1
|
Stavropoulou LS, Efthimiou I, Giova L, Manoli C, Sinou PS, Zografidis A, Lamari FN, Vlastos D, Dailianis S, Antonopoulou M. Phytochemical Profile and Evaluation of the Antioxidant, Cyto-Genotoxic, and Antigenotoxic Potential of Salvia verticillata Hydromethanolic Extract. PLANTS (BASEL, SWITZERLAND) 2024; 13:731. [PMID: 38475577 DOI: 10.3390/plants13050731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
This study comprises the phytochemical characterization, the evaluation of the total phenolic content (TPC) and antioxidant activity (AA), and the investigation of the cyto-genotoxic and antigenotoxic potential of hydromethanolic extract derived from Salvia verticillata L. leaves. HPLC-DAD-ESI-MS and HPLC-DAD were used for the characterization of the extract and determination of the major ingredients. Afterwards, the TPC and AA were determined. The cytotoxic and genotoxic effect of the extract on cultured human lymphocytes at concentrations of 10, 25, and 50 μg mL-1 was investigated via the Cytokinesis Block MicroNucleus (CBMN) assay. Moreover, its antigenotoxic potential against the mutagenic agent mitomycin C (MMC) was assessed using the same assay. The hydromethanolic extract comprises numerous metabolites, with rosmarinic acid being the major compound. It had a high value of TPC and exerted significant AA as shown by the results of the Ferric Reducing Antioxidant Power (FRAP) and Radical Scavenging Activity by DPPH• assays. A dose-dependent cytotoxic potential was recorded, with the highest dose (50 μg mL-1) exhibiting statistically significant cytotoxicity. None of the tested concentrations induced significant micronuclei (MN) frequencies, indicating a lack of genotoxicity. All tested concentrations reduced the MMC-mediated genotoxic effects, with the two lowest showing statistically significant antigenotoxic potential.
Collapse
Affiliation(s)
- Lamprini S Stavropoulou
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, GR-26504 Patras, Greece
| | - Ioanna Efthimiou
- Department of Biology, School of Natural Sciences, University of Patras, GR-26504 Patras, Greece
| | - Lambrini Giova
- Department of Biology, School of Natural Sciences, University of Patras, GR-26504 Patras, Greece
| | - Chrysoula Manoli
- Department of Biology, School of Natural Sciences, University of Patras, GR-26504 Patras, Greece
| | - Paraskevi S Sinou
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, GR-26504 Patras, Greece
| | - Aris Zografidis
- Laboratory of Botany, Department of Biology, University of Patras, GR-26504 Patras, Greece
| | - Fotini N Lamari
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, GR-26504 Patras, Greece
| | - Dimitris Vlastos
- Department of Biology, School of Natural Sciences, University of Patras, GR-26504 Patras, Greece
| | - Stefanos Dailianis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26504 Patras, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece
| |
Collapse
|
2
|
Efthimiou I, Vlastos D, Triantafyllidis V, Eleftherianos A, Antonopoulou M. Investigation of the Genotoxicological Profile of Aqueous Betula pendula Extracts. PLANTS (BASEL, SWITZERLAND) 2022; 11:2673. [PMID: 36297697 PMCID: PMC9611029 DOI: 10.3390/plants11202673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Betula pendula belongs to the Betulaceae family and is most common in the northern hemisphere. Various birch species have exhibited antimicrobial, antioxidant and anticancer properties. In the present study, we investigated the genotoxic and cytotoxic activity as well as the antigenotoxic potential against the mutagenic agent mitomycin-C (MMC) of two commercial products, i.e., a Betula pendula aqueous leaf extract product (BE) and a Betula pendula product containing aqueous extract of birch leaves at a percentage of 94% and lemon juice at a percentage of 6% (BP) using the cytokinesis block micronucleus (CBMN) assay. The most prevalent compounds and elements of BE and BP were identified using UHPLC-MS and ICP-MS/MS, respectively. All mixtures of BE with MMC demonstrated a decrease in the MN frequencies, with the lowest and highest concentrations inducing a statistically significant antigenotoxic activity. BP lacked genotoxic potential, while it was cytotoxic in all concentrations. Its mixtures with MMC demonstrated statistically significant antigenotoxic activity only at the lowest concentration. UHPLC-MS and ICP-MS/MS showed the presence of various elements and phytochemicals. Our results reveal antigenotoxic and cytotoxic potential of both BE and BP, while the variations observed could indicate the importance of the interactions among different natural products and/or their compounds.
