1
|
Wu J, Ding X, Pang Y, Liu Q, Lei J, Zhang H, Zhang T. Research advance of occupational exposure risks and toxic effects of semiconductor nanomaterials. J Appl Toxicol 2025; 45:61-76. [PMID: 38837250 DOI: 10.1002/jat.4647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
In recent years, semiconductor nanomaterials, as one of the most promising and applied classes of engineered nanomaterials, have been widely used in industries such as photovoltaics, electronic devices, and biomedicine. However, occupational exposure is unavoidable during the production, use, and disposal stages of products containing these materials, thus posing potential health risks to workers. The intricacies of the work environment present challenges in obtaining comprehensive data on such exposure. Consequently, there remains a significant gap in understanding the exposure risks and toxic effects associated with semiconductor nanomaterials. This paper provides an overview of the current classification and applications of typical semiconductor nanomaterials. It also delves into the existing state of occupational exposure, methodologies for exposure assessment, and prevailing occupational exposure limits. Furthermore, relevant epidemiological studies are examined. Subsequently, the review scrutinizes the toxicity of semiconductor nanomaterials concerning target organ toxicity, toxicity mechanisms, and influencing factors. The aim of this review is to lay the groundwork for enhancing the assessment of occupational exposure to semiconductor nanomaterials, optimizing occupational exposure limits, and promoting environmentally sustainable development practices in this domain.
Collapse
Affiliation(s)
- Jiawei Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaomeng Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yanting Pang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qing Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jialin Lei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Haopeng Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices Southeast University, Nanjing, China
| |
Collapse
|
2
|
Cicek B, Hacimuftuoglu A, Yeni Y, Kuzucu M, Genc S, Cetin A, Yavuz E, Danısman B, Levent A, Ozdokur KV, Kantarcı M, Docea AO, Siokas V, Tsarouhas K, Coleman MD, Tsatsakis A, Taghizadehghalehjoughi A. AuNPs with Cynara scolymus leaf extracts rescue arsenic-induced neurobehavioral deficits and hippocampal tissue toxicity in Balb/c mice through D1R and D2R activation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104417. [PMID: 38493879 DOI: 10.1016/j.etap.2024.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The present study was designed to evaluate whether AuNPs (gold nanoparticles) synthesized with the Cynara scolymus (CS) leaf exert protective and/or alleviative effects on arsenic (As)-induced hippocampal neurotoxicity in mice. Neurotoxicity in mice was developed by orally treating 10 mg/kg/day sodium arsenite (NaAsO2) for 21 days. 10 µg/g AuNPs, 1.6 g/kg CS, and 10 µg/g CS-AuNPs were administered orally simultaneously with 10 mg/kg As. CS and CS-AuNPs treatments showed down-regulation of TNF-α and IL-1β levels. CS and CS-AuNPs also ameliorated apoptosis and reduced the alterations in the expression levels of D1 and D2 dopamine receptors induced by As. Simultaneous treatment with CS and CS-AuNPs improved As-induced learning, memory deficits, and motor coordination in mice assessed by water maze and locomotor tests, respectively. The results of this study provide evidence that CS-AuNPs demonstrated neuroprotective roles with antioxidant, anti-inflammatory, and anti-apoptotic effects, as well as improving D1 and D2 signaling, and eventually reversed neurobehavioral impairments.
Collapse
Affiliation(s)
- Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey.
| | - Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Malatya Turgut Ozal University, Malatya 44210, Turkey.
| | - Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yildirim University, Erzincan 24100, Turkey.
| | - Sidika Genc
- Bilecik Şeyh Edebali University, Faculty of Medicine, Department of Medical Pharmacology, Bilecik 11230, Turkey
| | - Ahmet Cetin
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Emre Yavuz
- Department of Medical Services and Technicians, Çayirli Vocational School, Erzincan Binali Yildirim University, Erzincan, Turkey.
| | - Betul Danısman
- Department of Biophysics, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey.
| | - Akin Levent
- Department of Radiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24100, Turkey.
| | - Kemal Volkan Ozdokur
- Sciences Application and Research Center, Erzincan Binali Yildirim University, Erzincan 24100, Turkey.
| | - Mecit Kantarcı
- Department of Radiology, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41100, Greece
| | | | - Michael D Coleman
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK.
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece.
| | - Ali Taghizadehghalehjoughi
- Bilecik Şeyh Edebali University, Faculty of Medicine, Department of Medical Pharmacology, Bilecik 11230, Turkey.
| |
Collapse
|
3
|
Vázquez Cervantes GI, González Esquivel DF, Ramírez Ortega D, Blanco Ayala T, Ramos Chávez LA, López-López HE, Salazar A, Flores I, Pineda B, Gómez-Manzo S, Pérez de la Cruz V. Mechanisms Associated with Cognitive and Behavioral Impairment Induced by Arsenic Exposure. Cells 2023; 12:2537. [PMID: 37947615 PMCID: PMC10649068 DOI: 10.3390/cells12212537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Arsenic (As) is a metalloid naturally present in the environment, in food, water, soil, and air; however, its chronic exposure, even with low doses, represents a public health concern. For a long time, As was used as a pigment, pesticide, wood preservative, and for medical applications; its industrial use has recently decreased or has been discontinued due to its toxicity. Due to its versatile applications and distribution, there is a wide spectrum of human As exposure sources, mainly contaminated drinking water. The fact that As is present in drinking water implies chronic human exposure to this metalloid; it has become a worldwide health problem, since over 200 million people live where As levels exceed safe ranges. Many health problems have been associated with As chronic exposure including cancer, cardiovascular diseases, gastrointestinal disturbances, and brain dysfunctions. Because As can cross the blood-brain barrier (BBB), the brain represents a target organ where this metalloid can exert its long-term toxic effects. Many mechanisms of As neurotoxicity have been described: oxidative stress, inflammation, DNA damage, and mitochondrial dysfunction; all of them can converge, thus leading to impaired cellular functions, cell death, and in consequence, long-term detrimental effects. Here, we provide a current overview of As toxicity and integrated the global mechanisms involved in cognitive and behavioral impairment induced by As exposure show experimental strategies against its neurotoxicity.
Collapse
Affiliation(s)
- Gustavo Ignacio Vázquez Cervantes
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Dinora Fabiola González Esquivel
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Daniela Ramírez Ortega
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Tonali Blanco Ayala
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Lucio Antonio Ramos Chávez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Humberto Emanuel López-López
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Alelí Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Itamar Flores
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, México City 04530, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| |
Collapse
|
4
|
Abdollahzade N, Babri S, Majidinia M. Attenuation of chronic arsenic neurotoxicity via melatonin in male offspring of maternal rats exposed to arsenic during conception: Involvement of oxidative DNA damage and inflammatory signaling cascades. Life Sci 2020; 266:118876. [PMID: 33310035 DOI: 10.1016/j.lfs.2020.118876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/22/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
Prenatal exposure to arsenic is demonstrated to elevate the risk of brain damage and neurological disorders in the fetus, mainly due to its ability for crossing through the placental barriers. Increase in oxidative stress, inflammation, and DNA damage is main mechanisms of arsenic-induced neurotoxicity. Therefore, this study aimed to evaluate the neuroprotective effects of melatonin, as a potent anti-oxidant and anti-inflammatory agent against arsenic toxicity in the brains of male offspring rats. Pregnant mother rats were randomly assigned into four groups including group I, as control, group II received 10 mg/kg melatonin, group III received arsenic at 50 mg/kg, and group IV received melatonin and arsenic. After a two-month period, oxidative stress, DNA damage, inflammation and apoptosis were assessed in the male offspring rats. Exposure to arsenic significantly increased the pro-inflammatory and oxidative factors resulting in DNA damage and apoptosis in the brain tissues of offspring rats in comparison to controls (p < 0.05). Exogenous administration of melatonin showed a significant increase in the tissue levels of acetylcholine esterase, decrease in the lactate dehydrogenase and myeloperoxidase, when compared to arsenic group (p < 0.05). Melatonin also overcame the arsenic-induced oxidative stress and suppressed inflammation, DNA damage and apoptosis. Our results suggested that melatonin may be a promising neuro-protective agent and momentous therapy for the treatment of arsenic-toxicity in clinical conditions.
