1
|
Pleiotropic effects of anti-diabetic drugs: A comprehensive review. Eur J Pharmacol 2020; 884:173349. [PMID: 32650008 DOI: 10.1016/j.ejphar.2020.173349] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus characterized by hyperglycaemia presents an array of comorbidities such as cardiovascular and renal failure, dyslipidemia, and cognitive impairments. Populations above the age of 60 are in an urgent need of effective therapies to deal with the complications associated with diabetes mellitus. Widely used anti-diabetic drugs have good safety profiles and multiple reports indicate their pleiotropic effects in diabetic patients or models. This review has been written with the objective of identifying the widely-marketed anti-diabetic drugs which can be efficiently repurposed for the treatment of other diseases or disorders. It is an updated, comprehensive review, describing the protective role of various classes of anti-diabetic drugs in mitigating the macro and micro vascular complications of diabetes mellitus, and differentiating these drugs on the basis of their mode of action. Notably, metformin, the anti-diabetic drug most commonly explored for cancer therapy, has also exhibited some antimicrobial effects. Unlike class specific effects, few instances of drug specific effects in managing cardiovascular complications have also been reported. A major drawback is that the pleiotropic effects of anti-diabetic drugs have been mostly investigated only in diabetic patients. Thus, for effective repurposing, more clinical trials devoted to analyse the effects of anti-diabetic drugs in patients irrespective of their diabetic condition, are required.
Collapse
|
2
|
Induction of hemangiosarcoma in mice after chronic treatment with S1P-modulator siponimod and its lack of relevance to rat and human. Arch Toxicol 2018; 92:1877-1891. [PMID: 29556671 PMCID: PMC5962627 DOI: 10.1007/s00204-018-2189-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
A high incidence of hemangiosarcoma (HSA) was observed in mice treated for 2 years with siponimod, a sphingosine-1-phosphate receptor 1 (S1P1) functional antagonist, while no such tumors were observed in rats under the same treatment conditions. In 3-month rat (90 mg/kg/day) and 9-month mouse (25 and 75 mg/kg/day) in vivo mechanistic studies, vascular endothelial cell (VEC) activation was observed in both species, but VEC proliferation and persistent increases in circulating placental growth factor 2 (PLGF2) were only seen in the mouse. In mice, these effects were sustained over the 9-month study duration, while in rats increased mitotic gene expression was present at day 3 only and PLGF2 was induced only during the first week of treatment. In the mouse, the persistent VEC activation, mitosis induction, and PLGF2 stimulation likely led to sustained neo-angiogenesis which over life-long treatment may result in HSA formation. In rats, despite sustained VEC activation, the transient mitotic and PLGF2 stimuli did not result in the formation of HSA. In vitro, the mouse and rat primary endothelial cell cultures mirrored their respective in vivo findings for cell proliferation and PLGF2 release. Human VECs, like rat cells, were unresponsive to siponimod treatment with no proliferative response and no release of PLGF2 at all tested concentrations. Hence, it is suggested that the human cells also reproduce a lack of in vivo response to siponimod. In conclusion, the molecular mechanisms leading to siponimod-induced HSA in mice are considered species specific and likely irrelevant to humans.
