1
|
Egleston M, Dong L, Howlader AH, Bhat S, Orris B, Bianchet MA, Greenberg MM, Stivers JT. Deoxyguanosine-Linked Bifunctional Inhibitor of SAMHD1 dNTPase Activity and Nucleic Acid Binding. ACS Chem Biol 2023; 18:2200-2210. [PMID: 37233733 PMCID: PMC10596003 DOI: 10.1021/acschembio.3c00118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Sterile alpha motif histidine-aspartate domain protein 1 (SAMHD1) is a deoxynucleotide triphosphohydrolase that exists in monomeric, dimeric, and tetrameric forms. It is activated by GTP binding to an A1 allosteric site on each monomer subunit, which induces dimerization, a prerequisite for dNTP-induced tetramerization. SAMHD1 is a validated drug target stemming from its inactivation of many anticancer nucleoside drugs leading to drug resistance. The enzyme also possesses a single-strand nucleic acid binding function that promotes RNA and DNA homeostasis by several mechanisms. To discover small molecule inhibitors of SAMHD1, we screened a custom ∼69 000-compound library for dNTPase inhibitors. Surprisingly, this effort yielded no viable hits and indicated that exceptional barriers for discovery of small molecule inhibitors existed. We then took a rational fragment-based inhibitor design approach using a deoxyguanosine (dG) A1 site targeting fragment. A targeted chemical library was synthesized by coupling a 5'-phosphoryl propylamine dG fragment (dGpC3NH2) to 376 carboxylic acids (RCOOH). Direct screening of the products (dGpC3NHCO-R) yielded nine initial hits, one of which (R = 3-(3'-bromo-[1,1'-biphenyl]), 5a) was investigated extensively. Amide 5a is a competitive inhibitor against GTP binding to the A1 site and induces inactive dimers that are deficient in tetramerization. Surprisingly, 5a also prevented ssDNA and ssRNA binding, demonstrating that the dNTPase and nucleic acid binding functions of SAMHD1 can be disrupted by a single small molecule. A structure of the SAMHD1-5a complex indicates that the biphenyl fragment impedes a conformational change in the C-terminal lobe that is required for tetramerization.
Collapse
Affiliation(s)
- Matthew Egleston
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Linghao Dong
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - A. Hasan Howlader
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Shridhar Bhat
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Benjamin Orris
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Mario A. Bianchet
- Department
of Neurology and Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Marc M. Greenberg
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - James T. Stivers
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
2
|
Yao J, He Z, You G, Liu Q, Li N. The Deficits of Insulin Signal in Alzheimer's Disease and the Mechanisms of Vanadium Compounds in Curing AD. Curr Issues Mol Biol 2023; 45:6365-6382. [PMID: 37623221 PMCID: PMC10453015 DOI: 10.3390/cimb45080402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Vanadium is a well-known essential trace element, which usually exists in oxidation states in the form of a vanadate cation intracellularly. The pharmacological study of vanadium began with the discovery of its unexpected inhibitory effect on ATPase. Thereafter, its protective effects on β cells and its ability in glucose metabolism regulation were observed from the vanadium compound, leading to the application of vanadium compounds in clinical trials for curing diabetes. Alzheimer's disease (AD) is the most common dementia disease in elderly people. However, there are still no efficient agents for treating AD safely to date. This is mainly because of the complexity of the pathology, which is characterized by senile plaques composed of the amyloid-beta (Aβ) protein in the parenchyma of the brain and the neurofibrillary tangles (NFTs), which are derived from the hyperphosphorylated tau protein in the neurocyte, along with mitochondrial damage, and eventually the central nervous system (CNS) atrophy. AD was also illustrated as type-3 diabetes because of the observations of insulin deficiency and the high level of glucose in cerebrospinal fluid (CSF), as well as the impaired insulin signaling in the brain. In this review, we summarize the advances in applicating the vanadium compound to AD treatment in experimental research and point out the limitations of the current study using vanadium compounds in AD treatment. We hope this will help future studies in this field.
