possesses Anti-Metastatic Potential In Vitro: Molecular Targets and Mechanisms. Cancers (Basel) 2022; 14:cancers14030787. [PMID: 35159054 PMCID: PMC8834371 DOI: 10.3390/cancers14030787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Cancer therapy suffers from its high cost and high rate of adverse effects and relapse of the disease. Hence, the new (preferably natural), economic and safer therapeutic as well preventive measures have been on demand and have been subject of priority research. We have, earlier, demonstrated anticancer activity in the extracts of Ashwagandha leaves and propolis. A combination of Wi-A (an active anticancer ingredient in Ashwagandha extract) and CAPE (an active anticancer ingredient in propolis) was earlier shown to offer higher and cancer cell-selective cytotoxicity. In the present study, we report an anti-metastasis activity in the low dose combination of Wi-A and CAPE along with its mechanism of action and propose its use in cancer metastasis treatment. Abstract Withaferin A (Wi-A) and Caffeic Acid Phenethyl Ester (CAPE) are the bioactive ingredients of Ashwagandha (Withania somnifera) and propolis, respectively. Both of these natural compounds have been shown to possess anticancer activity. In the present study, we recruited a low dose of each of these compounds and developed a combination that exhibited remarkably potent anti-migratory and anti-angiogenic activities. Extensive molecular analyses including a cDNA array and expression analyses of the specific gene targets demonstrated that such activities are mediated through their effect on cell adhesion/tight junction proteins (Claudins, E-cadherin), inhibition of canonical Wnt/β-catenin signaling pathways and the consequent downregulation of EMT-signaling proteins (Vimentin, MMPs, VEGF and VEGFR) that play a critical role in cancer metastasis. The data supported that this novel combination of Wi-A and CAPE (Wi-ACAPE, containing 0.5 µM of Wi-A and 10 µM of CAPE) may be recruited for the treatment of metastatic and aggressive cancers and, hence, warrant further evaluation by recruiting a variety of experimental and clinical metastatic models.
Collapse
|
9
|
Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. J Control Release 2021; 337:27-58. [PMID: 34273417 DOI: 10.1016/j.jconrel.2021.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023]
Abstract
Triple negative breast cancer (TNBC) and non-small cell lung cancer (NSCLC) are amongst the most aggressive forms of solid tumors. TNBC is highlighted by absence of genetic components of progesterone receptor, HER2/neu and estrogen receptor in breast cancer. NSCLC is characterized by integration of malignant carcinoma into respiratory system. Both cancers are associated with poor median and overall survival rates with low progression free survival with high incidences of relapse. These cancers are characterized by tumor heterogeneity, genetic mutations, generation of cancer-stem cells, immune-resistance and chemoresistance. Further, these neoplasms have been reported for tumor cross-talk into second primary cancers for each other. Current chemotherapeutic regimens include usage of multiple agents in tandem to affect tumor cells through multiple mechanisms with various such combinations being clinically tested. However, lack of controlled delivery and effective temporospatial presence of chemotherapeutics has resulted in suboptimal therapeutic response. Consequently, passive targeted albumin bound paclitaxel and PEGylated liposomal doxorubicin have been clinically used and tested with newer drugs for improved therapeutic efficacy in these cancers. Active targeting of nanocarriers against surface overexpressed proteins in both neoplasms have been explored. However, use of single agent nanoparticulate formulations against both cancers have failed to elicit desired outcomes. This review aims to identify clinical unmet need in these cancers while establishing a correlation with tested nano-formulation approaches and issues with preclinical to clinical translation. Lipid and polymer-based drug-drug and drug-gene combinatorial nanocarriers delivering multiple chemotherapeutics simultaneously to desired site of action have been detailed. Finally, emerging opportunities such as pharmacological targets (immune check point and epigentic modulators) as well as gene-based modulation (siRNA/CRISPR/Cas9) and the nano-formulation challenges for effective treatment of both cancers have been explored.
Collapse
|
10
|
Khan AH, Jiang X, Surwase S, Gultekinoglu M, Bayram C, Sathisaran I, Bhatia D, Ahmed J, Wu B, Ulubayram K, Edirisinghe M, Dalvi SV. Effectiveness of Oil-Layered Albumin Microbubbles Produced Using Microfluidic T-Junctions in Series for In Vitro Inhibition of Tumor Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11429-11441. [PMID: 32903006 DOI: 10.1021/acs.langmuir.0c01557] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work focuses on the synthesis of oil-layered microbubbles using two microfluidic T-junctions in series and evaluation of the effectiveness of these microbubbles loaded with doxorubicin and curcumin for cell invasion arrest from 3D spheroid models of triple negative breast cancer (TNBC), MDA-MB-231 cell line. Albumin microbubbles coated in the drug-laden oil layer were synthesized using a new method of connecting two microfluidic T-mixers in series. Double-layered microbubbles thus produced consist of an innermost core of nitrogen gas encapsulated in an aqueous layer of bovine serum albumin (BSA) which in turn, is coated with an outer layer of silicone oil. In order to identify the process conditions leading to the formation of double-layered microbubbles, a regime map was constructed based on capillary numbers for aqueous and oil phases. The microbubble formation regime transitions from double-layered to single layer microbubbles and then to formation of single oil droplets upon gradual change in flow rates of aqueous and oil phases. In vitro dissolution studies of double-layered microbubbles in an air-saturated environment indicated that a complete dissolution of such bubbles produces an oil droplet devoid of a gas bubble. Incorporation of doxorubicin and curcumin was found to produce a synergistic effect, which resulted in higher cell deaths in 2D monolayers of TNBC cells and inhibition of cell proliferation from 3D spheroid models of TNBC cells compared to the control.
Collapse
Affiliation(s)
- Aaqib H Khan
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Xinyue Jiang
- Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, United Kingdom
| | - Swarupkumar Surwase
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Bioengineering Division, Institute for Graduate Studies in Science & Engineering, Hacettepe University, Ankara 06100, Turkey
| | - Cem Bayram
- Graduate School of Science and Engineering, Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara 06800, Turkey
| | - Indumathi Sathisaran
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Jubair Ahmed
- Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, United Kingdom
| | - Bingjie Wu
- Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, United Kingdom
| | - Kezban Ulubayram
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Bioengineering Division, Institute for Graduate Studies in Science & Engineering, Hacettepe University, Ankara 06100, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, United Kingdom
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
11
|
khorshid Sofyani E, sharifi R. Synergistic Effect of Docetaxel Combined with Quinacrine on Induction of Apoptosis and Reduction of Cell proliferation in a Lung Cancer Cell Line. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.4.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|