1
|
Santos MB, de Azevedo Teotônio Cavalcanti M, de Medeiros E Silva YMS, Dos Santos Nascimento IJ, de Moura RO. Overview of the New Bioactive Heterocycles as Targeting Topoisomerase Inhibitors Useful Against Colon Cancer. Anticancer Agents Med Chem 2024; 24:236-262. [PMID: 38038012 DOI: 10.2174/0118715206269722231121173311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer globally, with high mortality. Metastatic CRC is incurable in most cases, and multiple drug therapy can increase patients' life expectancy by 2 to 3 years. Efforts are being made to understand the relationship between topoisomerase enzymes and colorectal cancer. Some studies have shown that higher expression of these enzymes is correlated to a poor prognosis for this type of cancer. One of the primary drugs used in the treatment of CRC is Irinotecan, which can be used in monotherapy or, more commonly, in therapeutic schemes such as FOLFIRI (Fluorouracil, Leucovorin, and Irinotecan) and CAPIRI (Capecitabine and Irinotecan). Like Camptothecin, Irinotecan and other compounds have a mechanism of action based on the formation of a ternary complex with topoisomerase I and DNA providing damage to it, therefore leading to cell death. Thus, this review focused on the principal works published in the last ten years that demonstrate a correlation between the inhibition of different isoforms of topoisomerase and in vitro cytotoxic activity against CRC by natural products, semisynthetic and synthetic compounds of pyridine, quinoline, acridine, imidazoles, indoles, and metal complexes. The results revealed that natural compounds, semisynthetic and synthetic derivatives showed potential in vitro cytotoxicity against several colon cancer cell lines, and this activity was often accompanied by the ability to inhibit both isoforms of topoisomerase (I and II), highlighting that these enzymes can be promising targets for the development of new chemotherapy against CRC. Pyridine analogs were considered the most promising for this study, while the evaluation of the real potential of natural products was limited by the lack of information in their work. Moreover, the complexes, although promising, presented as the main limitation the lack of selectivity.
Collapse
Affiliation(s)
- Mirelly Barbosa Santos
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Yvnni Maria Sales de Medeiros E Silva
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Departament of Pharmacy, Cesmac University Center, Maceió, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
2
|
Althobaiti F, Sahyon HA, Shanab MMAH, Aldhahrani A, Helal MA, Khireldin A, Shoair AGF, Almalki ASA, Fathy AM. A comparative study of novel ruthenium(III) and iron(III) complexes containing uracil; docking and biological studies. J Inorg Biochem 2023; 247:112308. [PMID: 37441923 DOI: 10.1016/j.jinorgbio.2023.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Structural and biological studies were conducted on the novel complexes [Fe(U)2(H2O)2]Cl3 (FeU) and [Ru(U)2(H2O)2]Cl3 (RuU) (U = 5,6-Diamino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) to develop an anticancer drug candidate. The two complexes have been synthesized and characterized. Based on our findings, these complexes have octahedral geometry. The DNA-binding study proved that both complexes coordinated with CT-DNA. The docking study confirmed the potency of both complexes in downregulating the topoisomerase I protein through their high binding affinity. Biological studies have established that both complexes can act as potent anticancer agents against three cancer cell lines. RuU or FeU complexes induce apoptosis in breast cancer cells by increasing caspase9 protein and inhibiting proliferating cell nuclear antigen (PCNA) activity. In addition, both complexes down-regulate topoisomerase I expression in breast cancer cells. Therefore, the RuU and FeU complexes' anticancer activities were mediated via both apoptosis induction and topoisomerase I down-regulation. In conclusion, both complexes have dual anticancer activity pathways that may be responsible for the selective cytotoxicity of the complexes. This makes them more suitable for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Heba A Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Mai M A H Shanab
- Department of Chemistry, College of Sciences and Humanities Studies (Girls section), Hawtat Bani Tamim 11149, Prince Sattam Bin Abdulaziz University, P.O. Box:13, Saudi Arabia.
| | - Adil Aldhahrani
- Clinical Laboratory Science Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia.
| | - Marihan A Helal
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Awad Khireldin
- Air transport management, Singapore Institute of Technology (SIT), Singapore.
| | - Abdel Ghany F Shoair
- Department of Science and Technology, University College-Ranyah, postcode 21975, Taif University, Saudi Arabia; High Altitude Research Center, Taif University, 21944, Saudi Arabia.