Collapse
Affiliation(s)
- Naseh Abdollahzade
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Babri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Bahrami A, Sathyapalan T, Moallem SA, Sahebkar A. Counteracting arsenic toxicity: Curcumin to the rescue? JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123160. [PMID: 32574880 DOI: 10.1016/j.jhazmat.2020.123160] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Arsenicosis leads to various irreversible damages in several organs and is considered to be a carcinogen. The effects of chronic arsenic poisoning are a result of an imbalance between pro- and antioxidant homeostasis, oxidative stress, as well as DNA and protein damage. Curcumin, the polyphenolic pigment extracted from the rhizome of Curcuma longa, is well-known for its pleiotropic medicinal effects. Curcumin has been shown to have ameliorative effects in arsenic-induced genotoxicity, nephrotoxicity, hepatotoxicity, angiogenesis, skin diseases, reproductive toxicity, neurotoxicity, and immunotoxicity. This review aims to summarize the scientific evidence on arsenic toxicity in various organs and the ameliorative effects of curcumin on the arsenic toxicity.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, HU3 2JZ, UK
| | - Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Concessao P, Bairy LK, Raghavendra AP. Protective effect of Mucuna pruriens against arsenic-induced liver and kidney dysfunction and neurobehavioral alterations in rats. Vet World 2020; 13:1555-1566. [PMID: 33061227 PMCID: PMC7522945 DOI: 10.14202/vetworld.2020.1555-1566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Intoxication of arsenic in rats is known to result in neurological effects as well as liver and kidney dysfunction. Mucuna pruriens has been identified for its medicinal properties. The aim of the study was to investigate the protective effect of aqueous seed extract of M. pruriens on sodium arsenite-induced memory impairment, liver, and kidney functions in rats. MATERIALS AND METHODS The experiment was divided into short-term treatment (45 days) and long-term treatment (90 days), with each group divided into nine sub-groups consisting of six animals each. Sub-groups 1 and 2 served as normal, and N-acetylcysteine (NAC) controls, respectively. Sub-groups 3-9 received sodium arsenite in drinking water (50 mg/L). In addition, sub-group 4 received NAC (210 mg/kg b.wt) orally once daily, sub-groups 5-7 received aqueous seed extract of M. pruriens (350 mg/kg b.wt, 530 mg/kg b.wt, and 700 mg/kg b.wt) orally once daily and sub-groups 8 and 9 received a combination of NAC and aqueous seed extract of M. pruriens (350 mg/kg b.wt and 530 mg/kg b.wt) orally once daily. Following the treatment, the blood was drawn retro-orbitally to assess the liver (serum alanine transaminase [ALT], serum aspartate transaminase, and serum alkaline phosphatase) and kidney (serum urea and serum creatinine) functions. Learning and memory were assessed by passive avoidance test. Animals were sacrificed by an overdose of ketamine, and their Nissl stained hippocampal sections were analyzed for alterations in neural cell numbers in CA1 and CA3 regions. RESULTS In the short-term treatment, groups administered with M. pruriens 530 mg/kg b.wt alone and combination of NAC + M. pruriens 350 mg/kg b.wt exhibited a significant improvement in memory retention, less severe neurodegeneration, and decrease in serum ALT levels. In long-term treatment, groups administered with M. pruriens 700 mg/kg b.wt alone and combination of NAC+M. pruriens 350 mg/kg b.wt, respectively, showed better memory retention, decreased neural deficits, and reduced levels of kidney and liver enzymes. CONCLUSION The seed extract of M. pruriens showed significant enhancement in memory and learning. The number of surviving neurons in the CA1 and CA3 regions also increased on treatment with M. pruriens. Serum ALT, serum urea, and serum creatinine levels showed significant improvement on long-term treatment with M. pruriens.
Collapse
Affiliation(s)
- Preethi Concessao
- Department of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Laxminarayana Kurady Bairy
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Archana Parampalli Raghavendra
- Department of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
7
|
Durappanavar PN, Nadoor P, Waghe P, Pavithra BH, Jayaramu GM. Melatonin Ameliorates Neuropharmacological and Neurobiochemical Alterations Induced by Subchronic Exposure to Arsenic in Wistar Rats. Biol Trace Elem Res 2019; 190:124-139. [PMID: 30306420 DOI: 10.1007/s12011-018-1537-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
An experimental study was conducted in Wistar rats to characterize the arsenic ("As")-induced alterations in neurobiochemistry in brain and its impact on neuropharmacological activities with or without the melatonin (MLT) as an antioxidant given exogenously. Male Wistar rats were randomly divided in to four groups of six each. Group I served as untreated control, while group II received As [sodium (meta) arsenite; NaAsO2] at 10 mg/kg bw (p.o.) for a period of 56 days. Experimental rats in group III received treatment similar to group II but in addition received MLT at 10 mg/kg bw (p.o.) from day 32 onwards. Rats in group IV received MLT alone from day 32 onwards similar to group III. Sub-chronic exposure to As (group II) significantly reduced both voluntary locomotor and forced motor activities and melatonin supplementation (group III) showed a significant improvement in motor activities, when subjected to test on day 42 or 56. Rats exposed to As showed a significant increase in anxiety level and a marginal nonsignificant reduction in pain latency. Sub-chronic administration of As induced (group II) significant increase in the levels of thiobarbituric acid reactive substance (TBARS) called malondialdehyde (MDA) in the brain tissue (5.55 ± 0.57 nmol g-1), and their levels were significantly reduced by MLT supplementation (group III 3.96 ± 0.15 nmol g-1). The increase in 3-nitrotyrosine (3-NT) levels in As-exposed rats indicated nitrosative stress due to the formation of peroxynitrite (ONOO-). However, exogenously given MLT significantly reduced the 3-NT formation as well as prostaglandin (PGE2) levels in the brain. Similarly, MLT administration have suppressed the release of pro-inflammatory cytokines (viz., IL-1β, IL-6, and TNF-α) and amyloid-β1-40 (Aβ) deposition in the brain tissues of experimental rats. To conclude, exogenous administration of melatonin can overcome the sub-chronic As-induced oxidative and nitrosative stress in the CNS, suppressed pro-inflammatory cytokines, and restored certain disturbed neuropharmacological activities in Wistar rats.
Collapse
Affiliation(s)
- Prasada Ningappa Durappanavar
- Department of Veterinary Pharmacology and Toxicology; Karnataka Veterinary, Animal and Fisheries Sciences University; Veterinary College, Vinobanagar, Shivamogga, Karnataka, 577 204, India
| | - Prakash Nadoor
- Department of Veterinary Pharmacology and Toxicology; Karnataka Veterinary, Animal and Fisheries Sciences University, Veterinary College, Veterinary College, Hebbal, Bengaluru, Karnataka, 560 024, India.
| | - Prashantkumar Waghe
- Department of Veterinary Pharmacology and Toxicology Veterinary College, Nandinagar, Bidar, Karnataka, 585401, India
| | - B H Pavithra
- Department of Veterinary Pharmacology and Toxicology; Karnataka Veterinary, Animal and Fisheries Sciences University, Veterinary College, Veterinary College, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - G M Jayaramu
- Department of Veterinary Pathology, Karnataka Veterinary, Animal and Fisheries Sciences University, Veterinary College, Vinobanagar, Shivamogga, Karnataka, 577 204, India
| |
Collapse
|
8
|
Ahmed RG, El-Gareib AW. Gestational Arsenic Trioxide Exposure Acts as a Developing Neuroendocrine-Disruptor by Downregulating Nrf2/PPARγ and Upregulating Caspase-3/NF-ĸB/Cox2/BAX/iNOS/ROS. Dose Response 2019; 17:1559325819858266. [PMID: 31258454 PMCID: PMC6589982 DOI: 10.1177/1559325819858266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The goal of this investigation was to evaluate the effects of gestational administrations of arsenic trioxide (ATO; As2O3) on fetal neuroendocrine development (the thyroid-cerebrum axis). Pregnant Wistar rats were orally administered ATO (5 or 10 mg/kg) from gestation day (GD) 1 to 20. Both doses of ATO diminished free thyroxine and free triiodothyronine levels and augmented thyrotropin level in both dams and fetuses at GD 20. Also, the maternofetal hypothyroidism in both groups caused a dose-dependent reduction in the fetal serum growth hormone, insulin growth factor-I (IGF-I), and IGF-II levels at embryonic day (ED) 20. These disorders perturbed the maternofetal body weight, fetal brain weight, and survival of pregnant and their fetuses. In addition, destructive degeneration, vacuolation, hyperplasia, and edema were observed in the fetal thyroid and cerebrum of both ATO groups at ED 20. These disruptions appear to depend on intensification in the values of lipid peroxidation, nitric oxide, and H2O2, suppression of messenger RNA (mRNA) expression of nuclear factor erythroid 2-related factor 2 and peroxisome proliferator-activated receptor gamma, and activation of mRNA expression of caspase-3, nuclear factor kappa-light-chain-enhancer of activated B cells, cyclooxygenase-2, Bcl-2–associated X protein, and inducible nitric oxide synthase in the fetal cerebrum. These data suggest that gestational ATO may disturb thyroid-cerebrum axis generating fetal neurodevelopmental toxicity.