Collapse
Affiliation(s)
- Jinyi Yao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Guanying You
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
3
|
Ding L, Sheriff S, Sontz RA, Merchant JL. Schlafen4 +-MDSC in Helicobacter-induced gastric metaplasia reveals role for GTPases. Front Immunol 2023; 14:1139391. [PMID: 37334372 PMCID: PMC10272601 DOI: 10.3389/fimmu.2023.1139391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction MDSCs express SCHLAFEN 4 (SLFN4) in Helicobacter-infected stomachs coincident with spasmolytic polypeptide-expressing metaplasia (SPEM), a precursor of gastric cancer. We aimed to characterize SLFN4+ cell identity and the role of Slfn4 in these cells. Methods Single-cell RNA sequencing was performed on immune cells sorted from PBMCs and stomachs prepared from uninfected and 6-month H. felis-infected mice. Knockdown of Slfn4 by siRNA or PDE5/6 inhibition by sildenafil were performed in vitro. Intracellular ATP/GTP levels and GTPase activity of immunoprecipitated Slfn4 complexes were measured using the GTPase-Glo assay kit. The intracellular level of ROS was quantified by the DCF-DA fluorescent staining, and apoptosis was determined by cleaved Caspase-3 and Annexin V expression. Gli1CreERT2 x Slfn4 fl/fl mice were generated and infected with H. felis. Sildenafil was administered twice over 2 weeks by gavaging H. felis infected mice ~4 months after inoculation once SPEM had developed. Results Slfn4 was highly induced in both monocytic and granulocytic MDSCs from infected stomachs. Both Slfn4 +-MDSC populations exhibited strong transcriptional signatures for type-I interferon responsive GTPases and exhibited T cell suppressor function. SLFN4-containing protein complexes immunoprecipitated from myeloid cell cultures treated with IFNa exhibited GTPase activity. Knocking down Slfn4 or PDE5/6 inhibition with sildenafil blocked IFNa induction of GTP, SLFN4 and NOS2. Moreover, IFNa induction of Slfn +-MDSC function was inhibited by inducing their reactive oxygen species (ROS) production and apoptosis through protein kinase G activation. Accordingly, in vivo disruption of Slfn4 in Gli1CreERT2 x Slfn4 fl/fl mice or pharmacologic inhibition by sildenafil after Helicobacter infection also suppressed SLFN4 and NOS2, reversed T cell suppression and mitigated SPEM development. Conclusion Taken together, SLFN4 regulates the activity of the GTPase pathway in MDSCs and precludes these cells from succumbing to the massive ROS generation when they acquire MDSC function.
Collapse
Affiliation(s)
| | | | | | - Juanita L. Merchant
- Department of Medicine-Gastroenterology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
4
|
Darekar S, Laín S. Asymmetric inheritance of cytoophidia could contribute to determine cell fate and plasticity: The onset of alternative differentiation patterns in daughter cells may rely on the acquisition of either CTPS or IMPDH cytoophidia: The onset of alternative differentiation patterns in daughter cells may rely on the acquisition of either CTPS or IMPDH cytoophidia. Bioessays 2022; 44:e2200128. [PMID: 36209393 DOI: 10.1002/bies.202200128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 09/21/2022] [Indexed: 12/20/2022]
Abstract
Two enzymes involved in the synthesis of pyrimidine and purine nucleotides, CTP synthase (CTPS) and IMP dehydrogenase (IMPDH), can assemble into a single or very few large filaments called rods and rings (RR) or cytoophidia. Most recently, asymmetric cytoplasmic distribution of organelles during cell division has been described as a decisive event in hematopoietic stem cell fate. We propose that cytoophidia, which could be considered as membrane-less organelles, may also be distributed asymmetrically during mammalian cell division as previously described for Schizosaccharomyces pombe. Furthermore, because each type of nucleotide intervenes in distinct processes (e.g., membrane synthesis, glycosylation, and G protein-signaling), alterations in the rate of synthesis of specific nucleotide types could influence cell differentiation in multiple ways. Therefore, we hypothesize that whether a daughter cell inherits or not CTPS or IMPDH filaments determines its fate and that this asymmetric inheritance, together with the dynamic nature of these structures enables plasticity in a cell population.