| | | | - Ahmed M Fathy
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Varakumar P, Rajagopal K, Aparna B, Raman K, Byran G, Gonçalves Lima CM, Rashid S, Nafady MH, Emran TB, Wybraniec S. Acridine as an Anti-Tumour Agent: A Critical Review. Molecules 2022; 28:molecules28010193. [PMID: 36615391 PMCID: PMC9822522 DOI: 10.3390/molecules28010193] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
This review summarized the current breakthroughs in the chemistry of acridines as anti-cancer agents, including new structural and biologically active acridine attributes. Acridine derivatives are a class of compounds that are being extensively researched as potential anti-cancer drugs. Acridines are well-known for their high cytotoxic activity; however, their clinical application is restricted or even excluded as a result of side effects. The photocytotoxicity of propyl acridine acts against leukaemia cell lines, with C1748 being a promising anti-tumour drug against UDP-UGT's. CK0403 is reported in breast cancer treatment and is more potent than CK0402 against estrogen receptor-negative HER2. Acridine platinum (Pt) complexes have shown specificity on the evaluated DNA sequences; 9-anilinoacridine core, which intercalates DNA, and a methyl triazene DNA-methylating moiety were also studied. Acridine thiourea gold and acridinone derivatives act against cell lines such as MDA-MB-231, SK-BR-3, and MCF-7. Benzimidazole acridine compounds demonstrated cytotoxic activity against Dual Topo and PARP-1. Quinacrine, thiazacridine, and azacridine are reported as anti-cancer agents, which have been reported in the previous decade and were addressed in this review article.
Collapse
Affiliation(s)
- Potlapati Varakumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
- Correspondence: (K.R.); (T.B.E.); (S.W.)
| | - Baliwada Aparna
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Kannan Raman
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | | | - Salma Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Correspondence: (K.R.); (T.B.E.); (S.W.)
| | - Sławomir Wybraniec
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Correspondence: (K.R.); (T.B.E.); (S.W.)
| |
Collapse
|
4
|
Selas A, Martin-Encinas E, Fuertes M, Masdeu C, Rubiales G, Palacios F, Alonso C. A patent review of topoisomerase I inhibitors (2016-present). Expert Opin Ther Pat 2021; 31:473-508. [PMID: 33475439 DOI: 10.1080/13543776.2021.1879051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Topoisomerases are important targets for therapeutic improvement in the treatment of some diseases, including cancer. Inhibitors and poisons of topoisomerase I can limit the activity of this enzyme in its enzymatic cycle. This fact implies an anticancer effect of these drugs, since most cancer cells are characterized by both a higher activity of topoisomerase I and a higher replication rate compared to non-cancerous cells. Clinically approved inhibitors include camptothecin (CPT) and its derivatives. However, their limitations have encouraged different research groups to prepare new compounds, proof of which are the numerous research works and patents, some of them in the last five years. AREAS COVERED This review covers patent literature on topoisomerase I inhibitors and their application published between 2016-present. EXPERT OPINION The highest contribution toward patent development has been obtained from academics or small biotechnology companies. The most important fields of innovation include the preparation of prodrugs or inhibitors combined with other agents, as biocompatible polymers or antibodies. A promising development of topoisomerase I inhibitors is expected in the next years, directed to the treatment of diverse diseases, specifically toward different types of cancer and infectious diseases, among others.
Collapse
Affiliation(s)
- Asier Selas
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Endika Martin-Encinas
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maria Fuertes
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Carme Masdeu
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Gloria Rubiales
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Concepción Alonso
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
5
|
Dai J, Li C, Cui H, Lin L. Unraveling the anti-bacterial mechanism of Litsea cubeba essential oil against E. coli O157:H7 and its application in vegetable juices. Int J Food Microbiol 2020; 338:108989. [PMID: 33257098 DOI: 10.1016/j.ijfoodmicro.2020.108989] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Recently, natural essential oils have been extensively studied for anti-bacterial application in foods due to their safety and high biological activity. Herein, Litsea cubeba essential oil (LC-EO) was applied as a natural anti-bacterial agent for exploring its anti-bacterial mechanism against Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157:H7). The LC-EO could effectively inhibit the growth of EHEC O157:H7 and the minimal inhibitory concentration (MIC) was 0.5 mg/mL. In the study of anti-bacterial mechanism, the LC-EO was proved with good membrane penetration ability, which could destroy bacterial cell structure and disorder membrane permeability, thereby causing the leakage of intracellular organic matters. Furthermore, the inhibitory effects of LC-EO on physiological metabolism of EHEC O157:H7, including respiratory metabolism, enzyme activity, the replication of nucleic acid and the transcription level of main virulence genes (stx1, stx2, ehxA, eae), were also demonstrated in this study. Specially, the possible action mechanism of different components of LC-EO on bacterial genetic material was revealed deeply on molecular level by the molecular docking technology. Finally, the results of application evaluation indicated that the addition of LC-EO at MIC in different vegetable juices could maintain anti-bacterial rate above 99.9% for 4 days without remarkable influence on foods sensory quality. The information in this study provides the necessary theoretical foundation for extending the application of LC-EO in food preservation.