Collapse
|
3
|
Cook JC, Obert LA, Koza-Taylor P, Coskran TM, Opsahl AC, Ziemek D, Roy M, Qian J, Lawton MP, Criswell KA. From the Cover: Fenretinide, Troglitazone, and Elmiron Add to Weight of Evidence Support for Hemangiosarcoma Mode-of-Action From Studies in Mice. Toxicol Sci 2017; 161:58-75. [DOI: 10.1093/toxsci/kfx195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
4
|
Zhang J, Peng X, Yuan A, Xie Y, Yang Q, Xue L. Peroxisome proliferator‑activated receptor γ mediates porcine placental angiogenesis through hypoxia inducible factor‑, vascular endothelial growth factor‑ and angiopoietin‑mediated signaling. Mol Med Rep 2017; 16:2636-2644. [PMID: 28677792 PMCID: PMC5548051 DOI: 10.3892/mmr.2017.6903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 04/27/2017] [Indexed: 12/24/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) γ has been reported to be implicated in placentation in mice. Previous studies have demonstrated that PPARγ is also expressed in porcine placenta, primarily localized in vascular endothelial cells (VECs). The present study aimed to investigate the roles of PPARγ during porcine placental angiogenesis and examine the molecular mechanisms involved in its actions. VECs were incubated with the PPARγ agonist rosiglitazone and the antagonist T0070907, and their angiogenic potential was evaluated using cellular impedance, wound healing and tube formation assays. Reverse transcription-quantitative polymerase chain reaction was used to assess the mRNA expression levels of angiogenic factors, including hypoxia-inducible factors (HIFs), vascular endothelial growth factor (VEGF) isoforms, VEGF receptors (VEGFRs) and angiopoietins (Angs). The results demonstrated that the adhesive, proliferative and migratory capabilities of VECs were potentiated by rosiglitazone and suppressed by T0070907. Notably, tube formation was invariably promoted during PPARγ activation and blockade. The mRNA expression levels of HIF1α, HIF2α, VEGFR2, VEGF188 and Ang-1 were revealed to be upregulated following treatment of VECs with rosiglitazone, whereas they were downregulated following treatment with T0070907. However, the mRNA expression levels of placental growth factor and VEGF120 were consistently downregulated following PPARγ activation and blockade, whereas VEGF164 mRNA levels remained unaltered. The results of the present study suggested that PPARγ may mediate porcine placental angiogenesis, by interfering with HIF-, VEGF- and angiopoietin-mediated signaling pathways.
Collapse
Affiliation(s)
- Juzuo Zhang
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Xuan Peng
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Anwen Yuan
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Yang Xie
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Qing Yang
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Liqun Xue
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| |
Collapse
|
5
|
Bopst M, Atzpodien EA. Non-clinical safety evaluation and risk assessment to human of aleglitazar, a dual PPAR α/γ agonist, and its major human metabolite. Regul Toxicol Pharmacol 2017; 86:107-116. [PMID: 28274810 DOI: 10.1016/j.yrtph.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023]
Abstract
The non-clinical safety profile of aleglitazar, a peroxisome proliferator activated receptor alpha/gamma agonist, and its major human metabolite M6 was studied in a complete package consisting of drug metabolism and pharmacokinetics characterization, safety pharmacology, genotoxicity, repeat dose toxicity, reproductive toxicity and carcinogenicity studies. These studies identified the following main targets similar to other PPAR agonists: red blood cell parameters, liver, heart, kidney, ovaries, testes, bone marrow, adipose tissue, and fluid accumulation. Additionally, and in the 12-month monkey study only, an increased incidence of generalized hair loss/thinning was observed in all groups including controls. In the rat carcinogenicity study there was no statistically significant increase in tumors. In the mouse carcinogenicity study, there was an increased incidence of angiomatous tumors and there were three males with gallbladder adenoma. No relevant compound-related effects were observed in safety pharmacology, genotoxicity, and a 28-day immunotoxicity rat study. Effects observed in reproductive toxicity studies were similar to those known for other PPARγ agonists. Separate studies with the human metabolite M6 did not reveal findings that would prevent human dosing. Overall, the results from the non-clinical safety studies conducted with aleglitazar and the human metabolite M6 were considered to support the clinical Phase 3 program.