Collapse
Affiliation(s)
- R G Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
9
|
Firdaus F, Zafeer MF, Anis E, Ahmad F, Hossain MM, Ali A, Afzal M. Evaluation of phyto-medicinal efficacy of thymoquinone against Arsenic induced mitochondrial dysfunction and cytotoxicity in SH-SY5Y cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:224-230. [PMID: 30668372 DOI: 10.1016/j.phymed.2018.09.197] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND It is evaluated that a few million individuals worldwide are experiencing Arsenic (As) harmfulness coming about because of anthropogenic discharges. There is likewise proof to propose that As can affect the peripheral, as well as, the central nervous system (CNS). On the contrary, thymoquinone (TQ), a biologically active ingredient of Nigella sativa has exhibited numerous neuro-pharmacological traits since ancient times. HYPOTHESIS/PURPOSE In the present study, the neuroprotective efficacy of TQ was explored by primarily studying its antioxidant and anti-apoptotic potential against Arsenic trioxide (As2O3) induced toxicity in SH-SY5Y human neuroblastoma cell lines. STUDY DESIGN For experimentation, cells were seeded in 96 well tissue culture plates and kept undisturbed for 24 h to attain proper adhesion. After 75-80% confluence, cells were pretreated with 10 µM and 20 µM thymoquinone (TQ) for 1 h After adding 2 µM As, cells were set aside for incubation for 24 h without changing the medium. METHODS The mitigatory effects of TQ with particular reference to cell viability and cytotoxicity, the generation of reactive oxygen species, DNA damage, and mitochondrial dynamics were studied. RESULTS Pretreatment of SH-SY5Y cells with TQ (10 and 20 μM) for an hour and subsequent exposure to 2 μM As2O3 protected the SH-SY5Y cells against the neuro-damaging effects of the latter. Also, the SH-SY5Y cells were better preserved with increased viability, repaired DNA, less free radical generation and balanced transmembrane potential than those exposed to As2O3 alone. TQ pretreatment also inhibited As2O3-induced exacerbation in protein levels of BAX and PARP-1 and restored the loss of Bcl2 levels. CONCLUSION The findings of this study suggest that TQ may prevent neurotoxicity and As2O3-induced apoptosis and cytotoxicity. It is, therefore, worth studying further for its potential to reduce the risks of arsenic-related neurological implications.
Collapse
Affiliation(s)
- Fakiha Firdaus
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India; Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| | - Mohd Faraz Zafeer
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Ehraz Anis
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Faraz Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - M Mobarak Hossain
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Asif Ali
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India; Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Afzal
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
10
|
R G A, El-Gareib AW. WITHDRAWN: Toxic effects of gestational arsenic trioxide on the neuroendocrine axis of developing rats. Food Chem Toxicol 2018:S0278-6915(18)30663-X. [PMID: 30218683 DOI: 10.1016/j.fct.2018.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ahmed R G
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
11
|
Firdaus F, Zafeer MF, Anis E, Ahmad M, Afzal M. Ellagic acid attenuates arsenic induced neuro-inflammation and mitochondrial dysfunction associated apoptosis. Toxicol Rep 2018; 5:411-417. [PMID: 29854611 PMCID: PMC5978009 DOI: 10.1016/j.toxrep.2018.02.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 01/11/2023] Open
Abstract
Ellagic acid mitigates arsenic mediated genotoxicity in rat brain hippocampi. Ellagic acid ameliorates arsenic induced exacerbation in levels of ROS and pro-inflammatory cytokines in rat brain hippocampi. Ellagic acid has the propensity to modulate mRNA expression of BAX, Bcl2 and caspase3, suggestive of its neuroprotective efficacy. Arsenic, being a global pollutant needs a potential remedy which could fight against its associated toxicities. Ellagic acid (EA) is a known agent for its anti-inflammatory, antioxidant and antiapoptotic effects, and it is commonly found in fruits. The present study is designed to determine protective efficacy of EA against arsenic induced toxicity with special mention to inflammation and mitochondrial dysfunction in hippocampi of wistar rats. Rats were pre-treated with EA (20 and 40 mg/kg b.wt; p.o. for 11 days) along with arsenic (10 mg/kg; p.o. for 8 days). Total reactive oxygen species level and mitochondrial membrane potential were analyzed using flow cytometry. Protein and mRNA expression of apoptotic and inflammatory markers were also evaluated in rat hippocampus. Our results show that arsenic exposure increased total ROS generation and DNA fragmentation, decreased mitochondrial membrane potential alongwith an increase in expression of pro-apoptotic and inflammatory markers. suggesting that EA complementation downregulated total ROS generation dose dependently. Apoptotic markers, BAX and Bcl2 as well as inflammatory markers, IL-1β, TNFα, INFγ got altered significantly on its administration. Moreover, it also attenuated effects on mitochondrial membrane potential. Based on our findings, EA might substantiate to be a budding therapeutic candidate against arsenic induced neurotoxicity.
Collapse
Affiliation(s)
- Fakiha Firdaus
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.,Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Faraz Zafeer
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Ehraz Anis
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Afzal
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
12
|
Sun H, Yang Y, Shao H, Sun W, Gu M, Wang H, Jiang L, Qu L, Sun D, Gao Y. Sodium Arsenite-Induced Learning and Memory Impairment Is Associated with Endoplasmic Reticulum Stress-Mediated Apoptosis in Rat Hippocampus. Front Mol Neurosci 2017; 10:286. [PMID: 28936164 PMCID: PMC5594089 DOI: 10.3389/fnmol.2017.00286] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic arsenic exposure has been associated to cognitive deficits. However, mechanisms remain unknown. The present study investigated the neurotoxic effects of sodium arsenite in drinking water over different dosages and time periods. Based on results from the Morris water maze (MWM) and morphological analysis, an exposure to sodium arsenite could induce neuronal damage in the hippocampus, reduce learning ability, and accelerate memory impairment. Sodium arsenite significantly increased homocysteine levels in serum and brain. Moreover, sodium arsenite triggered unfolded protein response (UPR), leading to the phosphorylation of RNA-regulated protein kinase-like ER kinase (PERK) and eukaryotic translation initiation factor 2 subunit α (eIF2α), and the induction of activating transcription factor 4 (ATF4). Arsenite exposure also stimulated the expression of the endoplasmic reticulum (ER) stress markers, glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and the cleavage of caspase-12. Furthermore, exposure to arsenite enhanced apoptosis as demonstrated by expression of caspase-3 and TUNEL assay in the hippocampus. The results suggest that exposure to arsenite can significantly decrease learning ability and accelerate memory impairment. Potential mechanisms are related to enhancement of homocysteine and ER stress-induced apoptosis in the hippocampus.
Collapse
Affiliation(s)
- Hongna Sun
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Yanmei Yang
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Hanwen Shao
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Weiwei Sun
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Muyu Gu
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Hui Wang
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Lixin Jiang
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Lisha Qu
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Dianjun Sun
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Yanhui Gao
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China.,Institution of Environmentally Related Diseases, Harbin Medical UniversityHarbin, China
| |
Collapse
|
13
|
Li J, Duan X, Dong D, Zhang Y, Zhao L, Li W, Chen J, Sun G, Li B. Tissue-specific distributions of inorganic arsenic and its methylated metabolites, especially in cerebral cortex, cerebellum and hippocampus of mice after a single oral administration of arsenite. J Trace Elem Med Biol 2017; 43:15-22. [PMID: 27745987 DOI: 10.1016/j.jtemb.2016.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 11/26/2022]
Abstract
Groundwater contaminated with inorganic arsenic (iAs) is the main source of human exposure to arsenic and generates a global health issue. In this study, the urinary excretion, as well as the time-course distributions of various arsenic species in murine tissues, especially in different brain regions were determined after a single oral administration of 2.5, 5, 10 and 20mg/kg sodium arsenite (NaAsO2). Our data showed that the peak times of urinary, hepatic and nephritic total arsenic (TAs) were happened at about 1h, then TAs levels decreased gradually and almost could not be observed after 72h. On contrast, the time course of TAs in lung, urinary bladder and different brain regions exhibited an obvious process of accumulation and elimination,and the peak times were nearly at 6h to 9h. TAs levels of 10 and 20mg/kg NaAsO2 groups were significantly higher than 2.5 and 5mg/kg groups, and the amounts of TAs in 5mg/kg groups were in the order of liver>lung>kidney>urinary bladder>hippocampus>cerebral cortex>cerebellum. In addition, iAs was the most abundant species in liver and kidney, while lung and urinary bladder accumulated the highest concentrations of dimethylated arsenicals (DMA). What's more, the distributions of arsenic species were not homogeneous among different brain regions, as DMA was the sole species in cerebral cortex and cerebellum, while extremely high concentrations and percentages of monomethylated arsenicals (MMA) were found in hippocampus. These results demonstrated that distributions of iAs and its methylated metabolites were tissue-specific and even not homogeneous among different brain regions, which must be considered as to the tissue- and region-specific toxicity of iAs exposure. Our results thus provide useful information for clarifying and reducing the uncertainty in the risk assessment for this metalloid.
