1
|
Caplette JN, Wilson SC, Mestrot A. Antimony release and volatilization from organic-rich and iron-rich submerged soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134230. [PMID: 38608583 DOI: 10.1016/j.jhazmat.2024.134230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Antimony (Sb) is an poorly understood, increasingly common pollutant, especially in soils susceptible to waterlogging. We investigated the impact of waterlogging on Sb release, methylation, and volatilization from an organic-rich wetland soil and an iron (Fe)-rich floodplain soil in a 27-day microcosm experiment. The release of Sb into the porewaters of the organic-rich soil was environmentally relevant and immediate with waterlogging (3.2 to 3.5 mg L-1), and likely associated with a complex interplay of sulfide precipitation, sorption with organic matter and manganese (Mn) (oxyhydr)oxides in the soil. The release of Sb from the Fe-rich soil was likely associated with Fe-(oxyhydr)oxide reduction and immobilized due to co-precipitation with Fe-sulfides or as Sb-sulfides. Volatile Sb was produced from the soils after waterlogging. The organic-rich soil produced more volatile Sb (409 to 835 ng kgsoil-1), but the Fe-rich soil volatilized Sb more efficiently. The negligible association of Sb volatilization with soil parameters indicates a more complex underlying, potentially microbial, mechanism and that antimony volatilization could be ubiquitous and not dependent on specific soil properties. Future works should investigate the microbial and physiochemical drivers of Sb volatilization in soils as it may be an environmentally relevant part of the biogeochemical cycle.
Collapse
Affiliation(s)
- J N Caplette
- Institute of Geography, University of Bern, Switzerland; Minnow Aquatic Environmental Services, Toronto, Canada.
| | - S C Wilson
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - A Mestrot
- Institute of Geography, University of Bern, Switzerland.
| |
Collapse
|
2
|
Caplette JN, Gfeller L, Lei D, Liao J, Xia J, Zhang H, Feng X, Mestrot A. Antimony release and volatilization from rice paddy soils: Field and microcosm study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156631. [PMID: 35691353 DOI: 10.1016/j.scitotenv.2022.156631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The fate of antimony (Sb) in submerged soils and the impact of common agricultural practices (e.g., manuring) on Sb release and volatilization is understudied. We investigated porewater Sb release and volatilization in the field and laboratory for three rice paddy soils. In the field study, the porewater Sb concentration (up to 107.1 μg L-1) was associated with iron (Fe) at two sites, and with pH, Fe, manganese (Mn), and sulfate (SO42-) at one site. The surface water Sb concentrations (up to 495.3 ± 113.7 μg L-1) were up to 99 times higher than the regulatory values indicating a potential risk to aquaculture and rice agriculture. For the first time, volatile Sb was detected in rice paddy fields using a validated quantitative method (18.1 ± 5.2 to 217.9 ± 160.7 mg ha-1 y-1). We also investigated the influence of two common rice agriculture practices (flooding and manuring) on Sb release and volatilization in a 56-day microcosm experiment using the same soils from the field campaign. Flooding induced an immediate, but temporary, Sb release into the porewater that declined with SO42-, indicating that SO42- reduction may reduce porewater Sb concentrations. A secondary Sb release, corresponding to Fe reduction in the porewater, was observed in some of the microcosms. Our results suggest flooding-induced Sb release into rice paddy porewaters is temporary but relevant. Manuring the soils did not impact the porewater Sb concentration but did enhance Sb volatilization. Volatile Sb (159.6 ± 108.4 to 2237.5 ± 679.7 ng kg-1 y-1) was detected in most of the treatments and was correlated with the surface water Sb concentration. Our study indicates that Sb volatilization could be occurring at the soil-water interface or directly in the surface water and highlights that future works should investigate this potentially relevant mechanism.
Collapse
Affiliation(s)
| | - L Gfeller
- Institute of Geography, University of Bern, Switzerland
| | - D Lei
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - J Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - J Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - H Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - X Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China.
| | - A Mestrot
- Institute of Geography, University of Bern, Switzerland.