Collapse
Affiliation(s)
- Jinming Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
6
|
Diabetes Mellitus and Colon Carcinogenesis: Expectation for Inhibition of Colon Carcinogenesis by Oral Hypoglycemic Drugs. GASTROINTESTINAL DISORDERS 2019. [DOI: 10.3390/gidisord1020023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The global deaths due to colorectal cancer and diabetes mellitus have increased by 57% and 90%, respectively. The relationship between various cancers and diabetes mellitus has been shown in multiple epidemiological studies. Hence, better management of diabetes mellitus is expected to reduce the risk of various cancers. This review focuses on colorectal cancer and aims to summarize recent findings on the antitumor effects of various oral hypoglycemic drugs on colorectal cancer and their estimated mechanisms. Of the seven classes of oral hypoglycemic agents, only metformin was found to have suppressive effects on colorectal cancer in both clinical and basic research. Clinical and basic researches on suppressing effects of glinides, dipeptidyl peptidase-4 inhibitors, thiazolidinedione, α-glucosidase inhibitors, and sodium glucose cotransporter-2 inhibitors against colon carcinogenesis have been insufficient and have not arrived at any conclusion. Therefore, further research regarding these agents is warranted. In addition, the suppressive effects of these agents in healthy subjects without diabetes should also be investigated.
Collapse
|
7
|
Luciana NA, Patrícia S, Ricardo GA, Grace AAD, Andressa DS, Melina A, Ricardo LCAJ, Maria CSL, Claudia OP, Adriana AC, Damiao PDS. Evaluation of cytotoxic and antitumor activity of perillaldehyde 1,2-epoxide. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/jmpr2018.6699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Bongarzone S, Nadal M, Kaczmarska Z, Machón C, Álvarez M, Albericio F, Coll M. Structure-Driven Discovery of α,γ-Diketoacid Inhibitors Against UL89 Herpesvirus Terminase. ACS OMEGA 2018; 3:8497-8505. [PMID: 31458978 PMCID: PMC6645139 DOI: 10.1021/acsomega.8b01472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/19/2018] [Indexed: 05/27/2023]
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen causing a variety of severe viral infections, including irreversible congenital disabilities. Nowadays, HCMV infection is treated by inhibiting the viral DNA polymerase. However, DNA polymerase inhibitors have several drawbacks. An alternative strategy is to use compounds against the packaging machinery or terminase complex, which is essential for viral replication. Our discovery that raltegravir (1), a human immunodeficiency virus drug, inhibits the nuclease function of UL89, one of the protein subunits of the complex, prompted us to further develop terminase inhibitors. On the basis of the structure of 1, a library of diketoacid (α,γ-DKA and β,δ-DKA) derivatives were synthesized and tested for UL89-C nuclease activity. The mode of action of α,γ-DKA derivatives on the UL89 active site was elucidated by using X-ray crystallography, molecular docking, and in vitro experiments. Our studies identified α,γ-DKA derivative 14 able to inhibit UL89 in vitro in the low micromolar range, making 14 an optimal candidate for further development and virus-infected cell assay.
Collapse
Affiliation(s)
- Salvatore Bongarzone
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Molecular
Biology Institute of Barcelona (IBMB—CSIC), Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Marta Nadal
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Molecular
Biology Institute of Barcelona (IBMB—CSIC), Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Zuzanna Kaczmarska
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Molecular
Biology Institute of Barcelona (IBMB—CSIC), Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Cristina Machón
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Molecular
Biology Institute of Barcelona (IBMB—CSIC), Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Mercedes Álvarez
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, 08028 Barcelona, Spain
- Laboratory
of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Fernando Albericio
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, 08028 Barcelona, Spain
- Department
of Organic Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Miquel Coll
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Molecular
Biology Institute of Barcelona (IBMB—CSIC), Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Selective cytotoxic and genotoxic activities of 5-(2-bromo-5-methoxybenzylidene)-thiazolidine-2,4-dione against NCI-H292 human lung carcinoma cells. Pharmacol Rep 2018; 70:446-454. [DOI: 10.1016/j.pharep.2017.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/29/2017] [Accepted: 11/20/2017] [Indexed: 01/20/2023]
|
10
|
Sahyon H, El-Bindary A, Shoair A, Abdellatif A. Synthesis and characterization of ruthenium(III) complex containing 2-aminomethyl benzimidazole, and its anticancer activity of in vitro and in vivo models. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.140] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
de Almeida SMV, Ribeiro AG, de Lima Silva GC, Ferreira Alves JE, Beltrão EIC, de Oliveira JF, de Carvalho LB, Alves de Lima MDC. DNA binding and Topoisomerase inhibition: How can these mechanisms be explored to design more specific anticancer agents? Biomed Pharmacother 2017; 96:1538-1556. [DOI: 10.1016/j.biopha.2017.11.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022] Open