Collapse
Affiliation(s)
- Jinlong Li
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110013, China
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning, China
| | - Dandan Dong
- Cao County Center for Disease Control and Prevention, Heze City, Shandong Province, 274400, China
| | - Yang Zhang
- Chengde City Center for Disease Prevention and Control, Chengde City, Hebei Province, 069000, China
| | - Lu Zhao
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110013, China
| | - Wei Li
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110013, China
| | - Jinli Chen
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110013, China
| | - Guifan Sun
- Environment and Non-Communicable Diseases Research Center, School of Public Health, China Medical University, Shenyang, 110013, China
| | - Bing Li
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110013, China.
| |
Collapse
|
14
|
Pandey R, Rai V, Mishra J, Mandrah K, Kumar Roy S, Bandyopadhyay S. From the Cover: Arsenic Induces Hippocampal Neuronal Apoptosis and Cognitive Impairments via an Up-Regulated BMP2/Smad-Dependent Reduced BDNF/TrkB Signaling in Rats. Toxicol Sci 2017; 159:137-158. [DOI: 10.1093/toxsci/kfx124] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Xu M, Rui D, Yan Y, Xu S, Niu Q, Feng G, Wang Y, Li S, Jing M. Oxidative Damage Induced by Arsenic in Mice or Rats: A Systematic Review and Meta-Analysis. Biol Trace Elem Res 2017; 176:154-175. [PMID: 27498811 DOI: 10.1007/s12011-016-0810-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/11/2016] [Indexed: 01/25/2023]
Abstract
In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (P < 0.05) greater extent upon exposure to As3+ than to As5+. Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.
Collapse
Affiliation(s)
- Mengchuan Xu
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Dongsheng Rui
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yizhong Yan
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shangzhi Xu
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Qiang Niu
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Gangling Feng
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yan Wang
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shugang Li
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China.
| | - Mingxia Jing
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
16
|
Rodríguez V, Limón-Pacheco J, Del Razo L, Giordano M. Effects of inorganic arsenic exposure on glucose transporters and insulin receptor in the hippocampus of C57BL/6 male mice. Neurotoxicol Teratol 2016; 54:68-77. [DOI: 10.1016/j.ntt.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 01/06/2023]
|
17
|
Mao G, Zhou Z, Chen Y, Wang W, Wu X, Feng W, Cobbina SJ, Huang J, Zhang Z, Xu H, Yang L, Wu X. Neurological Toxicity of Individual and Mixtures of Low Dose Arsenic, Mono and Di (n-butyl) Phthalates on Sub-Chronic Exposure to Mice. Biol Trace Elem Res 2016; 170:183-93. [PMID: 26257159 DOI: 10.1007/s12011-015-0457-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/26/2015] [Indexed: 11/24/2022]
Abstract
The objective of this study was to evaluate the toxicity of individual and mixtures of di(n-butyl) phthalates (DBP) and their active metabolite monobutyl phthalate (MBP) and arsenic (As) on spatial cognition associated with hippocampal apoptosis in mice. Mice were exposed, individually or in combination, to DBP (50 mg/kg body weight, intragastrically), MBP (50 mg/kg body weight, intragastrically), and As (10 mg/L, per os) for 8 weeks. The Morris water maze test showed that mice exposed to DBP/MBP combined with As exhibited longer escape latencies and the lower average number of crossing the platform. The As content in the hippocampus after As exposure increased as compared to those without As exposure. In mice exposed to DBP/MBP combined with As, pathological alterations and oxidative damage to the hippocampus were found. Expression of apoptosis-related protein: Bax and caspase-3 were significantly increased in the hippocampus, while there was no significant change in expression of Bcl-2. The results suggested that DBP and MBP combined with As can induce spatial cognitive deficits through altering the expression of apoptosis-related protein and As played a critical role in cognition impairments. And the joint exposure has antagonistic effect.
Collapse
Affiliation(s)
- Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Zhaoxiang Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Yao Chen
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Wei Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Xueshan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Weiwei Feng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Samuel Jerry Cobbina
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Jing Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Hai Xu
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Liuqing Yang
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China.
| | - Xiangyang Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China.
| |
Collapse
|
18
|
Mirhoseiny Z, Amiri A, Shabani M, Esmaeilpour K, Alizadeh F, Sheibani V. Chelation therapy improves spatial learning and memory impairment in gallium arsenide intoxicated rats. TOXIN REV 2016. [DOI: 10.3109/15569543.2015.1127259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Prakash C, Soni M, Kumar V. Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: A review. J Appl Toxicol 2015; 36:179-88. [DOI: 10.1002/jat.3256] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/01/2015] [Accepted: 09/28/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Chandra Prakash
- Department of Biochemistry; Maharshi Dayanand University; Rohtak 124001 Haryana India
| | - Manisha Soni
- Department of Biochemistry; Maharshi Dayanand University; Rohtak 124001 Haryana India
| | - Vijay Kumar
- Department of Biochemistry; Maharshi Dayanand University; Rohtak 124001 Haryana India
| |
Collapse
|
20
|
Wang Y, Bai C, Guan H, Chen R, Wang X, Wang B, Jin H, Piao F. Subchronic exposure to arsenic induces apoptosis in the hippocampus of the mouse brains through the Bcl‐2/Bax pathway. J Occup Health 2015; 57:212-21. [PMID: 25787108 DOI: 10.1539/joh.14-0226-oa] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yachen Wang
- Department of Occupational and Environmental HealthDalian Medical UniversityP.R. China
| | - Canming Bai
- Department of NeurosurgeryThe Second Affiliated Hospital, Dalian Medical UniversityP.R. China
| | - Huai Guan
- Department of Obstetrics and GynecologyNo. 210 Hospital of PLAP.R. China
- Department of Obstetrics and GynecologyGeneral Hospital of Beijing Military CommandP.R. China
| | - Ruolin Chen
- Department of Occupational and Environmental HealthDalian Medical UniversityP.R. China
| | - Xiaoxu Wang
- Department of Occupational and Environmental HealthDalian Medical UniversityP.R. China
| | - Bingwen Wang
- Department of Occupational and Environmental HealthDalian Medical UniversityP.R. China
| | - Hetian Jin
- Department of Radiation OncologyNo. 202 Hospital of PLAP.R. China
| | - Fengyuan Piao
- Department of Occupational and Environmental HealthDalian Medical UniversityP.R. China
| |
Collapse
|
21
|
Wang CY, Wang ZY, Xie JW, Cai JH, Wang T, Xu Y, Wang X, An L. CD36 upregulation mediated by intranasal LV-NRF2 treatment mitigates hypoxia-induced progression of Alzheimer's-like pathogenesis. Antioxid Redox Signal 2014; 21:2208-30. [PMID: 24702189 PMCID: PMC4224043 DOI: 10.1089/ars.2014.5845] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS There is extensive evidence that oxidative stress induces cellular dysfunction in the brain and plays a critical role in Alzheimer's disease (AD) pathogenesis. Hypoxia increases factors involved in oxidative stress injury and contributes to the onset and progression of AD. Nuclear factor erythroid 2-related factor 2 (NRF2), a major component regulating antioxidant response, is attenuated in the AD brain. Importantly, NRF2 directly regulates the alternative first exons of CD36, an important participant in oxidative and inflammatory processes. To explore the effects of hypoxia-induced deterioration of AD-like pathogenesis and investigate the correlation between hypoxia-induced NRF2 signal alterations and CD36 expression, we examined the NRF2 signaling, CD36, and oxidative stress events in hypoxia-treated APPswe/PSEN1dE9 (APP/PS1) mice brain. RESULTS We observed that hypoxia treatment increased oxidative stress, exacerbated inflammation, and aggravated learning defects in aged APP/PS1 mice. Microglia from hypoxia-treated mice brain exhibited marked reduction in CD36 expression and inhibition of β-amyloid (Aβ) degradation. Accordingly, hypoxia treatment caused a decrease in transactivation of NRF2 target genes in the aging mouse brain. Intranasal administration with a lentiviral vector encoding human NRF2 increased CD36 expression, ameliorated the weak antioxidant response triggered by hypoxia, diminished Aβ deposition, and improved spatial memory defects. INNOVATION In this study, we demonstrated for the first time that NRF2 intranasal treatment-induced increases of CD36 could enhance Aβ clearance in AD transgenic mouse. CONCLUSION These results suggest that targeting NRF2-mediated CD36 expression might provide a beneficial intervention for cognitive impairment and oxidative stress in AD progression.