Collapse
Affiliation(s)
- Martin Bopst
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| | - Elke-Astrid Atzpodien
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| |
Collapse
|
6
|
Shimozono N, Jinnin M, Masuzawa M, Masuzawa M, Wang Z, Hirano A, Tomizawa Y, Etoh-Kira T, Kajihara I, Harada M, Fukushima S, Ihn H. NUP160-SLC43A3 is a novel recurrent fusion oncogene in angiosarcoma. Cancer Res 2016; 75:4458-65. [PMID: 26527604 DOI: 10.1158/0008-5472.can-15-0418] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiosarcoma is a malignant vascular tumor originating from endothelial cells of blood vessels or lymphatic vessels. The specific driver mutations in angiosarcoma remain unknown. In this study, we investigated this issue by transcriptome sequencing of patient-derived angiosarcoma cells (ISO-HAS), identifying a novel fusion gene NUP160-SLC43A3 found to be expressed in 9 of 25 human angiosarcoma specimens that were examined. In tumors harboring the fusion gene, the duration between the onset of symptoms and the first hospital visit was significantly shorter, suggesting more rapid tumor progression. Stable expression of the fusion gene in nontransformed human dermal microvascular endothelial cells elicited a gene-expression pattern mimicking ISO-HAS cells and increased cell proliferation, an effect traced in part to NUP160 truncation. Conversely, RNAi-mediated attenuation of NUP160 in ISO-HAS cells decreased cell number. Confirming the oncogenic effects of the fusion protein, subcutaneous implantation of NUP160-SLC43A3-expressing fibroblasts induced tumors resembling human angiosarcoma. Collectively, our findings advance knowledge concerning the genetic causes of angiosarcoma, with potential implications for new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Naoki Shimozono
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masatoshi Jinnin
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Mamiko Masuzawa
- Department of Dermatology, Kitasato University School of Medicine, Kitasato, Kanagawa, Japan
| | - Mikio Masuzawa
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, Kitasato, Kanagawa, Japan
| | - Zhongzhi Wang
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayaka Hirano
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukiko Tomizawa
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomomi Etoh-Kira
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ikko Kajihara
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Miho Harada
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Chemotherapy and chemoprevention by thiazolidinediones. BIOMED RESEARCH INTERNATIONAL 2015; 2015:845340. [PMID: 25866814 PMCID: PMC4383438 DOI: 10.1155/2015/845340] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/29/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
Abstract
Thiazolidinediones (TZDs) are synthetic ligands of Peroxisome-Proliferator-Activated Receptor gamma (PPARγ). Troglitazone, rosiglitazone, and pioglitazone have been approved for treatment of diabetes mellitus type II. All three compounds, together with the first TZD ciglitazone, also showed an antitumor effect in preclinical studies and a beneficial effect in some clinical trials. This review summarizes hypotheses on the role of PPARγ in tumors, on cellular targets of TZDs, antitumor effects of monotherapy and of TZDs in combination with other compounds, with a focus on their role in the treatment of differentiated thyroid carcinoma. The results of chemopreventive effects of TZDs are also considered. Existing data suggest that the action of TZDs is highly complex and that actions do not correlate with cellular PPARγ expression status. Effects are cell-, species-, and compound-specific and concentration-dependent. Data from human trials suggest the efficacy of TZDs as monotherapy in prostate cancer and glioma and as chemopreventive agent in colon, lung, and breast cancer. TZDs in combination with other therapies might increase antitumor effects in thyroid cancer, soft tissue sarcoma, and melanoma.
Collapse
|
8
|
Rodrigues T, Matafome P, Seiça R. A vascular piece in the puzzle of adipose tissue dysfunction: mechanisms and consequences. Arch Physiol Biochem 2014; 120:1-11. [PMID: 24063516 DOI: 10.3109/13813455.2013.838971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the last years, several studies unravelled many aspects of adipose tissue pathophysiology in metabolic diseases. Some studies suggested hypoxia as one of such aspects, despite the exact mechanisms and pathophysiological significance is still partially unknown. Adipose tissue was shown to be hypoxic in obesity, mainly resulting from adipocyte hypertrophy, leading to increased activation of inflammatory pathways. In animal and cell models, hypoxia-induced inflammation was shown to lead to endocrine alterations and dysmetabolism. However, recent evidences suggest that instead of a simple low oxygenation theory, adipose tissue microvasculature may be regulated by a series of factors, including vasoactive factors like angiotensin II, angiogenesis and glycation, among others. This review summarizes the current knowledge about the role of these factors in the regulation of adipose tissue irrigation and the functional consequences of adipose tissue microvascular dysfunction.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Laboratory of Physiology, Faculty of Medicine, Institute of Biomedical Imaging and Life Sciences (IBILI), University of Coimbra , Portugal
| | | | | |
Collapse
|
9
|
Edler L, Hart A, Greaves P, Carthew P, Coulet M, Boobis A, Williams GM, Smith B. Selection of appropriate tumour data sets for Benchmark Dose Modelling (BMD) and derivation of a Margin of Exposure (MoE) for substances that are genotoxic and carcinogenic: considerations of biological relevance of tumour type, data quality and uncertainty assessment. Food Chem Toxicol 2013; 70:264-89. [PMID: 24176677 DOI: 10.1016/j.fct.2013.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/17/2013] [Accepted: 10/17/2013] [Indexed: 10/26/2022]
Abstract
This article addresses a number of concepts related to the selection and modelling of carcinogenicity data for the calculation of a Margin of Exposure. It follows up on the recommendations put forward by the International Life Sciences Institute - European branch in 2010 on the application of the Margin of Exposure (MoE) approach to substances in food that are genotoxic and carcinogenic. The aims are to provide practical guidance on the relevance of animal tumour data for human carcinogenic hazard assessment, appropriate selection of tumour data for Benchmark Dose Modelling, and approaches for dealing with the uncertainty associated with the selection of data for modelling and, consequently, the derived Point of Departure (PoD) used to calculate the MoE. Although the concepts outlined in this article are interrelated, the background expertise needed to address each topic varies. For instance, the expertise needed to make a judgement on biological relevance of a specific tumour type is clearly different to that needed to determine the statistical uncertainty around the data used for modelling a benchmark dose. As such, each topic is dealt with separately to allow those with specialised knowledge to target key areas of guidance and provide a more in-depth discussion on each subject for those new to the concept of the Margin of Exposure approach.