|
12
|
Synthesis of novel indole derivatives as promising DNA-binding agents and evaluation of antitumor and antitopoisomerase I activities. Eur J Med Chem 2017; 136:511-522. [DOI: 10.1016/j.ejmech.2017.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022]
|
13
|
Synthesis, spectral characterization, DNA binding ability and anti-cancer screening of new acridine-based derivatives. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1931-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Szymański P, Olszewska P, Mikiciuk-Olasik E, Różalski A, Maszewska A, Markiewicz Ł, Cuchra M, Majsterek I. Novel tetrahydroacridine and cyclopentaquinoline derivatives with fluorobenzoic acid moiety induce cell cycle arrest and apoptosis in lung cancer cells by activation of DNA damage signaling. Tumour Biol 2017; 39:1010428317695011. [PMID: 28351316 DOI: 10.1177/1010428317695011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is still the leading cause of cancer-related death worldwide, indicating a necessity to develop more effective therapy. Acridine derivatives are potential anticancer agents due to their ability to intercalate DNA as well as inhibit enzymes involved in replication and transcription. Recently, we have evaluated anticancer activity of 32 novel acridine-based compounds. We found that the most effective were tetrahydroacridine and cyclopentaquinoline derivatives with fluorobenzoic acid containing eight and nine carbon atoms in the aliphatic chain. The aim of this study was to determine the molecular mechanisms of compounds-induced cell cycle arrest and apoptosis in human lung adenocarcinoma cells. All compounds activated Ataxia telangiectasia mutated kinase and phosphorylated histone H2A.X at Ser139 indicating DNA damage. Treatment of cells with the compounds increased phosphorylation and accumulation of p53 that regulate cell cycle as well as apoptosis. All compounds induced G0/1 cell cycle arrest by phosphorylation of cyclin-dependent kinase 2 at Tyr15 resulting in attenuation of the kinase activity. In addition, cyclopentaquinoline derivatives induced expression of cyclin-dependent kinase 2 inhibitor, p21; however, tetrahydroacridine derivatives had no significant effect on p21. Moreover, all compounds decreased the mitochondrial membrane potential accompanied by increased expression of Bax and down-regulation of Bcl-2, suggesting activation of the mitochondrial pathway. All compounds also significantly attenuated the migration rates of lung cancer cells. Collectively, our findings suggest a central role of activation of DNA damage signaling in response to new acridine derivatives treatment to induce cell cycle arrest and apoptosis in cancer cells and provide support for their further development as potential drug candidates.
Collapse
Affiliation(s)
- Paweł Szymański
- 1 Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Medical University, Łódź, Poland
| | - Paulina Olszewska
- 1 Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Medical University, Łódź, Poland
| | - Elżbieta Mikiciuk-Olasik
- 1 Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Medical University, Łódź, Poland
| | - Antoni Różalski
- 2 Department of Immunobiology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Agnieszka Maszewska
- 2 Department of Immunobiology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Łukasz Markiewicz
- 3 Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Łódź, Poland
| | - Magda Cuchra
- 3 Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Łódź, Poland
| | - Ireneusz Majsterek
- 3 Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
15
|
De Grandis RA, de Camargo MS, da Silva MM, Lopes ÉO, Padilha EC, Resende FA, Peccinini RG, Pavan FR, Desideri A, Batista AA, Varanda EA. Human topoisomerase inhibition and DNA/BSA binding of Ru(II)-SCAR complexes as potential anticancer candidates for oral application. Biometals 2017; 30:321-334. [PMID: 28303361 DOI: 10.1007/s10534-017-0008-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/07/2017] [Indexed: 01/14/2023]
Abstract
Three ruthenium(II) phosphine/diimine/picolinate complexes were selected aimed at investigating anticancer activity against several cancer cell lines and the capacity of inhibiting the supercoiled DNA relaxation mediated by human topoisomerase IB (Top 1). The structure-lipophilicity relationship in membrane permeability using the Caco-2 cells have also been evaluated in this study. SCAR 5 was found to present 45 times more cytotoxicity against breast cancer cell when compared to cisplatin. SCAR 4 and 5 were both found to be capable of inhibiting the supercoiled DNA relaxation mediated by Top 1. Interaction studies showed that SCAR 4 and 5 can bind to DNA through electrostatic interactions while SCAR 6 is able to bind covalently to DNA. The complexes SCAR were found to interact differently with bovine serum albumin (BSA) suggesting hydrophobic interactions with albumin. The permeability of all complexes was seen to be dependent on their lipophilicity. SCAR 4 and 5 exhibited high membrane permeability (P app > 10 × 10-6 cm·s-1) in the presence of BSA. The complexes may pass through Caco-2 monolayer via passive diffusion mechanism and our results suggest that lipophilicity and interaction with BSA may influence the complexes permeation. In conclusion, we demonstrated that complexes have powerful pharmacological activity, with different results for each complex depending on the combination of their ligands.
