Zhuang J, Bailet D, Curtis R, Xu F. High-frequency electrical stimulation of cervical vagi reduces airway response to methacholine.
World J Respirol 2013;
3:11-19. [DOI:
10.5320/wjr.v3.i2.11]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/15/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To test whether high-frequency electrical stimulation (HES) of the bilateral cervical vagus nerves reduces the airway responses to methacholine (MCh).
METHODS: Guinea pigs were pretreated with saline (Sal, n = 9) or ovalbumin (Ova, n = 10) aerosol for two weeks (5 min/d, 5 d/wk) and subsequently anesthetized, paralyzed, tracheotomized and artificially ventilated. Both total lung resistance (RL) and dynamic pulmonary compliance (Cdyn) were recorded. In addition, the effects of vagal low-frequency electrical stimulation (LES, monophasic, 50 Hz) and HES (monophasic and biphasic, 1 and 2.5 kHz) for about 10 s or 2 min on the responses of RL and Cdyn to MCh aerosol-induced bronchoconstriction were compared in both groups of guinea pigs. In a few guinea pigs, the impact of bivagotomy on the RL responses to MCh was assessed.
RESULTS: Before MCh challenge, LES, but not HES, significantly increased RL by about 30% (P < 0.01) and decreased Cdyn by about 20% (P < 0.01) similarly in both groups. MCh aerosol for 2 min elevated RL and diminished Cdyn more in Ova- than Sal-treated animals (RL: 313% ± 52% vs 113% ± 17%, P < 0.01; Cdyn: -56% ± 7% vs -21% ± 3%, P < 0.01). During MCh-induced airway constriction, LES further enhanced, but HES decreased RL and this decrease was greater in Ova- (about 45%) than Sal-treated animals (about 34%, P < 0.01) with little change in cardiovascular activity. On the other hand, LES further reduced whereas HES increased Cdyn more in Ova- (about 20%) than Sal-treated animals (about 13%, P < 0.01). In addition, bivagotomy almost eliminated the RL and Cdyn responses to MCh.
CONCLUSION: We conclude that vagal HES is able to alleviate the bronchoconstriction induced by MCh in anesthetized guinea pigs, likely via reversible inhibition/blockade of vagal conduction.
Collapse