Collapse
Affiliation(s)
- Ioanna Efthimiou
- Department of Sustainable Agriculture, University of Patras, GR-30100 Agrinio, Greece
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR), GR-19013 Anavyssos, Greece
| | - Dimitris Vlastos
- Department of Biology, Section of Genetics Cell Biology and Development, University of Patras, GR-26500 Patras, Greece
| | | | - Antonios Eleftherianos
- Akrokeramos Sewerage Laboratory, Athens Water Supply and Sewerage Company (EYDAP SA), GR-18755 Keratsini, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30100 Agrinio, Greece
| |
Collapse
|
3
|
Mateos R, Salvador MD, Fregapane G, Goya L. Why Should Pistachio Be a Regular Food in Our Diet? Nutrients 2022; 14:3207. [PMID: 35956383 PMCID: PMC9370095 DOI: 10.3390/nu14153207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
The pistachio is regarded as a relevant source of biologically active components that, compared to other nuts, possess a healthier nutritional profile with low-fat content composed mainly of monounsaturated fatty acids, a high source of vegetable protein and dietary fibre, remarkable content of minerals, especially potassium, and an excellent source of vitamins, such as vitamins C and E. A rich composition in terms of phytochemicals, such as tocopherols, carotenoids, and, importantly, phenolic compounds, makes pistachio a powerful food to explore its involvement in the prevention of prevalent pathologies. Although pistachio has been less explored than other nuts (walnut, almonds, hazelnut, etc.), many studies provide evidence of its beneficial effects on CVD risk factors beyond the lipid-lowering effect. The present review gathers recent data regarding the most beneficial effects of pistachio on lipid and glucose homeostasis, endothelial function, oxidative stress, and inflammation that essentially convey a protective/preventive effect on the onset of pathological conditions, such as obesity, type 2 diabetes, CVD, and cancer. Likewise, the influence of pistachio consumption on gut microbiota is reviewed with promising results. However, population nut consumption does not meet current intake recommendations due to the extended belief that they are fattening products, their high cost, or teething problems, among the most critical barriers, which would be solved with more research and information.
Collapse
Affiliation(s)
- Raquel Mateos
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - María Desamparados Salvador
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Camilo José Cela n° 10, 13071 Ciudad Real, Spain
| | - Giuseppe Fregapane
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Camilo José Cela n° 10, 13071 Ciudad Real, Spain
| | - Luis Goya
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| |
Collapse
|
4
|
Dormousoglou M, Efthimiou I, Antonopoulou M, Fetzer DL, Hamerski F, Corazza ML, Papadaki M, Santzouk S, Dailianis S, Vlastos D. Investigation of the Genotoxic, Antigenotoxic and Antioxidant Profile of Different Extracts from Equisetum arvense L. Antioxidants (Basel) 2022; 11:antiox11071393. [PMID: 35883882 PMCID: PMC9312020 DOI: 10.3390/antiox11071393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/24/2023] Open
Abstract
The present study investigated the cyto-genotoxic and antigenotoxic effects of four different extracts of Equisetum arvense L. (common name: field horsetail) on human lymphocytes. Specifically, Soxhlet’s prepared extracts from E. arvense L., using different solvents (S1: methanol (MeOH)-, S2: ethanol (EtOH)-, S3: water-, and S4: ethanol/water (EtOH-W)-) were analyzed for (a) their total phenolic and flavonoid content (TPC and TFC, respectively), (b) their antioxidant activity (AA), via the DPPH, FRAP and ABTS assays, and (c) their cyto-genotoxic and/or protective efficiency against the mutagenic agent mitomycin C, via the Cytokinesis Block MicroNucleus assay. All extracts showed increased TPC, TFC, and AA values in almost all cases. S1, S3 and S4 demonstrated no cytotoxic potential, whereas S2 was cytotoxic only at the highest concentrations. Genotoxicity was not observed in the tested extracts. The highest antigenotoxic activity was observed for EtOH-W (S4) extract, which was found to be rich in flavonoids, flavonoid-O-glycosides, phytosterols, phenolic and fatty acids as well as in minerals and mainly in K, Ca, Mg, Si and P, as assessed by using various mass spectrometry techniques. Those findings confirm that E. arvense L. extracts could be valuable candidates for medicinal applications and pharmaceutical products, thus alleviating the effects of more conventional drugs.