Collapse
Affiliation(s)
- Chun-Yan Wang
- 1 Key Laboratory of Medical Cell Biology of Ministry of Education of China, Department of Pathophysiology, China Medical University , Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Senuma M, Mori C, Ogawa T, Kuwagata M. Prenatal sodium arsenite affects early development of serotonergic neurons in the fetal rat brain. Int J Dev Neurosci 2014; 38:204-12. [PMID: 25291237 DOI: 10.1016/j.ijdevneu.2014.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022] Open
Abstract
Prenatal arsenite exposure has been associated with developmental disorders in children, including reduced IQ and language abnormalities. Animal experiments have also shown that exposure to arsenite during development induced developmental neurotoxicity after birth. However, the evidence is not enough, and the mechanism is poorly understood, especially on the exposure during early brain development. This study assessed effects of sodium (meta) arsenite shortly after exposure on early developing fetal rat brains. Pregnant rats were administered 50 mg/L arsenite in their drinking water or 20 mg/kg arsenite orally using a gastric tube, on gestational days (GD) 9-15. Fetal brains were examined on GD16. Pregnant rats administered 20 mg/kg arsenite showed reductions in maternal body weight gain and food consumption during treatment, but not with 50 mg/L arsenite. Arsenite did not affect fetal development, as determined by body weight, mortality and brain size. Arsenite also did not induce excessive cell death or affect neural cell division in any region of the fetal neuroepithelium. Thyrosine hydroxylase immunohistochemistry revealed no difference in the distribution of catecholaminergic neurons between fetuses of arsenite treated and control rats. However, reductions in the number of serotonin positive cells in the fetal median and dorsal raphe nuclei were observed following maternal treatment with 20mg/kg arsenite. Image analysis showed that the serotonin positive areas decreased in all fetal mid- and hind-brain areas without altering distribution patterns. Maternal stress induced by arsenite toxicity did not alter fetal development. These results suggest that arsenite-induced neurodevelopmental toxicity involves defects in the early development of the serotonin nervous system.
Collapse
Affiliation(s)
- Mika Senuma
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan.
| | - Chisato Mori
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-8670, Japan.
| | - Tetsuo Ogawa
- Department of Biology, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan.
| | - Makiko Kuwagata
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan.
| |
Collapse
|
23
|
Early life arsenic exposure and brain dopaminergic alterations in rats. Int J Dev Neurosci 2014; 38:91-104. [DOI: 10.1016/j.ijdevneu.2014.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/09/2014] [Accepted: 08/23/2014] [Indexed: 11/21/2022] Open
|
24
|
Srivastava P, Yadav RS, Chandravanshi LP, Shukla RK, Dhuriya YK, Chauhan LKS, Dwivedi HN, Pant AB, Khanna VK. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats. Toxicol Appl Pharmacol 2014; 279:428-440. [PMID: 24952339 DOI: 10.1016/j.taap.2014.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 12/20/2022]
Abstract
Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20mg/kg body weight, p.o) and curcumin (100mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin.
Collapse
Affiliation(s)
- Pranay Srivastava
- CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001, India
| | - Rajesh S Yadav
- CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001, India; Department of Crimnology and Forensic Science, Harisingh Gour University, Sagar 470 003, India
| | - Lalit P Chandravanshi
- CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001, India
| | - Rajendra K Shukla
- CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001, India
| | - Yogesh K Dhuriya
- CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001, India
| | - Lalit K S Chauhan
- CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001, India
| | - Hari N Dwivedi
- Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 227 015, India
| | - Aditiya B Pant
- CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001, India
| | - Vinay K Khanna
- CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001, India.
| |
Collapse
|
25
|
L. Bodhank S, Adil M, Visnagri A, Shiva Kuma V, D. Kandhar A, Ghosh P. Protective Effect of Naringin on Sodium Arsenite Induced Testicular Toxicity via Modulation of Biochemical Perturbations in Experimental Rats. ACTA ACUST UNITED AC 2014. [DOI: 10.5567/pharmacologia.2014.222.234] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Singh MK, Yadav SS, Yadav RS, Singh US, Shukla Y, Pant KK, Khattri S. Efficacy of crude extract of Emblica officinalis (amla) in arsenic-induced oxidative damage and apoptosis in splenocytes of mice. Toxicol Int 2014; 21:8-17. [PMID: 24748729 PMCID: PMC3989920 DOI: 10.4103/0971-6580.128784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction: Arsenic, an environmental contaminant naturally occurred in groundwater and has been found to be associated with immune-related health problems in humans. Objective: In view of increasing risk of arsenic exposure due to occupational and non-occupational settings, the present study has been focused to investigate the protective efficacy of amla against arsenic-induced spleenomegaly in mice. Results: Arsenic exposures (3 mg/kg body weight p.o for 30 days) in mice caused an increase production of ROS (76%), lipid peroxidation (84%) and decrease in the levels of superoxide dismutase (53%) and catalase (54%) in spleen as compared to controls. Arsenic exposure to mice also caused a significant increase in caspases-3 activity (2.8 fold) and decreases cell viability (44%), mitochondrial membrane potential (47%) linked with apoptosis assessed by the cell cycle analysis (subG1-28.72%) and annexin V/PI binding in spleen as compared to controls. Simultaneous treatment of arsenic and amla (500 mg/kg body weight p.o for 30 days) in mice decreased the levels of lipid peroxidation (33%), ROS production (24%), activity of caspase-3 (1.4 fold), apoptosis (subG1 12.72%) and increased cell viability (63%), levels superoxide dismutase (80%), catalase (77%) and mitochondrial membrane potential (66%) as compared to mice treated with arsenic alone. Conclusions: Results of the present study indicate that the effect of arsenic is mainly due to the depletion of glutathione in liver associated with enhanced oxidative stress that has been found to be protected following simultaneous treatment of arsenic and amla.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Pharmacology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Suraj Singh Yadav
- Department of Pharmacology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Rajesh Singh Yadav
- Department of Criminology and Forensic Science, School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh, India
| | - Uma Shanker Singh
- Department of Pharmacology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Yogeshwar Shukla
- Proteomics Laboratory, CSIR Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Kamlesh Kumar Pant
- Department of Pharmacology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Sanjay Khattri
- Department of Pharmacology, King George Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
27
|
Chandravanshi LP, Yadav RS, Shukla RK, Singh A, Sultana S, Pant AB, Parmar D, Khanna VK. Reversibility of changes in brain cholinergic receptors and acetylcholinesterase activity in rats following early life arsenic exposure. Int J Dev Neurosci 2014; 34:60-75. [DOI: 10.1016/j.ijdevneu.2014.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/25/2014] [Accepted: 01/31/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Rajesh S. Yadav
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
- Department of Criminology and Forensic ScienceHarisingh Gour UniversitySagar470003India
| | - Rajendra K. Shukla
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| | - Anshuman Singh
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| | - Sarwat Sultana
- Neurotoxicology LaboratoryDepartment of Medical Elementology and ToxicologyJamia HamdardNew Delhi110 062India
| | - Aditya B. Pant
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| | - Devendra Parmar
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| | - Vinay K. Khanna
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| |
Collapse
|
28
|
Halatek T, Sinczuk-Walczak H, Janasik B, Trzcinka-Ochocka M, Winnicka R, Wasowicz W. Health effects and arsenic species in urine of copper smelter workers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:787-797. [PMID: 24679086 DOI: 10.1080/10934529.2014.882207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aim of this study was to compare indices of exposure in workers employed at different work posts in a copper smelter plant using neurophysiological tests and to evaluate the relationship between urinary arsenic species with the aid of sensitive respiratory and renal biomarkers. We have attempted to elucidate the impact of different arsenic speciation forms on the observed health effects. We focused on the workers (n = 45) exposed to atmospheres containing specific diverse mixtures of metals (such as those occurring in Departments of Furnaces, Lead and Electrolysis) compared to controls (n = 16). Subjective symptoms from the central (CNS) and the peripheral (PNS) nervous system were recorded and visual evoked potential (VEP), electroneurography (ENeG) and electroencephalography (EEG) curves were analysed. Levels of airborne lead (PbA), zinc (ZnA) and copper (CuA) and Pb levels in blood (PbB) and the relationships between airborne As concentrations (AsA) and the urinary levels of the inorganic (iAs); As(+3), As(+5) and the organic; methylarsonate (MMA(V)), dimethylarsinate (DMA(V)) and arsenobetaine (AsB) arsenic species were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Effects of exposure were expressed in terms of biomarker levels: Clara cell protein (CC16) in serum as early pulmonary biomarker and β2-microglobulin (β2M) in urine and serum, retinol binding protein (RBP) as renal markers, measured by sensitive latex-immunoassay (LIA). Abnormal results of neurophysiological tests, VEP, EEG and ENeG showed dominant subclinical effects in CNS and PNS of workers from Departments of Lead and Furnace. In group of smelters from Departments of Furnace exposed to arsenic above current TLV, excreted arsenic species As(+3) and As(+5) seemed to reduce the level of Clara cell protein (CC16), thereby reducing anti-inflammatory potential of the lungs and increasing the levels of renal biomarker (β2M) and copper in urine (CuU). The study confirmed deleterious arsenic effects to the kidney by increased levels of low-molecular weight protein in urine and the extent of the renal copper accumulation/excretion. The results of our work also support the usefulness of application of the sensitive neurophysiologic tests, such as VEP, EEG and ENeG, for the detection of early subclinical effects of the exposure of the nervous system in copper smelters.