Collapse
Affiliation(s)
- Rone A De Grandis
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, 14800-903, Brazil.
| | - Mariana S de Camargo
- Center of Exact Sciences and Technology, Federal University of São Carlos, São Carlos, 13565-905, Brazil
| | - Monize M da Silva
- Center of Exact Sciences and Technology, Federal University of São Carlos, São Carlos, 13565-905, Brazil
| | - Érica O Lopes
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, 14800-903, Brazil
| | - Elias C Padilha
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, 14800-903, Brazil
| | - Flávia A Resende
- Department of Health and Biological Sciences, University of Araraquara, Araraquara, 14801-340, Brazil.
| | - Rosângela G Peccinini
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, 14800-903, Brazil
| | - Fernando R Pavan
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, 14800-903, Brazil
| | | | - Alzir A Batista
- Center of Exact Sciences and Technology, Federal University of São Carlos, São Carlos, 13565-905, Brazil
| | - Eliana A Varanda
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, 14800-903, Brazil
| |
Collapse
|
16
|
de Almeida SMV, da Silva LPBG, de Lima LRA, Longato GB, Padilha RJR, Alves LC, Brayner FA, Ruiz ALTG, de Carvalho JE, Beltrão EIC, de Lima MDCA, de Carvalho Júnior LB. Ultrastructural Assessment of 2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide activity on human breast adenocarcinoma cells. Micron 2016; 90:114-122. [PMID: 27668344 DOI: 10.1016/j.micron.2016.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/18/2016] [Accepted: 08/28/2016] [Indexed: 12/31/2022]
Abstract
The aim of the present study was to investigate ultrastructural changes induced by (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide (APHCA) treatment on human breast adenocarcinoma cancer cells MCF-7, besides the evaluation of phosphatidylserine externalization and DNA fragmentation in treated cells. Cell viability analysis demonstrated concentration and time-manner cytotoxicity. Treated MCF-7 cells did not expose phosphatidylserine residues to the external plasma membrane surface and DNA fragmentation was not visualized by electrophoresis. Light microscopy showed compromised cell density and presence of vacuolization after APHCA treatment with 60μM. Scanning and transmission electron microscopies revealed hallmarks of autophagy, namely the presence of membrane bebbling and autophagosomes, besides shrunken cells and cell debris in treated MCF-7 cells. However, more specific tests such as the quantification of mammalian autophagy proteins are necessary to determine the kind of death that is trigged by APHCA.
Collapse
Affiliation(s)
- Sinara Mônica Vitalino de Almeida
- Laboratório de Imunopatologia Keizo Asami (LIKA) and Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil; Faculdade de Ciências, Educação e Tecnologia de Garanhuns (FACETEG), Universidade de Pernambuco (UPE), Garanhuns 55290-000, PE, Brazil.
| | - Lúcia Patrícia Bezerra Gomes da Silva
- Laboratório de Imunopatologia Keizo Asami (LIKA) and Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| | - Luiza Rayanna Amorim de Lima
- Laboratório de Imunopatologia Keizo Asami (LIKA) and Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| | - Giovanna Barbarini Longato
- Laboratório de Pesquisa em Biologia Celular e Molecular de Tumores e Compostos Bioativos, Universidade São Francisco, Bragança Paulista 12916- 900, SP - Brazil
| | - Rafael José Ribeiro Padilha
- Laboratório de Imunopatologia Keizo Asami (LIKA) and Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| | - Luiz Carlos Alves
- Laboratório de Imunopatologia Keizo Asami (LIKA) and Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil; Fundação Oswaldo Cruz (CPqAM/FIOCRUZ), Centro de Pesquisas Aggeu Magalhães, Laboratório de Biologia Celular e Molecular. Avenida Professor Moraes Rêgo s/n, Cidade Universitária, Recife 50740-465, PE, Brazil; Universidade de Pernambuco (UPE), Instituto de Ciências Biológicas, Rua Arnóbio Marques 310, Recife 50100-130, Santo Amaro, PE, Brazil
| | - Fábio André Brayner
- Laboratório de Imunopatologia Keizo Asami (LIKA) and Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil; Fundação Oswaldo Cruz (CPqAM/FIOCRUZ), Centro de Pesquisas Aggeu Magalhães, Laboratório de Biologia Celular e Molecular. Avenida Professor Moraes Rêgo s/n, Cidade Universitária, Recife 50740-465, PE, Brazil
| | - Ana Lucia Tasca Gois Ruiz
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
| | - João Ernesto de Carvalho
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil; Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas 13083-859, SP, Brazil
| | - Eduardo Isidoro Carneiro Beltrão
- Laboratório de Imunopatologia Keizo Asami (LIKA) and Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| | | | - Luiz Bezerra de Carvalho Júnior
- Laboratório de Imunopatologia Keizo Asami (LIKA) and Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| |
Collapse
|
17
|
Cytotoxic and anticancer activities of an acridine derivative; 11-chloro-3-methyl-3H-imidazo[4,5-a]acridine on 5637 cells. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1637-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Pereira UA, Moreira TA, Barbosa LCA, Maltha CRA, Bomfim IS, Maranhão SS, Moraes MO, Pessoa C, Barros-Nepomuceno FWA. Rubrolide analogues and their derived lactams as potential anticancer agents. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00459d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analogues of rubrolides were synthesized and shown to be cytotoxic to several cancer cell lines and not toxic to L929 normal cells. The cytotoxicity involved the induction of cell death by apoptosis.