Collapse
Affiliation(s)
- Margarita Dormousoglou
- Department of Environmental Engineering, University of Patras, Seferi 2, GR-30100 Agrinio, Greece; (M.D.); (I.E.); (M.A.); (M.P.)
| | - Ioanna Efthimiou
- Department of Environmental Engineering, University of Patras, Seferi 2, GR-30100 Agrinio, Greece; (M.D.); (I.E.); (M.A.); (M.P.)
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture, Anavyssos, GR-19013 Athens, Greece
| | - Maria Antonopoulou
- Department of Environmental Engineering, University of Patras, Seferi 2, GR-30100 Agrinio, Greece; (M.D.); (I.E.); (M.A.); (M.P.)
| | - Damian L. Fetzer
- Department of Chemical Engineering, Federal University of Paraná, Curitiba 81531-990, Brazil; (D.L.F.); (F.H.); (M.L.C.)
| | - Fabiane Hamerski
- Department of Chemical Engineering, Federal University of Paraná, Curitiba 81531-990, Brazil; (D.L.F.); (F.H.); (M.L.C.)
| | - Marcos L. Corazza
- Department of Chemical Engineering, Federal University of Paraná, Curitiba 81531-990, Brazil; (D.L.F.); (F.H.); (M.L.C.)
| | - Maria Papadaki
- Department of Environmental Engineering, University of Patras, Seferi 2, GR-30100 Agrinio, Greece; (M.D.); (I.E.); (M.A.); (M.P.)
| | - Samir Santzouk
- Santzouk Samir and Co. General Partnership, PANAX, Chrissostomou Smirnis 14, GR-30100 Agios Konstantinos, Greece;
| | | | - Dimitris Vlastos
- Department of Biology, University of Patras, GR-26500 Patras, Greece;
- Correspondence: ; Tel.: +30-2610969239
| |
Collapse
|
5
|
Overview of Chios Mastic Gum (Pistacia lentiscus) Effects on Human Health. Nutrients 2022; 14:nu14030590. [PMID: 35276949 PMCID: PMC8838553 DOI: 10.3390/nu14030590] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the remarkable development of the medical industry in the current era, herbal products with therapeutic potentials arise as attractive alternative treatments. Consequently, Chios mastiha, a natural, aromatic resin obtained from the trunk and brunches of the mastic tree, has recently gained increasing scientific interest due to its multiple beneficial actions. Chios mastiha is being exclusively produced on the southern part of Chios, a Greek island situated in the northern Aegean Sea, and its therapeutic properties have been known since Greek antiquity. There is now substantial evidence to suggest that mastiha demonstrates a plethora of favorable effects, mainly attributed to the anti-inflammatory and anti-oxidative properties of its components. The main use of mastiha nowadays, however, is for the production of natural chewing gum, although an approval by the European Medicines Agency for mild dyspeptic disorders and for inflammations of the skin has been given. The aim of this article is to summarize the most important data about the therapeutic actions of Chios mastiha and discuss future fields for its medical application.