Collapse
Affiliation(s)
- Lutz Edler
- German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Andy Hart
- The Food and Environment Research Agency - FERA, Sand Hutton, YO41 1LZ York, United Kingdom.
| | - Peter Greaves
- Department of Cancer Studies and Molecular Medicine, University of Leicester, LE2 7LX Leicester, United Kingdom.
| | - Philip Carthew
- Unilever, Colworth House Sharnbrook, MK44 1LQ Bedfordshire, United Kingdom.
| | - Myriam Coulet
- Nestlé Research Centre, Vers-Chez-Les-Blanc, 1000 Lausanne, Switzerland.
| | - Alan Boobis
- Imperial College, Hammersmith Campus, Ducane Road, W12 0NN London, United Kingdom.
| | - Gary M Williams
- New York Medical College, Basic Science Building, Room 413, Valhalla, NY 10595, United States.
| | - Benjamin Smith
- Firmenich, Rue de la Bergere 7, 1217-Meyrin 2, Switzerland.
| |
Collapse
|
10
|
Pathogenesis of human hemangiosarcomas and hemangiomas. Hum Pathol 2013; 44:2302-11. [DOI: 10.1016/j.humpath.2013.05.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 12/29/2022]
|
11
|
Kakiuchi-Kiyota S, Crabbs TA, Arnold LL, Pennington KL, Cook JC, Malarkey DE, Cohen SM. Evaluation of expression profiles of hematopoietic stem cell, endothelial cell, and myeloid cell antigens in spontaneous and chemically induced hemangiosarcomas and hemangiomas in mice. Toxicol Pathol 2012; 41:709-21. [PMID: 23125116 DOI: 10.1177/0192623312464309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is unclear whether the process of spontaneous and chemically induced hemangiosarcoma and hemangioma formation in mice involves the transformation of differentiated endothelial cells (ECs) or recruitment of multipotential bone marrow-derived hematopoietic stem cells or endothelial progenitor cells (EPCs), which show some degree of endothelial differentiation. In the present study, immunohistochemical staining for hematopoietic stem cell markers (CD45 and CD34), EC markers (vascular endothelial growth factor receptor 2 [VEGFR2], CD31, and factor VIII-related antigen), and a myeloid lineage marker (CD14) was employed to better define the origin of hemangiosarcomas and hemangiomas in mice. Staining was negative for CD45, factor VIII-related antigen, and CD14 and positive for CD34, VEGFR2, and CD31, indicating that mouse hemangiosarcomas and hemangiomas are composed of cells derived from EPCs expressing CD34, VEGFR2, and CD31 but not factor VIII-related antigen. The lack of CD45 expression suggests that mouse vascular tumors may arise from EPCs that are at a stage later than hematopoietic stem cells. Since factor VIII-related antigen expression is known to occur later than CD31 expression in EPCs, our observations may indicate that these tumor cells are arrested at a stage prior to complete differentiation. In addition, myeloid lineage cells do not appear to contribute to hemangiosarcoma and hemangioma formation in mice.