Collapse
Affiliation(s)
- Suhas Darekar
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Sonia Laín
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Meshkini A, Sistanipour E, Oveisi H, Asoodeh A. Induction of osteogenesis in bone tumour cells by purine-conjugated zinc-hydroxyapatite. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2021. [DOI: 10.1680/jbibn.20.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study aimed to improve the biocompatibility and osteogenic property of hydroxyapatite (HAP). So HAP nanoparticles were doped with zinc (Zn), and their surface was modified with a purine nucleotide, guanosine 5′-triphosphate (GTP). GTP-loaded nanoparticles (GTP@ZnHAP) were characterised by field emission scanning electron microscopy, Fourier transform infrared, thermogravimetric analysis, zeta potential and ultraviolet–visible spectroscopy. Biological experiments revealed that GTP@ZnHAP nanoparticles were internalised by the cells, inhibiting tumour cell (osteoblast-like cells, Saos-2) expansion with an efficiency more than that observed for ZnHAP nanoparticles and GTP alone. Furthermore, Saos-2 cells were committed to differentiate into the normal osteoblast cells under the influence of GTP@ZnHAP nanoparticles demonstrated by the quantitative assessment of bone-related protein expression (Runx2 and osteocalcin) and cell morphological changes. Moreover, high-performance liquid chromatography analyses disclosed a significant enhancement of intracellular GTP content in GTP@ZnHAP-treated cells, proposing perturbation of intracellular nucleotide equilibrium during the process of osteogenesis induced by GTP@ZnHAP nanoparticles. Overall, GTP@ZnHAP exhibits a better synergistic effect on the modulation of cell growth and induction of osteogenic differentiation in osteosarcoma cells than ZnHAP nanoparticles and GTP alone do. Therefore, GTP@ZnHAP may be regarded as a promising biomaterial for the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Azadeh Meshkini
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elnaz Sistanipour
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Oveisi
- Department of Materials and Polymer Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Ichii M, Oritani K, Murase M, Komatsu K, Yamazaki M, Kyoden R, Kito N, Nozaki Y, Saito M, Iwamura H, Kanakura Y. Molecular targeting of inosine-5'-monophosphate dehydrogenase by FF-10501 promotes erythropoiesis via ROS/MAPK pathway. Leuk Lymphoma 2017; 59:448-459. [PMID: 28730859 DOI: 10.1080/10428194.2017.1339878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the major symptoms of myelodysplastic syndromes (MDS) is severe cytopenia. Despite cytokine therapies, such as erythropoiesis-stimulating agents, many patients still require blood transfusions, and the development of new therapeutic approaches is needed. In this work, we studied the effects of the inosine-5'-monophosphate (IMP) dehydrogenase (IMPDH) inhibitor FF-10501 on erythropoiesis of human hematopoietic cells. Differentiation of K562 chronic myeloid leukemia cells to an erythroid lineage was promoted by FF-10501 in a dose-dependent manner. Interestingly, we found that metabolic conversion of IMP to hypoxanthine leads to elevation of reactive oxygen species (ROS). The differentiative effects of FF-10501 were abolished by the ROS scavenger dimethylthiourea or the p38 MAPK inhibitor SB203580. Furthermore, FF-10501 promoted erythropoiesis from CD34+ hematopoietic stem/progenitor cells, accompanied with ROS accumulation, while high-dose FF-10501 mainly showed cytotoxic effects. These findings denote the potential of IMPDH inhibition therapy with FF-10501 in amelioration of anemia in MDS patients.
Collapse
Affiliation(s)
- Michiko Ichii
- a Department of Hematology and Oncology , Osaka University Graduate School of Medicine , Suita, Osaka , Japan
| | - Kenji Oritani
- a Department of Hematology and Oncology , Osaka University Graduate School of Medicine , Suita, Osaka , Japan
| | - Motohiko Murase
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Kensuke Komatsu
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Mao Yamazaki
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Rie Kyoden
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Nobuko Kito
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Yusuke Nozaki
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Motoki Saito
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Hiroyuki Iwamura
- c Pharmaceutical Products Division , FUJIFILM Corporation , Minato-ku , Tokyo , Japan
| | - Yuzuru Kanakura
- a Department of Hematology and Oncology , Osaka University Graduate School of Medicine , Suita, Osaka , Japan
| |
Collapse
|
7
|
Heischmann S, Christians U. Validation of the cell line LS180 as a model for study of the gastrointestinal toxicity of mycophenolic acid. Xenobiotica 2017; 48:433-441. [DOI: 10.1080/00498254.2017.1329567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Svenja Heischmann
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Denver, Aurora, CO, USA and
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Denver, Aurora, CO, USA and
| |
Collapse
|
8
|
Aghazadeh S, Yazdanparast R. Mycophenolic acid potentiates HER2-overexpressing SKBR3 breast cancer cell line to induce apoptosis: involvement of AKT/FOXO1 and JAK2/STAT3 pathways. Apoptosis 2016; 21:1302-1314. [DOI: 10.1007/s10495-016-1288-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Meshkini A. Fine-tuning of the cellular signaling pathways by intracellular GTP levels. Cell Biochem Biophys 2015; 70:27-32. [PMID: 24643502 DOI: 10.1007/s12013-014-9897-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has become increasingly evident that among purine nucleotides, guanine based nucleotides specially guanosine-5'-triphosphate (GTP) serve as an important and independent regulatory factors for development and diverse cellular functions such as differentiation, metabolism, proliferation and survival in multiple tissues. In this brief review, it has been provided selective outline related to delicate regulation of signaling pathways by guanosine based nucleotides as intracellular signaling molecules. Although the exact mode of action of theses nucleotides in many biological processes and signaling pathways is still elusive, it has become well clear that intracellular guanosine based nucleotides content rather than adenosine based nucleotides could modulate the intensity and duration of signaling which ultimately impact on cell's fate. It opens an entirely new perspective for developing new and potential therapeutic strategies to combat diseases like cancer, hypoxia, etc.