Collapse
|
6
|
Ostovan M, Anbardar MH, Khazraei H, Fazljou SMB, Khodabandeh Z, Shamsdin SA, Araj Khodaei M, Torbati M. The Short-Term Effects of Pistacia Lentiscus Oil and Sesame Oil on Liver and Kidney Pathology of Rats and Human Cancer Cell Lines. Galen Med J 2021; 9:e2001. [PMID: 34466622 PMCID: PMC8343819 DOI: 10.31661/gmj.v9i0.2001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/11/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022] Open
Abstract
Background Vegetable oils recently have been evaluated in many tissues. Pistacia lentiscus (mastic) of the Anacardiaceae family and Sesamum indicum (sesame) of the Pedaliaceae family are conventionally used in the management of gastrointestinal, lung, and skin illnesses. This assay attempts to determine if the oral usage of mastic and sesame oils has any short-term toxic effects in vivo on the rat and evaluate the human anticancer effect in vitro. Materials and Methods Twenty-one male Sprague-Dewley rats were assigned to three groups randomly: (A) control, (B) mastic oil (400 mg/kg), and (C) sesame oil (2cc/kg). The effects of these oils were investigated by determining histopathological and stereological parameters after six days, and the anticancer effects were evaluated on SW48, HepG2 human cell lines. Results A mild chronic interstitial inflammation was seen in just one kidney of mastic oil group (B) and the other ones were normal. In the sesame oil group (C), mild chronic interstitial inflammation was seen in six kidneys. In the liver samples of both groups, there were no specific pathological findings. Different concentrations of mastic oil (0.1%-5%) reduced the cell viability of SW48, HepG2, HEK293t, and human fat cells. Conclusion Mastic and sesame oils have some side-effects on the kidney and might not be safe at high doses in rats. Sesame oil did not have any toxic effect on HepG2 and HEK293t human cancer cells. Mastic oil treatment has inhibited specific SW48 cells, so this oil seems to be a good adjuvant to chemotherapy in colon treatments.
Collapse
Affiliation(s)
- Maryam Ostovan
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical sciences, Tabriz, Iran
| | | | - Hajar Khazraei
- Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Correspondence to: Hajar Khazraei, PharmD, PhD of Pharmacology, Colorectal Research Center, 9th Floor of Research Tower, Khalili Street, Shiraz University of Medical Sciences, Shiraz, Iran Telephone Number: +987136281453 Email Address:
| | | | - Zahra Khodabandeh
- Stem cell Technology Research Center, Khalili Street, Research Tower, Shiraz University of Medical Science, Shiraz, Iran
| | - Seyedeh Azra Shamsdin
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Araj Khodaei
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Traditional Pharmacy, School of Traditional medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Kirollos FN, Elhawary SS, Salama OM, Elkhawas YA. LC-ESI-MS/MS and cytotoxic activity of three Pistacia species. Nat Prod Res 2018; 33:1747-1750. [DOI: 10.1080/14786419.2018.1428601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- F. N. Kirollos
- Faculty of Pharmacy, Department of Pharmacognosy and Medicinal Plants, Cairo, Egypt
| | - S. S. Elhawary
- Faculty of Pharmacy, Department of Pharmacognosy and Medicinal Plants, Cairo, Egypt
| | - O. M. Salama
- Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Department of Pharmacognosy and Medicinal Plants, Future University in Egypt, Cairo, Egypt
| | - Y. A. Elkhawas
- Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Department of Pharmacognosy and Medicinal Plants, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
8
|
Ramot Y, Hazan Z, Lucassen A, Adamsky K, Santhosh Kumar DP, Vijayasarathi SK, Krishnappa H, Seervi MS, Nyska A. Toxicity and toxicokinetic study of RPh201 in Sprague-Dawley rats. Food Chem Toxicol 2017; 112:168-177. [PMID: 29288761 DOI: 10.1016/j.fct.2017.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022]
Abstract
Mastic gum is used for health products and in the food industry, and is being tested for several clinical indications. Nevertheless, information on its safety is scarce. Our aim was to test the local and systemic toxicity of RPh201, a botanical extract of gum mastic, and to assess the toxicokinetic profile of the mastic gum constituents masticadienonic acid (MDA) and isomasticadienonic acid (IMDA). 340 Sprague-Dawley rats were administered twice weekly subcutaneously with placebo or different doses of RPh201 for 6 months with an interim group at 3 months and a 4-week recovery group. No systemic toxicity was observed with RPh201. Local injection site reactions were observed in all animals, with comparable severity and frequency in the placebo and high dose groups. However, given the relative increase in tissue reaction in the high dose group, these changes were attributed to RPh201 administration. Nevertheless, considering the minor local irritation effects and clear trend for reversibility, the effects were not judged to be adverse. The toxicokinetic study revealed that the MDA and IMDA exposure increased with dose and the increase was supra-proportional on all days. This study supports a "no observed adverse effect level" (NOAEL) of 300 mg/kg body weight in Sprague-Dawley rats.