| |
Collapse
|
3
|
Caplette JN, Grob M, Mestrot A. Validation and deployment of a quantitative trapping method to measure volatile antimony emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117831. [PMID: 34358874 DOI: 10.1016/j.envpol.2021.117831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Microbial-mediated Sb volatilization is a poorly understood part of the Sb biogeochemical cycle. This is mostly due to a lack of laboratory and field-deployable methods that are capable of quantifying low-level emissions of Sb from diffuse sources. In this study, we validated two methods using a H2O2 -HNO3 liquid chemotrap and an activated coconut shell charcoal solid-phase trap, achieving an absolute limit of detection of 4.6 ng and below 2.0 ng Sb, respectively. The activated charcoal solid-phase trapping method, the most easily operated method, was then applied to contaminated shooting range soils. Four treatments were tested: 1) flooded, 2) manure amended + flooded, 3) 70 % water holding capacity, and 4) manure amendment +70 % water holding capacity, since agricultural practices and flooding events may contribute to Sb volatilization. Volatile Sb was only produced from flooded microcosms and manure amendment greatly influenced the onset and amount of volatile Sb produced. The highest amount of volatile Sb produced, up to 62.1 ng kg-1 d-1, was from the flooded manure amended soil. This suggests that anaerobic microorganisms may potentially be drivers of Sb volatilization. Our results show that polluted shooting range soils are a source of volatile Sb under flooded conditions, which may lead to an increase in the mobility of Sb. Some of these volatile Sb species are toxic and genotoxic, highlighting the role of Sb volatilization on environmental health, especially for individuals living in contaminated areas exposed to wetlands or flooded conditions (e.g., rice paddy agriculture surrounding mining areas). This work paves way for research on Sb volatilization in the environment.
Collapse
Affiliation(s)
- Jaime N Caplette
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012, Bern, Switzerland
| | - Matthias Grob
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012, Bern, Switzerland
| | - Adrien Mestrot
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012, Bern, Switzerland.
| |
Collapse
|
4
|
Wu Q, Leung JYS, Du Y, Kong D, Shi Y, Wang Y, Xiao T. Trace metals in e-waste lead to serious health risk through consumption of rice growing near an abandoned e-waste recycling site: Comparisons with PBDEs and AHFRs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:46-54. [PMID: 30654253 DOI: 10.1016/j.envpol.2018.12.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/02/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Despite the endeavour to eradicate informal e-waste recycling, remediation of polluted sites is not mandatory in many developing countries and thus the hazard of pollutants remaining in soil is often overlooked. It is noteworthy that a majority of previous studies only analysed a few pollutants in e-waste to reflect the impact of informal e-waste recycling. However, the actual impact may have been largely underestimated since e-waste contains various groups of pollutants and the effect of some emerging pollutants in e-waste remains unexplored. Thus, this study examined the contamination of metals, PBDEs and AHFRs in the vicinity of an abandoned e-waste recycling site. The accumulation and translocation of these pollutants in rice plants cultivated at the nearby paddy field were measured to estimate the health risk through rice consumption. We revealed that the former e-waste burning site was still seriously contaminated with some metals (e.g. Sn, Sb and Ag, Igeo > 5), PBDEs (Igeo > 3) and AHFRs (Igeo > 3), which can disperse to the nearby paddy field and stream. The rice plants can effectively absorb some metals (e.g. Mo, Cr and Mn, BCF > 1), but not PBDEs and AHFRs (BCF < 0.15), from soil and translocate them to the leaves. Alarmingly, the health risk through rice consumption was high primarily due to Sb and Sn (HQ > 20), whereas PBDEs and AHFRs had limited contribution (HQ < 0.08). Our results imply that abandoned e-waste recycling sites still act as the pollution source, jeopardising the surrounding environment and human health. Since some trace metals (e.g. Sb and Sn) are seldom monitored, the impact of informal e-waste recycling would be more notorious than previously thought. Remediation work should be conducted promptly in abandoned e-waste recycling sites to protect the environment and human health.
Collapse
Affiliation(s)
- Qihang Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China
| | - Jonathan Y S Leung
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia.
| | - Yongming Du
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Deguan Kong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yongfeng Shi
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuqi Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
5
|
Tokumaru T, Ozaki H, Onwona-Agyeman S, Ofosu-Anim J, Watanabe I. Determination of the Extent of Trace Metals Pollution in Soils, Sediments and Human Hair at e-Waste Recycling Site in Ghana. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:377-390. [PMID: 28770281 DOI: 10.1007/s00244-017-0434-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
The concentrations of trace elements (Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Mo, Cd, In, Sn, Sb, Cs, Ba, Tl, Pb, and Bi) in soils, sediment, human hair, and foodstuff collected around the electronic waste (e-waste) recycling sites in Accra, Ghana were detected using inductively coupled plasma-mass spectrometry (ICP-MS). High levels of Cu, Zn, Mo, Cd, In, Sn, Sb, and Pb were observed in soils collected from the e-waste recycling sites. Four sequential extraction procedures were used to evaluate the mobility and bioavailability of metals (Cu, Zn, Cd, Sb, and Pb). Especially, the results showed that Cd and Zn in soils were mostly recovered in exchangeable fraction (respectively 58.9 and 62.8%). Sediment collected from around the site had enrichment of Zn, Sn, Sb, Mo, In, Pb, and Bi. The concentrations of Cu, Mo, Cd, Sb, and Pb in human hair were significantly higher than those collected from the control site (p < 0.01). Additionally, hierarchical cluster analysis reviewed that these elements were derived from e-waste activities. The results of Pb isotopic ratios in the samples indicate that Pb in human hair possibly originated from contaminated soils, fish, and foodstuff.