Collapse
Affiliation(s)
- Satoko Kakiuchi-Kiyota
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Criswell KA, Cook JC, Morse D, Lawton M, Somps C, Obert L, Roy M, Sokolowski S, Koza-Taylor P, Colangelo J, Navetta K, Brady J, Pegg D, Wojcinski Z, Rahbari R, Duddy S, Anderson T. Pregabalin Induces Hepatic Hypoxia and Increases EndothelialCell Proliferation in Mice, a Process Inhibited by DietaryVitamin E Supplementation. Toxicol Sci 2012; 128:42-56. [DOI: 10.1093/toxsci/kfs148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Fröhlich E, Wahl R. Do antidiabetic medications play a specific role in differentiated thyroid cancer compared to other cancer types? Diabetes Obes Metab 2012; 14:204-13. [PMID: 21883805 DOI: 10.1111/j.1463-1326.2011.01491.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The risk for differentiated thyroid cancer, like for many other types of cancer, is increased in obese individuals and people with intermediate hyperglycaemia. The incidence of all cancers, with the exception of thyroid cancer, is also increased in type 2 diabetes mellitus patients. The review compares the prevalence of thyroid carcinoma and other cancers in obese, people with intermediate hyperglycaemia and patients with diabetes and summarizes mode of action and anti-tumourigenic effect of common antidiabetic medications. The over-expression of dipeptidyl peptidase IV in the tumours, not seen in the other cancer types, is suggested as a potential reason for the unique situation in thyroid cancer.
Collapse
Affiliation(s)
- E Fröhlich
- Internal Medicine, Department of Endocrinology, University of Tuebingen, Otfried-Muellerstrasse 10, Tuebingen, Germany
| | | |
Collapse
|
14
|
Kakiuchi-Kiyota S, Arnold LL, Yokohira M, Koza-Taylor P, Suzuki S, Varney M, Pennington KL, Cohen SM. Evaluation of Direct and Indirect Effects of the PPARγ Agonist Troglitazone on Mouse Endothelial Cell Proliferation. Toxicol Pathol 2011; 39:1032-45. [DOI: 10.1177/0192623311422080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Satoko Kakiuchi-Kiyota
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lora L. Arnold
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | - Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Michelle Varney
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, USA
| | - Karen L. Pennington
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, USA
| | - Samuel M. Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
15
|
Kakiuchi-Kiyota S, Arnold LL, Yokohira M, Suzuki S, Pennington KL, Cohen SM. Evaluation of PPARγ agonists on rodent endothelial cell proliferation. Toxicology 2011; 287:91-8. [DOI: 10.1016/j.tox.2011.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/26/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
|
16
|
Cohen SM, Storer RD, Criswell KA, Doerrer NG, Dellarco VL, Pegg DG, Wojcinski ZW, Malarkey DE, Jacobs AC, Klaunig JE, Swenberg JA, Cook JC. Hemangiosarcoma in rodents: mode-of-action evaluation and human relevance. Toxicol Sci 2009; 111:4-18. [PMID: 19525443 DOI: 10.1093/toxsci/kfp131] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although rarely occurring in humans, hemangiosarcomas (HS) have become important in evaluating the potential human risk of several chemicals, including industrial, agricultural, and pharmaceutical agents. Spontaneous HS arise frequently in mice, less commonly in rats, and frequently in numerous breeds of dogs. This review explores knowledge gaps and uncertainties related to the mode of action (MOA) for the induction of HS in rodents, and evaluates the potential relevance for human risk. For genotoxic chemicals (vinyl chloride and thorotrast), significant information is available concerning the MOA. In contrast, numerous chemicals produce HS in rodents by nongenotoxic, proliferative mechanisms. An overall framework is presented, including direct and indirect actions on endothelial cells, paracrine effects in local tissues, activation of bone marrow endothelial precursor cells, and tissue hypoxia. Numerous obstacles are identified in investigations into the MOA for mouse HS and the relevance of the mouse tumors to humans, including lack of identifiable precursor lesions, usually late occurrence of the tumors, and complexities of endothelial biology. This review proposes a working MOA for HS induced by nongenotoxic compounds that can guide future research in this area. Importantly, a common MOA appears to exist for the nongenotoxic induction of HS, where there appears to be a convergence of multiple initiating events (e.g., hemolysis, decreased respiration, adipocyte growth) leading to either dysregulated angiogenesis and/or erythropoiesis that results from hypoxia and macrophage activation. These later events lead to the release of angiogenic growth factors and cytokines that stimulate endothelial cell proliferation, which, if sustained, provide the milieu that can lead to HS formation.
Collapse
Affiliation(s)
- Samuel M Cohen
- University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|