Collapse
Affiliation(s)
- Yuval Ramot
- Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | - Abraham Nyska
- Tel Aviv University and Toxicologic Pathology, Timrat, Israel.
| |
Collapse
|
9
|
Vlastos D, Drosopoulou E, Efthimiou I, Gavriilidis M, Panagaki D, Mpatziou K, Kalamara P, Mademtzoglou D, Mavragani-Tsipidou P. Genotoxic and Antigenotoxic Assessment of Chios Mastic Oil by the In Vitro Micronucleus Test on Human Lymphocytes and the In Vivo Wing Somatic Test on Drosophila. PLoS One 2015; 10:e0130498. [PMID: 26110900 PMCID: PMC4482422 DOI: 10.1371/journal.pone.0130498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022] Open
Abstract
Chios mastic oil (CMO), the essential oil derived from Pistacia lentiscus (L.) var. chia (Duham), has generated considerable interest because of its antimicrobial, anticancer, antioxidant and other beneficial properties. In the present study, the potential genotoxic activity of CMO as well as its antigenotoxic properties against the mutagenic agent mitomycin-C (MMC) were evaluated by employing the in vitro Cytokinesis Block MicroNucleus (CBMN) assay and the in vivo Somatic Mutation And Recombination Test (SMART). In the in vitro experiments, lymphocytes were treated with 0.01, 0.05 and 0.10% (v/v) of CMO with or without 0.05 μg/ml MMC, while in the in vivo assay Drosophila larvae were fed with 0.05, 0.10, 0.50 and 1.00% (v/v) of CMO with or without 2.50 μg/ml MMC. CMO did not significantly increase the frequency of micronuclei (MN) or total wing spots, indicating lack of mutagenic or recombinogenic activity. However, the in vitro analysis suggested cytotoxic activity of CMO. The simultaneous administration of MMC with CMO did not alter considerably the frequencies of MMC-induced MN and wing spots showing that CMO doesn't exert antigenotoxic or antirecombinogenic action. Therefore, CMO could be considered as a safe product in terms of genotoxic potential. Even though it could not afford any protection against DNA damage, at least under our experimental conditions, its cytotoxic potential could be of interest.
Collapse
Affiliation(s)
- Dimitris Vlastos
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Efthimiou
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Maximos Gavriilidis
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Panagaki
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Krystalenia Mpatziou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paraskevi Kalamara
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Mademtzoglou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Penelope Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Katsanou ES, Kyriakopoulou K, Emmanouil C, Fokialakis N, Skaltsounis AL, Machera K. Modulation of CYP1A1 and CYP1A2 hepatic enzymes after oral administration of Chios mastic gum to male Wistar rats. PLoS One 2014; 9:e100190. [PMID: 24950217 PMCID: PMC4065013 DOI: 10.1371/journal.pone.0100190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/23/2014] [Indexed: 11/18/2022] Open
Abstract
Chios mastic gum (CMG), a resin derived from Pistacia lentiscus var. chia, is known since ancient times for its pharmacological activities. CYP1A1 and CYP1A2 enzymes are among the most involved in the biotransformation of chemicals and the metabolic activation of pro-carcinogens. Previous studies referring to the modulation of these enzymes by CMG have revealed findings of unclear biological and toxicological significance. For this purpose, the modulation of CYP1A1 and CYP1A2 enzymes in the liver of male Wistar rats following oral administration of CMG extract (CMGE), at the levels of mRNA and CYP1A1 enzyme activity, was compared to respective enzyme modulation following oral administration of a well-known bioactive natural product, caffeine, as control compound known to involve hepatic enzymes in its metabolism. mRNA levels of Cyp1a1 and Cyp1a2 were measured by reverse transcription real-time polymerase chain reaction and their relative quantification was calculated. CYP1A1 enzyme induction was measured through the activity of ethoxyresorufin-O-deethylase (EROD). The results indicated that administration of CMGE at the recommended pharmaceutical dose does not induce significant transcriptional modulation of Cyp1a1/2 and subsequent enzyme activity induction of CYP1A1 while effects of the same order of magnitude were observed in the same test system following the administration of caffeine at the mean daily consumed levels. The outcome of this study further confirms the lack of any toxicological or biological significance of the specific findings on liver following the administration of CMGE.