Collapse
Affiliation(s)
- Tadeusz Halatek
- a Department of Toxicology and Carcinogenesis , Nofer Institute of Occupational Medicine , Lodz , Poland
| | | | | | | | | | | |
Collapse
|
29
|
Lu TH, Tseng TJ, Su CC, Tang FC, Yen CC, Liu YY, Yang CY, Wu CC, Chen KL, Hung DZ, Chen YW. Arsenic induces reactive oxygen species-caused neuronal cell apoptosis through JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-regulated pathways. Toxicol Lett 2013; 224:130-40. [PMID: 24157283 DOI: 10.1016/j.toxlet.2013.10.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 10/26/2022]
Abstract
Arsenic (As), a well-known high toxic metal, is an important environmental and industrial contaminant, and it induces oxidative stress, which causes many adverse health effects and diseases in humans, particularly in inorganic As (iAs) more harmful than organic As. Recently, epidemiological studies have suggested a possible relationship between iAs exposure and neurodegenerative disease development. However, the toxicological effects and underlying mechanisms of iAs-induced neuronal cell injuries are mostly unknown. The present study demonstrated that iAs significantly decreased cell viability and induced apoptosis in Neuro-2a cells. iAs also increased oxidative stress damage (production of malondialdehyde (MDA) and ROS, and reduction of Nrf2 and thioredoxin protein expression) and induced several features of mitochondria-dependent apoptotic signals, including: mitochondrial dysfunction, the activations of PARP and caspase cascades, and the increase in caspase-3 activity. Pretreatment with the antioxidant N-acetylcysteine (NAC) effectively reversed these iAs-induced responses. iAs also increased the phosphorylation of JNK and ERK1/2, but did not that p38-MAPK, in treated Neuro-2a cells. NAC and the specific JNK inhibitor (SP600125) and ERK1/2 inhibitor (PD98059) abrogated iAs-induced cell cytotoxicity, caspase-3/-7 activity, and JNK and ERK1/2 activation. Additionally, exposure of Neuro-2a cells to iAs triggered endoplasmic reticulum (ER) stress identified through several key molecules (GRP 78, CHOP, XBP-1, and caspase-12), which was prevented by NAC. Transfection with GRP 78- and CHOP-specific si-RNA dramatically suppressed GRP 78 and CHOP expression, respectively, and attenuated the activations of caspase-12, -7, and -3 in iAs-exposed cells. Therefore, these results indicate that iAs induces ROS causing neuronal cell death via both JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-triggered apoptosis pathways.
Collapse
Affiliation(s)
- Tien-Hui Lu
- Department of Physiology, and Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 404, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cheng Y, Xue J, Jiang H, Wang M, Gao L, Ma D, Zhang Z. Neuroprotective effect of resveratrol on arsenic trioxide–induced oxidative stress in feline brain. Hum Exp Toxicol 2013; 33:737-47. [DOI: 10.1177/0960327113506235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arsenic trioxide (As2O3) is a known environmental toxicant and potent chemotherapeutic agent. Significant correlation has been reported between arsenic exposure (including consumption of arsenic-contaminated water and clinical use of As2O3) and dysfunction in the nervous system. In this study, we aimed to elucidate the effect of resveratrol with neuroprotective activities on As2O3-induced oxidative damage and cerebral cortex injury. Twenty-four healthy Chinese Dragon Li cats of either sex were randomly divided into four groups: control (1 ml/kg physiological saline), As2O3 (1 mg/kg), resveratrol (3 mg/kg) and As2O3 (1 mg/kg) + resveratrol (3 mg/kg). As2O3+resveratrol-treated group were given resveratrol (3 mg/kg) 1 h before As2O3 (1 mg/kg) administration. Pretreatment with resveratrol upregulated the activities of antioxidant enzymes and attenuated As2O3-induced increases in reactive oxygen species and malondialdehyde production. In addition, resveratrol attenuated the As2O3-induced reduction in the level of reduced glutathione and the ratio of reduced glutathione to oxidised glutathione, and accumulation of arsenic in the cerebral cortex. These findings support neuroprotective effect of resveratrol on As2O3 toxicity in feline brain and provide a better understanding of the mechanism that resveratrol modulates As2O3-induced oxidative damage and a stronger rational for clinical use of resveratrol to protect brain against the toxicity of arsenic.
Collapse
Affiliation(s)
- Y Cheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - J Xue
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - H Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - M Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - L Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - D Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Z Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
31
|
Lin RH, Yang ML, Li YC, Chang HM, Kuan YH. Indium chloride-induced micronuclei via reactive oxygen species in Chinese hamster lung fibroblast V79 cells. ENVIRONMENTAL TOXICOLOGY 2013; 28:595-600. [PMID: 24022999 DOI: 10.1002/tox.20755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 06/09/2011] [Accepted: 06/21/2011] [Indexed: 06/02/2023]
Abstract
We study the cytotoxicity of indium chloride (InCl₃) in Chinese hamster lung fibroblasts, the V79 cells, using MTT assay. The results showed that InCl₃ did not induce significant cytotoxicity at various concentrations tested. In addition, the frequency of micronuclei (MN) was assayed to evaluate the genotoxic effects of InCl₃ in V79 cells. InCl₃ at concentrations ranged 0.1-1 μM significantly increased MN frequency in a concentration-dependent manner. Both catalase and superoxide dismutase at concentrations of 75 and 150 μg/mL significantly inhibited InCl₃-induced MN. Similarly, Germanium oxide (GeO₂) and dimercaprol expressed antigenotoxic effects. From these findings, it is concluded that InCl₃ is a potent genotoxic chemical, which may be mediated partly by inducing oxidative stress. The significance of this study shows that the workers in the semiconductor factories should be cautious in exposing to the hazardous genotoxic InCl₃.
Collapse
Affiliation(s)
- Ruey-Hseng Lin
- Department of Pharmacology, School of Medicine, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung, Taiwan, Republic of China; Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
32
|
Singh MK, Yadav SS, Gupta V, Khattri S. Immunomodulatory role of Emblica officinalis in arsenic induced oxidative damage and apoptosis in thymocytes of mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:193. [PMID: 23889914 PMCID: PMC3733846 DOI: 10.1186/1472-6882-13-193] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/25/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Arsenic is widely distributed in the environment and has been found to be associated with the various health related problems including skin lesions, cancer, cardiovascular and immunological disorders. The fruit extract of Emblica officinalis (amla) has been shown to have anti-oxidative and immunomodulatory properties. In view of increasing health risk of arsenic, the present study has been carried out to investigate the protective effect of amla against arsenic induced oxidative stress and apoptosis in thymocytes of mice. METHODS Mice were exposed to arsenic (sodium arsenite 3 mg/kg body weight p.o.) or amla (500 mg/kg body weight p.o.) or simultaneously with arsenic and amla for 28 days. The antioxidant enzyme assays were carried out using spectrophotometer and generation of ROS, apoptotic parameters, change in cell cycle were carried out using flow cytometer following the standard protocols. RESULTS Arsenic exposure to mice caused a significant increase in the lipid peroxidation, ROS production and decreased cell viability, levels of reduced glutathione, the activity of superoxide dismutase, catalase, cytochrome c oxidase and mitochondrial membrane potential in the thymus as compared to controls. Increased activity of caspase-3 linked with apoptosis assessed by the cell cycle analysis and annexin V/PI binding was also observed in mice exposed to arsenic as compared to controls. Co-treatment with arsenic and amla decreased the levels of lipid peroxidation, ROS production, activity of caspase-3, apoptosis and increased cell viability, levels of antioxidant enzymes, cytochrome c oxidase and mitochondrial membrane potential as compared to mice treated with arsenic alone. CONCLUSIONS The results of the present study exhibits that arsenic induced oxidative stress and apoptosis significantly protected by co-treatment with amla that could be due to its strong antioxidant potential.