Collapse
Affiliation(s)
- Takashi Tokumaru
- The Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Hirokazu Ozaki
- Center for Higher Educational Development, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Siaw Onwona-Agyeman
- The Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | | | - Izumi Watanabe
- The Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
6
|
Smolyaninov IV, Antonova NA, Poddel'sky AI, Smolyaninova SA, Osipova VP, Luzhnova SA, Berberova NT, Pimenov YT. The influence of triphenylantimony(V) catecholate and its spiroendoperoxide on lipid peroxidation. Appl Organomet Chem 2014. [DOI: 10.1002/aoc.3120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Andrey I. Poddel'sky
- G. A. Razuvaev Institute of organometallic chemistry of RAS; Nizhniy Novgorod Russia
| | | | | | | | | | | |
Collapse
|
7
|
Smolyaninov IV, Poddel’skii AI, Antonova NA, Smolyaninova SA, Berberova NT. Antiradical activity of morpholine- and piperazine-functionalized triphenylantimony(V) catecholates. RUSS J COORD CHEM+ 2013. [DOI: 10.1134/s1070328413020073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Smolyaninov IV, Antonova NA, Poddel’sky AI, Osipova VP, Kolyada MN, Berberova NT. The influence of Ph3Sb(V)L complexes with redox-active ligands on in vivo lipid peroxidation. DOKLADY CHEMISTRY 2012. [DOI: 10.1134/s0012500812030020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Huber B, Dammann P, Krüger C, Kirsch P, Bialek B, Diaz-Bone RA, Hensel R. Production of toxic volatile trimethylbismuth by the intestinal microbiota of mice. J Toxicol 2011; 2011:491039. [PMID: 22007211 PMCID: PMC3191823 DOI: 10.1155/2011/491039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 07/08/2011] [Indexed: 11/18/2022] Open
Abstract
The biotransformation of metals and metalloids into their volatile methylated derivatives by microbes growing under anaerobic conditions (e.g., the mammalian intestinal microbiota) plays an important role in spreading these compounds in the environment. In this paper, we could show that the presence of an intact intestinal microbiota of mice provides the conditio sine qua non for the production of these mostly toxic derivatives. To document the indispensible role of the intestinal microbiota in methylating metals and metalloids to volatile derivatives under in vivo conditions, we compared the methylation capability of conventionally raised (CONV) and germ-free (GF) B6-mice fed with chow containing colloidal bismuth subcitrate (CBS) as the starting material for the formation of volatile methylated metal(loid)s. Permethylated volatile trimethylbismuth ((CH(3))(3)Bi) was only detected in the blood of the conventionally raised mice. Concomitantly, a higher bismuth concentration was found in organs such as liver, lung, testicles, and brain of the CONV mice as compared to those of GF mice (P > 0.01), strongly suggesting a correlation between the intestinal biomethylation of bismuth and its accumulation in mammalian tissues.
Collapse
Affiliation(s)
- Britta Huber
- Department of Microbioloy I, University of Duisburg-Essen, UniversitaetsstraBe 2, 45141 Essen, Germany
| | - Philip Dammann
- Central Animal Laboratory, University Hospital Essen, HufelandstraBe 55, 45122 Essen, Germany
| | - Christine Krüger
- Central Animal Laboratory, University Hospital Essen, HufelandstraBe 55, 45122 Essen, Germany
| | - Petra Kirsch
- Animal Research Center, University of Ulm, Oberberghof, 89081 Ulm, Germany
| | - Beatrix Bialek
- Department of Microbioloy I, University of Duisburg-Essen, UniversitaetsstraBe 2, 45141 Essen, Germany
| | - Roland A. Diaz-Bone
- Department of Microbioloy I, University of Duisburg-Essen, UniversitaetsstraBe 2, 45141 Essen, Germany
- Instrumental Analytical Chemistry, University of Duisburg-Essen, UniversitaetsstraBe 2, 45141 Essen, Germany
| | - Reinhard Hensel
- Department of Microbioloy I, University of Duisburg-Essen, UniversitaetsstraBe 2, 45141 Essen, Germany
| |
Collapse
|
10
|
Smolyaninov IV, Antonova NA, Poddel’sky AI, Smolyaninova SA, Osipova VP, Berberova NT. Radical scavenging activity of sterically hindered catecholate and o-amidophenolate complexes of LSbVPh3 type. J Organomet Chem 2011. [DOI: 10.1016/j.jorganchem.2011.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Hirner AV, Rettenmeier AW. Methylated Metal(loid) Species in Humans. ORGANOMETALLICS IN ENVIRONMENT AND TOXICOLOGY 2010. [DOI: 10.1039/9781849730822-00465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
While the metal(loid)s arsenic, bismuth, and selenium (probably also tellurium) have been shown to be enzymatically methylated in the human body, this has not yet been demonstrated for antimony, cadmium, germanium, indium, lead, mercury, thallium, and tin, although the latter elements can be biomethylated in the environment. Methylated metal(loid)s exhibit increased mobility, thus leading to a more efficient metal(loid) transport within the body and, in particular, opening chances for passing membrane barriers (blood-brain barrier, placental barrier). As a consequence human health may be affected. In this review, relevant data from the literature are compiled, and are discussed with respect to the evaluation of assumed and proven health effects caused by alkylated metal(loid) species.