Collapse
Affiliation(s)
- Efrosini S. Katsanou
- Laboratory of Toxicological Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, Kifissia, Athens, Greece
| | - Katerina Kyriakopoulou
- Laboratory of Toxicological Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, Kifissia, Athens, Greece
| | - Christina Emmanouil
- Laboratory of Toxicological Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, Kifissia, Athens, Greece
| | - Nikolas Fokialakis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Athens, Greece
| | - Kyriaki Machera
- Laboratory of Toxicological Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, Kifissia, Athens, Greece
- * E-mail:
| |
Collapse
|
11
|
Bozorgi M, Memariani Z, Mobli M, Salehi Surmaghi MH, Shams-Ardekani MR, Rahimi R. Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): a review of their traditional uses, phytochemistry, and pharmacology. ScientificWorldJournal 2013; 2013:219815. [PMID: 24453812 PMCID: PMC3876903 DOI: 10.1155/2013/219815] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/21/2013] [Indexed: 01/22/2023] Open
Abstract
Pistacia, a genus of flowering plants from the family Anacardiaceae, contains about twenty species, among them five are more popular including P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus. Different parts of these species have been used in traditional medicine for various purposes like tonic, aphrodisiac, antiseptic, antihypertensive and management of dental, gastrointestinal, liver, urinary tract, and respiratory tract disorders. Scientific findings also revealed the wide pharmacological activities from various parts of these species, such as antioxidant, antimicrobial, antiviral, anticholinesterase, anti-inflammatory, antinociceptive, antidiabetic, antitumor, antihyperlipidemic, antiatherosclerotic, and hepatoprotective activities and also their beneficial effects in gastrointestinal disorders. Various types of phytochemical constituents like terpenoids, phenolic compounds, fatty acids, and sterols have also been isolated and identified from different parts of Pistacia species. The present review summarizes comprehensive information concerning ethnomedicinal uses, phytochemistry, and pharmacological activities of the five mentioned Pistacia species.