Collapse
Affiliation(s)
- Manish K Singh
- Department of Pharmacology, King George Medical University, Lucknow, Chowk 226 003, India
| | - Suraj S Yadav
- Department of Pharmacology, King George Medical University, Lucknow, Chowk 226 003, India
| | - Vineeta Gupta
- Department of Pharmacology, King George Medical University, Lucknow, Chowk 226 003, India
| | - Sanjay Khattri
- Department of Pharmacology, King George Medical University, Lucknow, Chowk 226 003, India
| |
Collapse
|
33
|
Subchronic exposure to arsenic disturbed the biogenic amine neurotransmitter level and the mRNA expression of synthetase in mice brains. Neuroscience 2013; 241:52-8. [DOI: 10.1016/j.neuroscience.2013.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 11/24/2022]
|
34
|
Arsenic induced neuronal apoptosis in guinea pigs is Ca2+ dependent and abrogated by chelation therapy: role of voltage gated calcium channels. Neurotoxicology 2013; 35:137-45. [PMID: 23376091 DOI: 10.1016/j.neuro.2013.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/24/2012] [Accepted: 01/21/2013] [Indexed: 11/20/2022]
Abstract
Arsenic contaminated drinking water has affected more than 200 million people globally. Chronic arsenicism has also been associated with numerous neurological diseases. One of the prime mechanisms postulated for arsenic toxicity is reactive oxygen species (ROS) mediated oxidative stress. In this study, we explored the kinetic relationship of ROS with calcium and attempted to dissect the calcium ion channels responsible for calcium imbalance after arsenic exposure. We also explored if mono- or combinational chelation therapy prevents arsenic-induced (25ppm in drinking water for 4 months) neuronal apoptosis in a guinea pig animal model. Results indicate that chronic arsenic exposure caused a significant increase in ROS followed by NO and calcium influx. This calcium influx is mainly dependent on L-type voltage gated channels that disrupt mitochondrial membrane potential, increase bax/bcl2 levels and caspase 3 activity leading to apoptosis. Interestingly, blocking of ROS could completely reduce calcium influx whereas calcium blockage partially reduced ROS increase. While in general mono- and combinational chelation therapies were effective in reversing arsenic induced alteration, combinational therapy of DMSA and MiADMSA was most effective. Our results provide evidence for the role of L-type calcium channels in regulating arsenic-induced calcium influx and DMSA+MiADMSA combinational therapy may be a better protocol than monotherapy in mitigating chronic arsenicosis.
Collapse
|
35
|
Halatek T, Lutz P, Stetkiewicz J, Krajnow A, Wieczorek E, Swiercz R, Szymczak M, Wasowicz W. Comparison of neurobehavioral and biochemical effects in rats exposed to dusts from copper smelter plant at different locations. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:1000-1011. [PMID: 23573920 DOI: 10.1080/10934529.2013.773198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mixed exposure to metals (including arsenic and lead) associated with the neurological and respiratory effects constitute one of the major health problems of copper smelting. Chemical composition of the dust, and the expected health effect of inhalation can be very diverse at different parts of the smelter plant. The aims of this study were to compare lung responses and behavioral effects in female Wistar rats after instillation of dust collected from different production processes at the same smelter department. Dusts collected at two different locations of furnace hall were sifted through 25-μm-mesh sieve. Obtained dust fractions, P-25(I) collected near stove, rich in heavy metals and arsenic, and P-25(II) collected near anode residue storage site, rich in aluminium, were instilled to rats. At 1, 7 and 30 days after dusts instillation, lung injury and inflammation were measured by analyzing sings of lung permeability in the bronchoalveolar lavage fluid (BALF), cell differentiation in BALF sediment and lung morphology. The behavioral studies were done 30 days after exposure. Results of biochemical tests showed a strong pro-inflammatory effect of P-25(I) fractions. Mostly characteristic effects after instillation of P-25(I) samples were 10× increased protein leakages in BALF. Both P-25(I) and P-25(II) fractions caused a reduction of Clara-cell 16 protein concentration (CC16) in BALF and activation of serum butyrylcholinesterase (BChE) at all time points. The morphological studies after exposure to P-25(I) fractions showed multi-focal infiltrations in the alveoli. The behavioral results, especially P-25(II) group rats (in open filed, passive avoidance and hot plate tests), indicated adverse effects in the nervous system, which may be related to changes in the dopaminergic and cholinergic pathway. The symptoms were noted in the form of persistent neurobehavioral changes which might be associated with the content of neurotoxic metals. e.g. Al, Mn and/or As. Decrease of CC16 concentration that occurred immediately after instillation of both dust samples, point out impaired anti-inflammatory potential, resulted in early harmful effect not only to the respiratory tract but also to the whole body, including the nervous system.
Collapse
Affiliation(s)
- Tadeusz Halatek
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Telmisartan treatment attenuates arsenic-induced hepatotoxicity in mice. Toxicology 2012; 300:149-57. [DOI: 10.1016/j.tox.2012.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/11/2012] [Accepted: 06/21/2012] [Indexed: 01/18/2023]
|
37
|
Yadav RS, Chandravanshi LP, Shukla RK, Sankhwar ML, Ansari RW, Shukla PK, Pant AB, Khanna VK. Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats. Neurotoxicology 2011; 32:760-8. [PMID: 21839772 DOI: 10.1016/j.neuro.2011.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/26/2011] [Accepted: 07/10/2011] [Indexed: 01/18/2023]
Abstract
Our recent studies have shown that curcumin protects arsenic induced neurotoxicity by modulating oxidative stress, neurotransmitter levels and dopaminergic system in rats. As chronic exposure to arsenic has been associated with cognitive deficits in humans, the present study has been carried out to implore the neuroprotective potential of curcumin in arsenic induced cholinergic dysfunctions in rats. Rats treated with arsenic (sodium arsenite, 20mg/kg body weight, p.o., 28 days) exhibited a significant decrease in the learning activity, assessed by passive avoidance response associated with decreased binding of (3)H-QNB, known to label muscarinic-cholinergic receptors in hippocampus (54%) and frontal cortex (27%) as compared to controls. Decrease in the activity of acetylcholinesterase in hippocampus (46%) and frontal cortex (33%), staining of Nissl body, immunoreactivity of choline acetyltransferase (ChAT) and expression of ChAT protein in hippocampal region was also observed in arsenic treated rats as compared to controls. Simultaneous treatment with arsenic and curcumin (100mg/kg body weight, p.o., 28 days) increased learning and memory performance associated with increased binding of (3)H-QNB in hippocampus (54%), frontal cortex (25%) and activity of acetylcholinesterase in hippocampus (41%) and frontal cortex (29%) as compared to arsenic treated rats. Increase in the expression of ChAT protein, immunoreactivity of ChAT and staining of Nissl body in hippocampal region was also observed in rats simultaneously treated with arsenic and curcumin as compared to those treated with arsenic alone. The results of the present study suggest that curcumin significantly modulates arsenic induced cholinergic dysfunctions in brain and also exhibits neuroprotective efficacy of curcumin.
Collapse
Affiliation(s)
- Rajesh S Yadav
- CSIR - Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001, India
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Flora SJS. Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 2011; 51:257-81. [PMID: 21554949 DOI: 10.1016/j.freeradbiomed.2011.04.008] [Citation(s) in RCA: 551] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 03/18/2011] [Accepted: 04/04/2011] [Indexed: 12/12/2022]
Abstract
This review summarizes the literature describing the molecular mechanisms of arsenic-induced oxidative stress, its relevant biomarkers, and its relation to various diseases, including preventive and therapeutic strategies. Arsenic alters multiple cellular pathways including expression of growth factors, suppression of cell cycle checkpoint proteins, promotion of and resistance to apoptosis, inhibition of DNA repair, alterations in DNA methylation, decreased immunosurveillance, and increased oxidative stress, by disturbing the pro/antioxidant balance. These alterations play prominent roles in disease manifestation, such as carcinogenicity, genotoxicity, diabetes, cardiovascular and nervous systems disorders. The exact molecular and cellular mechanisms involved in arsenic toxicity are rather unrevealed. Arsenic alters cellular glutathione levels either by utilizing this electron donor for the conversion of pentavalent to trivalent arsenicals or directly binding with it or by oxidizing glutathione via arsenic-induced free radical generation. Arsenic forms oxygen-based radicals (OH(•), O(2)(•-)) under physiological conditions by directly binding with critical thiols. As a carcinogen, it acts through epigenetic mechanisms rather than as a classical mutagen. The carcinogenic potential of arsenic may be attributed to activation of redox-sensitive transcription factors and other signaling pathways involving nuclear factor κB, activator protein-1, and p53. Modulation of cellular thiols for protection against reactive oxygen species has been used as a therapeutic strategy against arsenic. N-acetylcysteine, α-lipoic acid, vitamin E, quercetin, and a few herbal extracts show prophylactic activity against the majority of arsenic-mediated injuries in both in vitro and in vivo models. This review also updates the reader on recent advances in chelation therapy and newer therapeutic strategies suggested to treat arsenic-induced oxidative damage.