Collapse
Affiliation(s)
- Azadeh Meshkini
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,
| |
Collapse
|
10
|
A neutrophil intrinsic impairment affecting Rab27a and degranulation in cystic fibrosis is corrected by CFTR potentiator therapy. Blood 2014; 124:999-1009. [PMID: 24934256 DOI: 10.1182/blood-2014-02-555268] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Studies have endeavored to reconcile whether dysfunction of neutrophils in people with cystic fibrosis (CF) is a result of the genetic defect or is secondary due to infection and inflammation. In this study, we illustrate that disrupted function of the CF transmembrane conductance regulator (CFTR), such as that which occurs in patients with ∆F508 and/or G551D mutations, correlates with impaired degranulation of antimicrobial proteins. We demonstrate that CF blood neutrophils release less secondary and tertiary granule components compared with control cells and that activation of the low-molecular-mass GTP-binding protein Rab27a, involved in the regulation of granule trafficking, is defective. The mechanism leading to impaired degranulation involves altered ion homeostasis caused by defective CFTR function with increased cytosolic levels of chloride and sodium, yet decreased magnesium measured in CF neutrophils. Decreased magnesium concentration in vivo and in vitro resulted in significantly decreased levels of GTP-bound Rab27a. Treatment of G551D patients with the ion channel potentiator ivacaftor resulted in normalized neutrophil cytosolic ion levels and activation of Rab27a, thereby leading to increased degranulation and bacterial killing. Our results confirm that intrinsic alterations of circulating neutrophils from patients with CF are corrected by ivacaftor, thus illustrating additional clinical benefits for CFTR modulator therapy.
Collapse
|
11
|
Meshkini A, Yazdanparast R. Regulation of p38, PKC/Foxo3a/p73 signaling network by GTP during erythroid differentiation in chronic myelogenous leukemia. Cell Biochem Biophys 2014; 67:675-87. [PMID: 23494264 DOI: 10.1007/s12013-013-9557-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well established that Foxo3a is a fundamental module of signal transduction pathways regulating erythropoiesis; however, precise mechanism which regulates its physiological function still remains unclear. Here, our results revealed that the nuclear localization and stability of Foxo3a were modulated by the physical interaction of PKC and p38 signaling elements and that direct interactions led to phosphorylation of threonine residue(s) in Foxo3a. In addition, our findings revealed that the sequential activity of Foxo3a by guanosine 5'-triphosphate can impede cellular proliferation and suppress p73 expression as oncoprotein in K562 cells; thus identifying Foxo3a as a tumor suppressor in these p53 null cells. However, down-regulation of Foxo3a-dependent p73 expression causes cell differentiation along the erythroid lineage. Collectively, our findings suggest that restoration of Foxo3a function by pharmacological agents under the influence of specific activated protein kinases might constitute a potential therapeutic strategy for combating the CML disease.
Collapse
Affiliation(s)
- Azadeh Meshkini
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | | |
Collapse
|
12
|
The Odyssey of a Young Gene: Structure–Function Studies in Human Glutamate Dehydrogenases Reveal Evolutionary-Acquired Complex Allosteric Regulation Mechanisms. Neurochem Res 2014; 39:471-86. [DOI: 10.1007/s11064-014-1251-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/24/2014] [Accepted: 01/29/2014] [Indexed: 01/13/2023]
|
13
|
Meshkini A, Yazdanparast R. Foxo3a targets mitochondria during guanosine 5'-triphosphate guided erythroid differentiation. Int J Biochem Cell Biol 2012; 44:1718-28. [PMID: 22743331 DOI: 10.1016/j.biocel.2012.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 12/14/2022]
Abstract
Evidence is emerging that Foxo family proteins serve as biochemical signal integrators in complex signaling networks mediating and modulating diverse cellular functions. Herein, we report that besides the well-established function of Foxo3a as a transcriptional regulator of multiple target genes in nucleus, a substantial fraction of Foxo3a translocates to mitochondria leading to disruption of mitochondrial membrane potential, release of cytochrome c and caspase activation during erythroid differentiation mediated by guanosine 5'-triphosphate (GTP). In fact, non transcriptional role of Foxo3a in mitochondria was achieved through the protein-protein interaction with pro-apoptotic protein Bax and its translocation to mitochondrial membrane. Furthermore, our results revealed that mitochondrial localization of Foxo3a was modulated by intracellular GTP content which is sensed by PKC signaling element. Collectively, our findings provided insight into a novel Foxo3a mechanism in leukemia cells which led to engagement of cells in the maturation pathway.
Collapse
Affiliation(s)
- Azadeh Meshkini
- Institute of Biochemistry and Biophysics, PO Box 13145-1384, University of Tehran, Tehran, Iran
| | | |
Collapse
|
14
|
Ribavirin for the treatment of chronic hepatitis C virus infection: a review of the proposed mechanisms of action. Curr Opin Virol 2011; 1:590-8. [DOI: 10.1016/j.coviro.2011.10.030] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 01/19/2023]
|