Collapse
Affiliation(s)
- Mahbubeh Bozorgi
- Department of Traditional Pharmacy, Faculty of Traditional Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Zahra Memariani
- Department of Traditional Pharmacy, Faculty of Traditional Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Masumeh Mobli
- Department of Traditional Pharmacy, Faculty of Traditional Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Mohammad Hossein Salehi Surmaghi
- Department of Traditional Pharmacy, Faculty of Traditional Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohammad Reza Shams-Ardekani
- Department of Traditional Pharmacy, Faculty of Traditional Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, Faculty of Traditional Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| |
Collapse
|
12
|
Vlastos D, Mademtzoglou D, Drosopoulou E, Efthimiou I, Chartomatsidou T, Pandelidou C, Astyrakaki M, Chalatsi E, Mavragani-Tsipidou P. Evaluation of the genotoxic and antigenotoxic effects of Chios mastic water by the in vitro micronucleus test on human lymphocytes and the in vivo wing somatic test on Drosophila. PLoS One 2013; 8:e69494. [PMID: 23936030 PMCID: PMC3720709 DOI: 10.1371/journal.pone.0069494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/10/2013] [Indexed: 12/31/2022] Open
Abstract
Chios mastic gum, a plant-derived product obtained by the Mediterranean bush Pistacia lentiscus (L.) var. chia (Duham), has generated considerable interest because of its antimicrobial, anticancer, antioxidant and other beneficial properties. Its aqueous extract, called Chios mastic water (CMW), contains the authentic mastic scent and all the water soluble components of mastic. In the present study, the potential genotoxic activity of CMW, as well as its antigenotoxic properties against the mutagenic agent mitomycin-C (MMC), was evaluated by employing the in vitro Cytokinesis Block MicroNucleus (CBMN) assay and the in vivo Somatic Mutation And Recombination Test (SMART). In the former assay, lymphocytes were treated with 1, 2 and 5% (v/v) of CMW with or without MMC at concentrations 0.05 and 0.50 µg/ml. No significant micronucleus induction was observed by CMW, while co-treatment with MMC led to a decrease of the MMC-induced micronuclei, which ranged between 22.8 and 44.7%. For SMART, larvae were treated with 50 and 100% (v/v) CMW with or without MMC at concentrations 1.00, 2.50 and 5.00 µg/ml. It was shown that CMW alone did not modify the spontaneous frequencies of spots indicating lack of genotoxic activity. Τhe simultaneous administration of MMC with 100% CMW led to considerable alterations of the frequencies of MMC-induced wing spots with the total mutant clones showing reduction between 53.5 and 74.4%. Our data clearly show a protective role of CMW against the MMC-induced genotoxicity and further research on the beneficial properties of this product is suggested.
Collapse
Affiliation(s)
- Dimitris Vlastos
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Khan MS, Halagowder D, Devaraj SN. Methylated chrysin induces co-ordinated attenuation of the canonical Wnt and NF-kB signaling pathway and upregulates apoptotic gene expression in the early hepatocarcinogenesis rat model. Chem Biol Interact 2011; 193:12-21. [DOI: 10.1016/j.cbi.2011.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 12/15/2022]
|
14
|
Mastic oil inhibits the metastatic phenotype of mouse lung adenocarcinoma cells. Cancers (Basel) 2011; 3:789-801. [PMID: 24212641 PMCID: PMC3756390 DOI: 10.3390/cancers3010789] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/09/2011] [Accepted: 02/15/2011] [Indexed: 12/22/2022] Open
Abstract
Mastic oil from Pistacia lentiscus variation chia, a natural combination of bioactive terpenes, has been shown to exert anti-tumor growth effects against a broad spectrum of cancers including mouse Lewis lung adenocarcinomas (LLC). However, no studies have addressed its anti-metastatic actions. In this study, we showed that treatment of LLC cells with mastic oil within a range of non-toxic concentrations (0.01–0.04% v/v): (a) abrogated their Matrigel invasion and migration capabilities in transwell assays; (b) reduced the levels of secreted MMP-2; (c) restricted phorbol ester-induced actin remodeling and (d) limited the length of neo-vessel networks in tumor microenvironment in the model of chick embryo chorioallantoic membrane. Moreover, exposure of LLC and endothelial cells to mastic oil impaired their adhesive interactions in a co-culture assay and reduced the expression of key adhesion molecules by endothelial cells upon their stimulation with tumor necrosis factor-alpha. Overall, this study provides novel evidence supporting a multipotent role for mastic oil in prevention of crucial processes related to cancer metastasis.