Collapse
Affiliation(s)
- U. A. Pereira
- Department of Chemistry
- Federal University of Viçosa
- Viçosa
- Brazil
| | - T. A. Moreira
- Department of Chemistry
- Federal University of Viçosa
- Viçosa
- Brazil
| | - L. C. A. Barbosa
- Department of Chemistry
- Federal University of Viçosa
- Viçosa
- Brazil
- Department of Chemistry
| | - C. R. A. Maltha
- Department of Chemistry
- Federal University of Viçosa
- Viçosa
- Brazil
| | - I. S. Bomfim
- Center for Research and Drug Development
- Federal University of Ceará
- Fortaleza
- Brazil
| | - S. S. Maranhão
- Center for Research and Drug Development
- Federal University of Ceará
- Fortaleza
- Brazil
| | - M. O. Moraes
- Center for Research and Drug Development
- Federal University of Ceará
- Fortaleza
- Brazil
| | - C. Pessoa
- Center for Research and Drug Development
- Federal University of Ceará
- Fortaleza
- Brazil
- Oswaldo Cruz Foundation
| | - F. W. A. Barros-Nepomuceno
- Institute of Health Sciences
- University of International Integration of the Afro-Brazilian Lusophony
- Acarape
- Brazil
| |
Collapse
|
19
|
da Costa PM, da Costa MP, Carvalho AA, Cavalcanti SMT, de Oliveira Cardoso MV, de Oliveira Filho GB, de Araújo Viana D, Fechine-Jamacaru FV, Leite ACL, de Moraes MO, Pessoa C, Ferreira PMP. Improvement of in vivo anticancer and antiangiogenic potential of thalidomide derivatives. Chem Biol Interact 2015; 239:174-83. [DOI: 10.1016/j.cbi.2015.06.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 11/27/2022]
|
20
|
Andrade LN, Lima TC, Amaral RG, Pessoa CDÓ, Filho MODM, Soares BM, do Nascimento LG, Carvalho AA, de Sousa DP. Evaluation of the cytotoxicity of structurally correlated p-menthane derivatives. Molecules 2015. [PMID: 26197313 PMCID: PMC6331850 DOI: 10.3390/molecules200713264] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Compounds isolated from essential oils play an important role in the prevention and treatment of cancer. Monoterpenes are natural products, and the principal constituents of many essential oils. The aim of this study was to investigate the cytotoxic potential of p-menthane derivatives. Additionally, analogues of perillyl alcohol, a monoterpene with known anticancer activity, were evaluated to identify the molecular characteristics which contribute to their cytotoxicity, which was tested against OVCAR-8, HCT-116, and SF-295 human tumor cell lines, using the MTT assay. The results of this study showed that (−)-perillaldehyde 8,9-epoxide exhibited the highest percentage inhibition of cell proliferation (GI = 96.32%–99.89%). Perillyl alcohol exhibited high cytotoxic activity (90.92%–95.82%), while (+)-limonene 1,2-epoxide (GI = 58.48%–93.10%), (−)-perillaldehyde (GI = 59.28%–83.03%), and (−)-8-hydroxycarvotanacetone (GI = 61.59%–94.01%) showed intermediate activity. All of the compounds tested were less cytotoxic than perillyl alcohol, except (−)-perillaldehyde 8,9-epoxide (IC50 = 1.75–1.03 µL/mg). In general, replacement of C-C double bonds by epoxide groups in addition to the aldehyde group increases cytotoxicity. Furthermore, stereochemistry seems to play an important role in cytotoxicity. We have demonstrated the cytotoxic influence of chemical substituents on the p-menthane structure, and analogues of perillyl alcohol.