Collapse
Affiliation(s)
- Alfred V. Hirner
- Institute of Analytical Chemistry, University of Duisburg-Essen D-45117 Essen Germany
| | - Albert W. Rettenmeier
- Institute of Hygiene and Occupational Medicine, University of Duisburg-Essen D-45122 Essen Germany
| |
Collapse
|
12
|
Diaz-Bone RA, van de Wiele TR. Biovolatilization of metal(loid)s by intestinal microorganisms in the simulator of the human intestinal microbial ecosystem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:5249-5256. [PMID: 19708349 DOI: 10.1021/es900544c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Methylation and hydrogenation of metal(loid)s by microorganisms are widespread and well-known processes in the environment by which mobility and in most cases toxicity are significantly enhanced in comparison to inorganic species. The human gut contains highly diverse and active microbiocenosis, yet little is known about the occurrence and importance of microbial metal(loid) methylation and hydrogenation. In this study, an in vitro gastrointestinal model, the Simulator of the Human Intestinal Microbial Ecosystem (SHIME),was used for investigating volatilization of metal(loid)s by intestinal microbiota. Suspensions from different compartments of the SHIME system analogous to different parts of the human intestinal tract were incubated with different concentrations of inorganic Ge, As, Se, Sn, Sb, Te, Hg, Pb, and Bi and analyzed by gas chromatography and inductively coupled plasma mass spectrometry (GC-ICP-MS). Significant volatilization was found for Se, As, and Te (maximal hourly production rates relative to the amount spiked; 0.6, 2, and 9 ng/mg/h, respectively). In addition, volatile species of Sb and Bi were detected. The occurrence of AsH3 and (CH3)2Te was toxicologically important. Furthermore, mixed Se/S and mixed As/S metabolites were detected in significant amounts in the gas phase of the incubation experiments of which two metabolites, (CH3)2AsSSCH3 and CH3As(SCH3)2, are described for the first time in environmental matrices. The toxicology of these species is unknown. These data show that the intestinal microbiota may increase the mobility of metal(loid)s, suggesting a significant modulation of their toxicity. Our research warrants further studies to investigate the extent of this process as well as the availability of metal(loid)s from different sources for microbial transformations.
Collapse
Affiliation(s)
- Roland A Diaz-Bone
- Institute of Environmental Analytical Chemistry, University of Duisburg-Essen, Universitätstrasse 3-5, 45141 Essen, Germany.
| | | |
Collapse
|
13
|
Role of intestinal microbiota in transformation of bismuth and other metals and metalloids into volatile methyl and hydride derivatives in humans and mice. Appl Environ Microbiol 2008; 74:3069-75. [PMID: 18378667 DOI: 10.1128/aem.02933-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study shows that feces samples of 14 human volunteers and isolated gut segments of mice (small intestine, cecum, and large intestine) are able to transform metals and metalloids into volatile derivatives ex situ during anaerobic incubation at 37 degrees C and neutral pH. Human feces and the gut of mice exhibit highly productive mechanisms for the formation of the toxic volatile derivative trimethylbismuth [(CH(3))(3)Bi] at rather low concentrations of bismuth (0.2 to 1 mumol kg(-1) [dry weight]). An increase of bismuth up to 2 to 14 mmol kg(-1) (dry weight) upon a single (human volunteers) or continuous (mouse study) administration of colloidal bismuth subcitrate resulted in an average increase of the derivatization rate from approximately 4 pmol h(-1) kg(-1) (dry weight) to 2,100 pmol h(-1) kg(-1) (dry weight) in human feces samples and from approximately 5 pmol h(-1) kg(-1) (dry weight) to 120 pmol h(-1) kg(-1) (dry weight) in mouse gut samples, respectively. The upshift of the bismuth content also led to an increase of derivatives of other elements (such as arsenic, antimony, and lead in human feces or tellurium and lead in the murine large intestine). The assumption that the gut microbiota plays a dominant role for these transformation processes, as indicated by the production of volatile derivatives of various elements in feces samples, is supported by the observation that the gut segments of germfree mice are unable to transform administered bismuth to (CH(3))(3)Bi.