Collapse
|
15
|
Pharmacophore-driven identification of PPARγ agonists from natural sources. J Comput Aided Mol Des 2010; 25:107-16. [PMID: 21069556 DOI: 10.1007/s10822-010-9398-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/26/2010] [Indexed: 01/14/2023]
Abstract
In a search for more effective and safe anti-diabetic compounds, we developed a pharmacophore model based on partial agonists of PPARγ. The model was used for the virtual screening of the Chinese Natural Product Database (CNPD), a library of plant-derived natural products primarily used in folk medicine. From the resulting hits, we selected methyl oleanonate, a compound found, among others, in Pistacia lentiscus var. Chia oleoresin (Chios mastic gum). The acid of methyl oleanonate, oleanonic acid, was identified as a PPARγ agonist through bioassay-guided chromatographic fractionations of Chios mastic gum fractions, whereas some other sub-fractions exhibited also biological activity towards PPARγ. The results from the present work are two-fold: on the one hand we demonstrate that the pharmacophore model we developed is able to select novel ligand scaffolds that act as PPARγ agonists; while at the same time it manifests that natural products are highly relevant for use in virtual screening-based drug discovery.
Collapse
|
16
|
KAWAI M, SAEGUSA Y, KEMMOCHI S, HARADA T, SHIMAMOTO K, SHIBUTANI M, MITSUMORI K. Cytokeratin 8/18 is a Useful Immunohistochemical Marker for Hepatocellular Proliferative Lesions in Mice. J Vet Med Sci 2010; 72:263-9. [DOI: 10.1292/jvms.09-0329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Masaomi KAWAI
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Yukie SAEGUSA
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Sayaka KEMMOCHI
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Tomoaki HARADA
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Keisuke SHIMAMOTO
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Makoto SHIBUTANI
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Kunitoshi MITSUMORI
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| |
Collapse
|
17
|
Moulos P, Papadodima O, Chatziioannou A, Loutrari H, Roussos C, Kolisis FN. A transcriptomic computational analysis of mastic oil-treated Lewis lung carcinomas reveals molecular mechanisms targeting tumor cell growth and survival. BMC Med Genomics 2009; 2:68. [PMID: 20003503 PMCID: PMC2801511 DOI: 10.1186/1755-8794-2-68] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 12/15/2009] [Indexed: 12/17/2022] Open
Abstract
Background Mastic oil from Pistacia lentiscus variation chia, a blend of bioactive terpenes with recognized medicinal properties, has been recently shown to exert anti-tumor growth activity through inhibition of cancer cell proliferation, survival, angiogenesis and inflammatory response. However, no studies have addressed its mechanisms of action at genome-wide gene expression level. Methods To investigate molecular mechanisms triggered by mastic oil, Lewis Lung Carcinoma cells were treated with mastic oil or DMSO and RNA was collected at five distinct time points (3-48 h). Microarray expression profiling was performed using Illumina mouse-6 v1 beadchips, followed by computational analysis. For a number of selected genes, RT-PCR validation was performed in LLC cells as well as in three human cancer cell lines of different origin (A549, HCT116, K562). PTEN specific inhibition by a bisperovanadium compound was applied to validate its contribution to mastic oil-mediated anti-tumor growth effects. Results In this work we demonstrated that exposure of Lewis lung carcinomas to mastic oil caused a time-dependent alteration in the expression of 925 genes. GO analysis associated expression profiles with several biological processes and functions. Among them, modifications on cell cycle/proliferation, survival and NF-κB cascade in conjunction with concomitant regulation of genes encoding for PTEN, E2F7, HMOX1 (up-regulation) and NOD1 (down-regulation) indicated some important mechanistic links underlying the anti-proliferative, pro-apoptotic and anti-inflammatory effects of mastic oil. The expression profiles of Hmox1, Pten and E2f7 genes were similarly altered by mastic oil in the majority of test cancer cell lines. Inhibition of PTEN partially reversed mastic oil effects on tumor cell growth, indicating a multi-target mechanism of action. Finally, k-means clustering, organized the significant gene list in eight clusters demonstrating a similar expression profile. Promoter analysis in a representative cluster revealed shared putative cis-elements suggesting a common regulatory transcription mechanism. Conclusions Present results provide novel evidence on the molecular basis of tumor growth inhibition mediated by mastic oil and set a rational basis for application of genomics and bioinformatic methodologies in the screening of natural compounds with potential cancer chemopreventive activities.
Collapse
Affiliation(s)
- Panagiotis Moulos
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece.
| | | | | | | | | | | |
Collapse
|