Collapse
Affiliation(s)
- Swaran J S Flora
- Division of Pharmacology & Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
39
|
Flora SJS, Bhatt K, Dwivedi N, Pachauri V, Kushwah PK. Co-administration of meso 2,3-dimercaptosuccinic acid monoesters reduces arsenic concentration and oxidative stress in gallium arsenide exposed rats. Clin Exp Pharmacol Physiol 2011; 38:423-429. [DOI: 10.1111/j.1440-1681.2011.05529.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
40
|
Inorganic arsenic causes cell apoptosis in mouse cerebrum through an oxidative stress-regulated signaling pathway. Arch Toxicol 2011; 85:565-75. [DOI: 10.1007/s00204-011-0709-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
|
41
|
Arsenic affects expression and processing of amyloid precursor protein (APP) in primary neuronal cells overexpressing the Swedish mutation of human APP. Int J Dev Neurosci 2011; 29:389-96. [PMID: 21440049 DOI: 10.1016/j.ijdevneu.2011.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 01/20/2023] Open
Abstract
Arsenic poisoning due to contaminated water and soil, mining waste, glass manufacture, select agrochemicals, as well as sea food, affects millions of people world wide. Recently, an involvement of arsenic in Alzheimer's disease (AD) has been hypothesized (Gong and O'Bryant, 2010). The present study stresses the hypothesis whether sodium arsenite, and its main metabolite, dimethylarsinic acid (DMA), may affect expression and processing of the amyloid precursor protein (APP), using the cholinergic cell line SN56.B5.G4 and primary neuronal cells overexpressing the Swedish mutation of APP, as experimental approaches. Exposure of cholinergic SN56.B5.G4 cells with either sodium arsenite or DMA decreased cell viability in a concentration- and exposure-time dependent manner, and affected the activities of the cholinergic enzymes acetylcholinesterase and choline acetyltransferase. Both sodium arsenite and DMA exposure of SN56.B5.G4 cells resulted in enhanced level of APP, and sAPP in the membrane and cytosolic fractions, respectively. To reveal any effect of arsenic on APP processing, the amounts of APP cleavage products, sAPPβ, and β-amyloid (Aβ) peptides, released into the culture medium of primary neuronal cells derived from transgenic Tg2576 mice, were assessed by ELISA. Following exposure of neuronal cells by sodium arsenite for 12h, the membrane-bound APP level was enhanced, the amount of sAPPβ released into the culture medium was slightly higher, while the levels of Aβ peptides in the culture medium were considerably lower as compared to that assayed in the absence of any drug. The sodium arsenite-induced reduction of Aβ formation suggests an inhibition of the APP γ-cleavage step by arsenite. In contrast, DMA exposure of neuronal cells considerably increased formation of Aβ and sAPPβ, accompanied by enhanced membrane APP level. The DMA-induced changes in APP processing may be the result of the enhanced APP expression. Alternatively, increased Aβ production may also be due to stimulation of caspase activity by arsenic compounds, or failure in Aβ degradation. In summary, the present report clearly demonstrates that sodium arsenite and DMA affect processing of APP in vitro.
Collapse
|
42
|
Coenzyme Q10 counteracts testicular injury induced by sodium arsenite in rats. Eur J Pharmacol 2011; 655:91-8. [PMID: 21262220 DOI: 10.1016/j.ejphar.2010.12.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 12/01/2010] [Accepted: 12/22/2010] [Indexed: 12/31/2022]
Abstract
The protective effect of coenzyme Q10 against testicular toxicity induced by sodium arsenite (10mg/kg/day, orally for two consecutive days) was investigated in rats. Coenzyme Q10 treatment (10mg/kg/day, i.p.) was applied for five consecutive days, starting three days before arsenite administration. Coenzyme Q10 significantly increased serum testosterone level which was reduced by sodium arsenite. Coenzyme Q10 significantly suppressed lipid peroxidation, restored the depleted antioxidant defenses, and attenuated the increases of tumor necrosis factor-α and nitric oxide resulted from arsenic administration. Also, the elevation of arsenic ion, and the reductions of selenium and zinc ions in testicular tissue were mitigated by coenzyme Q10. Histopathological examination showed that testicular injury mediated by arsenic was ameliorated by coenzyme Q10 treatment. Immunohistochemical analysis revealed that coenzyme Q10 significantly decreased the arsenic-induced expression of inducible nitric oxide synthase, nuclear factor-κB, Fas ligand and caspase-3 in testicular tissue. It was concluded that coenzyme Q10 represents a potential therapeutic option to protect the testicular tissue from the detrimental effects of arsenic intoxication.
Collapse
|
43
|
Halatek T, Lutz P, Krajnow A, Stetkiewicz J, Domeradzka K, Swiercz R, Wasowicz W. Assessment of neurobehavioral and biochemical effects in rats exposed to copper smelter dusts. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2011; 46:230-241. [PMID: 21279893 DOI: 10.1080/10934529.2011.535407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Female Wistar rats were instilled per os by gavage with different copper dust samples: P-25 obtained by passing the test material through a 25 μmsieve, and P-0.1 containing soluble matter and ultra-fine, non-soluble<100 nm particulate matter (PM) fraction. The control group received sterile saline. The effects were studied at day 1, 7, and 30 post-exposure, focusing on bronchoalveolar lavage fluid (BALF) analysis (including biochemistry, cell morphology, cell viability, and Clara cell 16 protein concentration) and pathomorphology of lung. Results of biochemical tests showed a strong pro-inflammatory effect of both particulate fractions. The morphological studies after exposure to P-25 and P-0.1 fractions showed multi-focal infiltrations in the alveoli. Changes in behavioral (radial maze and passive avoidance tests) have shown that memory in groups exposed to dust was impaired. Our findings indicate that both samples of dust from Copper Smelter cause greater and lesser intensity (P-25 > P-0.1) of the symptoms of acute inflammatory reaction immediately 24 h after instillation to rats. Exposure results in dropping CC16 protein level in serum of rats. After one month, previous acute inflammation was resolved and transformed in persistent low-grade inflammation. The low-grade inflammation resulted in induction of neurobehavioral effects probably by changes in "cholinergic anti-inflammatory pathway" in which acetylcholine modulates neurotransmission.
Collapse
Affiliation(s)
- Tadeusz Halatek
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | | | | | | | | | | | | |
Collapse
|
44
|
Flora SJS. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2009; 2:191-206. [PMID: 20716905 PMCID: PMC2763257 DOI: 10.4161/oxim.2.4.9112] [Citation(s) in RCA: 312] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 05/28/2009] [Accepted: 05/28/2009] [Indexed: 02/08/2023]
Abstract
Oxidative stress contributes to the pathophysiology of exposure to heavy metals/metalloid. Beneficial renal effects of some medications, such as chelation therapy depend at least partially on the ability to alleviate oxidative stress. The administration of various natural or synthetic antioxidants has been shown to be of benefit in the prevention and attenuation of metal induced biochemical alterations. These include vitamins, N-acetylcysteine, alpha-lipoic acid, melatonin, dietary flavonoids and many others. Human studies are limited in this regard. Under certain conditions, surprisingly, the antioxidant supplements may exhibit pro-oxidant properties and even worsen metal induced toxic damage. To date, the evidence is insufficient to recommend antioxidant supplements in subject with exposure to metals. Prospective, controlled clinical trials on safety and effectiveness of different therapeutic antioxidant strategies either individually or in combination with chelating agent are indispensable. The present review focuses on structural, chemical and biological aspects of antioxidants particularly related to their chelating properties.
Collapse
Affiliation(s)
- Swaran J S Flora
- Department of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior, India.
| |
Collapse
|