Collapse
|
14
|
Dopp E, Hartmann LM, Florea AM, von Recklinghausen U, Rabieh S, Shokouhi B, Hirner AV, Rettenmeier AW. Trimethylantimony dichloride causes genotoxic effects in Chinese hamster ovary cells after forced uptake. Toxicol In Vitro 2006; 20:1060-5. [PMID: 16527445 DOI: 10.1016/j.tiv.2006.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 01/11/2006] [Accepted: 01/25/2006] [Indexed: 10/24/2022]
Abstract
In our study, we demonstrate that trimethylantimony dichloride (TMSb) does not induce micronucleus (MN) formation, chromosome aberrations (CA) or sister chromatid exchanges (SCE) under normal conditions in Chinese hamster ovary (CHO-9) cells in vitro up to an applied concentration of 1 mM, nor is it significantly cytotoxic. TMSb is taken up by the cells in a dose-dependent manner, but the percentage uptake of incubation substrate is low (max 0.05%). Intracellular TMSb concentration is two-fold increased after electroporation and under these forced uptake conditions MN formation is also significantly elevated. These data indicate that resistance to TMSb in CHO-9 cells occurs at the uptake and not at the intracellular level.
Collapse
Affiliation(s)
- E Dopp
- Institute of Hygiene and Occupational Medicine, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hansen HR, Pergantis SA. Mass spectrometric identification and characterization of antimony complexes with ribose-containing biomolecules and an RNA oligomer. Anal Bioanal Chem 2006; 385:821-33. [PMID: 16791561 DOI: 10.1007/s00216-006-0456-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/27/2006] [Accepted: 03/28/2006] [Indexed: 11/24/2022]
Abstract
Mass spectrometric techniques have been used to study the interaction of inorganic Sb(V) with biomolecules containing a ribose or deoxyribose moiety. Electrospray (ES) mass spectra of reaction mixtures containing inorganic Sb(V) and one of several biomolecules (adenosine, cytidine, guanosine, uridine, adenosine-5'-monophosphate, adenosine-3',5'-cyclic monophosphate, ribose, or 2'-deoxyadenosine) afforded high-mass antimony-containing ions corresponding to Sb(V)-biomolecule complexes of stoichiometry 1:1, 1:2, or 1:3. The complexes were characterized by collision-induced dissociation (CID) tandem mass spectrometry (MS) using ion-trap multistage MS. The CID results revealed that Sb(V) binds to the ribose or deoxyribose moiety. Structures are proposed for the Sb-biomolecule complexes. Analysis of the reaction mixtures by reversed-phase chromatography coupled on-line to either inductively coupled plasma (ICP) MS or ES-MS showed that in solution Sb(V) forms complexes with all the analyzed biomolecules with vicinal cis hydroxyl groups. Evidence (from size-exclusion chromatography ICP-MS and direct infusion ES-MS) of complexation of Sb(V) with an RNA oligomer, but not with a DNA oligomer, supports the suggestion that the presence of vicinal cis hydroxyl groups is critical for complexation to occur. This is the first direct evidence of complexation of Sb(V) with RNA. Results obtained by studying the effect of changing reaction conditions, i.e. pH, reaction time, and Sb/biomolecule molar ratio, on the extent of Sb-biomolecule formation suggest the reaction may be of physiological importance. Selected reaction monitoring (SRM) and precursor-ion-scanning tandem MS were investigated to determine their potential to detect trace levels of the Sb-biomolecule complexes in biological samples. Application of SRM MS-MS in combination with high-performance liquid chromatography enabled successful detection of an Sb-adenosine complex that had been spiked into a complex biological matrix (liver homogenate).
Collapse
Affiliation(s)
- Helle Rüsz Hansen
- Department of Chemistry, Environmental Chemical Processes Laboratory, University of Crete, P.O. Box 2208, Voutes, 71003 Heraklion, Greece
| | | |
Collapse
|