Collapse
Affiliation(s)
- Luciana Nalone Andrade
- Departamento de Fisiologia, Universidade Federal de Sergipe, CEP 49100-000, São Cristóvão-SE, Brazil; E-Mails: (L.N.A.); (T.C.L.); (R.G.A.)
| | - Tamires Cardoso Lima
- Departamento de Fisiologia, Universidade Federal de Sergipe, CEP 49100-000, São Cristóvão-SE, Brazil; E-Mails: (L.N.A.); (T.C.L.); (R.G.A.)
| | - Ricardo Guimarães Amaral
- Departamento de Fisiologia, Universidade Federal de Sergipe, CEP 49100-000, São Cristóvão-SE, Brazil; E-Mails: (L.N.A.); (T.C.L.); (R.G.A.)
| | - Cláudia do Ó Pessoa
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, CEP 60430-270, Fortaleza-SE, Brazil; E-Mails: (G.P.); (M.O.M.F.); (B.M.S.)
| | - Manoel Odorico de Moraes Filho
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, CEP 60430-270, Fortaleza-SE, Brazil; E-Mails: (G.P.); (M.O.M.F.); (B.M.S.)
| | - Bruno Marques Soares
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, CEP 60430-270, Fortaleza-SE, Brazil; E-Mails: (G.P.); (M.O.M.F.); (B.M.S.)
| | | | | | - Damião Pergentino de Sousa
- Universidade Federal da Paraíba, CP 5009, CEP 58051-970, João Pessoa-PB, Brazil; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-83-3216-7347; Fax: +55-83-3216-7156
| |
Collapse
|
21
|
Inhibition of DNA topoisomerases I and II and growth inhibition of HL-60 cells by novel acridine-based compounds. Eur J Pharm Sci 2015; 76:192-202. [PMID: 25960253 DOI: 10.1016/j.ejps.2015.04.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/04/2015] [Accepted: 04/25/2015] [Indexed: 11/20/2022]
Abstract
HL-60 cancer cells were treated with a series of novel acridine derivatives (derivatives 1-4) in order to test the compounds' ability to inhibit both cancer cell growth and topoisomerase I and II activity. Binding studies of derivatives 1-4 with calf thymus DNA were also performed using a number of techniques (UV-Vis and fluorescence spectroscopy, thermal denaturation, linear dichroism and viscometry) to determine the nature of the interaction between the compounds and ctDNA. The binding constants for the complexes of the studied acridine derivatives with DNA were calculated from UV-Vis spectroscopic titrations (K=3.1×10(4)-2.0×10(3)M(-1)). Some of the compounds showed a strong inhibitory effect against Topo II at the relatively low concentration of 5μM. Topo I/II inhibition mode assays were also performed and verified that the novel compounds are topoisomerase suppressors rather than poisons. The biological activities of derivatives were studied using MTT assay and flow cytometric methods (detection of mitochondrial membrane potential, measurement of cell viability) after 24 and 48h incubation. The ability of derivatives to impair cell proliferation was tested by an analysis of cell cycle distribution.
Collapse
|
22
|
A facile synthesis and antimicrobial activity evaluation of sydnonyl-substituted thiazolidine derivatives. Molecules 2015; 20:6520-32. [PMID: 25871371 PMCID: PMC6272598 DOI: 10.3390/molecules20046520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/23/2015] [Accepted: 04/02/2015] [Indexed: 01/29/2023] Open
Abstract
Some new sydnonyl-substituted thiazolidine derivatives were synthesized in high yields by the modified Knoevenagel condensation of 3-aryl-4-formylsydnones with thiazolidine-2,4-dione and 2-thioxo-thiazolidine-4-one, respectively. All the synthesized thiazolidine derivatives were screened by paper-disc method to identify their antimicrobial activities against three bacteria viz. Staphylococcus aureus, Proteus vulgaris and Escherichia coli, and two fungal cultures viz. Aspergillus niger and Penicillium citrinum. The reference drugs were Norfloxacin and Griseofulvin, respectively. The screening data indicated that the tested sydnonyl-substituted thiazolidine derivatives exhibited no obvious antibacterial activity compared with the standard drug Norfloxacin. However, thiazolidine derivatives displayed significant antifungal activities against Penicillium citrinum and Aspergillus niger. Notably, all of the tested compounds showed growth inhibitory activity 1.5-4.4 times higher than that of the standard drug Griseofulvin against the two fungi.
Collapse
|
23
|
Zhang B, Li X, Li B, Gao C, Jiang Y. Acridine and its derivatives: a patent review (2009 - 2013). Expert Opin Ther Pat 2015; 24:647-64. [PMID: 24848259 DOI: 10.1517/13543776.2014.902052] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Acridine derivatives have been extensively explored as potential therapeutic agents for the treatment of a number of diseases, such as cancer, Alzheimer's, and bacterial and protozoan infections. Their mode of action is mainly attributed to DNA intercalation and the subsequent effects on the biological processes linked to DNA and its related enzymes. AREA COVERED This review covers the relevant efforts in developing acridine derivatives with enhanced therapeutic potency and selectivity and as fluorescent materials, with particular focus on the newly patented acridine derivatives in 2009 - 2013, acridine drugs in clinical trials and preclinical studies, and other new derivatives that emerged in 2009 - 2013. EXPERT OPINION Thousands of acridines with therapeutic and biological activities or with photochemical properties have been developed. In addition, to modify the position and the nature of the substituent on the acridine core, more attention may be paid to the development of azaacridine or other heteroatom-substituted acridine derivatives and their synthesis methods to broaden the application of acridine derivatives. In cancer chemotherapy, the mode of action of acridine derivatives needs to be further studied. Efficient methods for identification and optimization of acridine derivatives to localize at the sites of disease need to be further developed. Moreover, acridine drugs may be combined with such bioactive agents as DNA repair proteins inhibitors to overcome tumor resistance and improve outcomes.
Collapse
Affiliation(s)
- Bin Zhang
- Tsinghua University, Department of Chemistry , Beijing 100084 , PR China
| | | | | | | | | |
Collapse
|
24
|
Olszewska P, Mikiciuk-Olasik E, Błaszczak-Świątkiewicz K, Szymański J, Szymański P. Novel tetrahydroacridine derivatives inhibit human lung adenocarcinoma cell growth by inducing G1 phase cell cycle arrest and apoptosis. Biomed Pharmacother 2014; 68:959-67. [PMID: 25458793 DOI: 10.1016/j.biopha.2014.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/15/2014] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is not only the most commonly diagnosed cancers worldwide but it is still the leading cause of cancer-related death. Acridine derivatives are a class of anticancer agents with the ability to intercalate DNA and inhibit topoisomerases. The aim of this study was to evaluate the effect of sixteen new tetrahydroacridine derivatives on the viability and growth of human lung adenocarcinoma cells. We compared anticancer activity of a series of eight compounds with 4-fluorobenzoic acid and eight compounds with 6-hydrazinonicotnic acid differed from each other in length of the aliphatic chain containing from 2 to 9 carbon atoms. Interestingly, tetrahydroacridine with 4-fluorobenzoic acid (compounds 9-16) showed higher anticancer activity than derivatives with 6-hydrazinonicotnic acid (compounds 1-8) and their efficacy was correlated with increasing number of carbon atoms in the aliphatic chain. The results showed that inhibition of cancer cell growth by the most effective compounds 15 and 16 was associated with induction of G1 phase cell cycle arrest followed by caspase-3 dependent apoptosis. Our findings suggest that tetrahydroacridine with 4-fluorobenzoic acid containing 8 and 9 carbon atoms may be potential candidate for treatment of lung cancer.
Collapse
Affiliation(s)
- Paulina Olszewska
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Faculty of Pharmacy, Medical University, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Elżbieta Mikiciuk-Olasik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Faculty of Pharmacy, Medical University, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Katarzyna Błaszczak-Świątkiewicz
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Faculty of Pharmacy, Medical University, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Jacek Szymański
- Central Scientific Laboratory, Medical University, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Paweł Szymański
- Laboratory of Radiopharmacy, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Faculty of Pharmacy, Medical University, Muszyñskiego 1, 90-151 Lodz, Poland.
| |
Collapse
|
25
|
Synthesis, DNA binding and topoisomerase I inhibition activity of thiazacridine and imidazacridine derivatives. Molecules 2013; 18:15035-50. [PMID: 24322489 PMCID: PMC6270168 DOI: 10.3390/molecules181215035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023] Open
Abstract
Thiazacridine and imidazacridine derivatives have shown promising results as tumors suppressors in some cancer cell lines. For a better understanding of the mechanism of action of these compounds, binding studies of 5-acridin-9-ylmethylidene-3-amino-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-imidazolidin-4-one and 3-acridin-9-ylmethyl-thiazolidin-2,4-dione with calf thymus DNA (ctDNA) by electronic absorption and fluorescence spectroscopy and circular dichroism spectroscopy were performed. The binding constants ranged from 1.46 × 104 to 6.01 × 104 M−1. UV-Vis, fluorescence and circular dichroism measurements indicated that the compounds interact effectively with ctDNA, both by intercalation or external binding. They demonstrated inhibitory activities to human topoisomerase I, except for 5-acridin-9-ylmethylidene-2-thioxo-1,3-thiazolidin-4-one. These results provide insight into the DNA binding mechanism of imidazacridines and thiazacridines.
Collapse
|