1
|
Cascajosa-Lira A, Prieto AI, Pichardo S, Jos A, Cameán AM. Protective effects of sulforaphane against toxic substances and contaminants: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155731. [PMID: 38824824 DOI: 10.1016/j.phymed.2024.155731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Sulforaphane (SFN) is a dietary isothiocyanate, derived from glucoraphanin, present in cruciferous vegetables belonging to the Brassica genus. It is a biologically active phytochemical that acts as a nuclear factor erythroid 2-related factor 2 (Nrf2) inducer. Thus, it has been reported to have multiple protective functions including anticancer responses and protection against a toxic agent's action. PURPOSE The present work systematically reviewed and synthesised the protective properties of sulforaphane against a toxic agent. This review reveals the mechanism of the action of SFN in each organ or system. METHODS The PRISMA guideline was followed in this sequence: researched literature, organised retrieved documents, abstracted relevant information, assessed study quality and bias, synthesised data, and prepared a comprehensive report. Searches were conducted on Science Direct and PubMed using the keywords "Sulforaphane" AND ("protective effects" OR "protection against"). RESULTS Reports showed that liver and the nervous system are the target organs on which attention was focused, and this might be due to the key role of oxidative stress in liver and neurodegenerative diseases. However, protective activities have also been demonstrated in the lungs, heart, immune system, kidneys, and endocrine system. SFN exerts its protective effects by activating the Nrf2 pathway, which enhances antioxidant defenses and reduces oxidative stress. It also suppresses inflammation by decreasing interleukin production. Moreover, SFN inhibits apoptosis by preventing caspase 3 cleavage and increasing Bcl2 levels. Overall, SFN demonstrates multifaceted mechanisms to counteract the adverse effects of toxic agents. CONCLUSION SFN has potential clinical applications as a chemoprotective agent. Nevertheless, more studies are necessary to set the safe doses of SFN in humans.
Collapse
Affiliation(s)
- Antonio Cascajosa-Lira
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, España.
| | - Ana I Prieto
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, España.
| | - Silvia Pichardo
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, España.
| | - Angeles Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, España.
| | - Ana M Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, España.
| |
Collapse
|
2
|
Shore R, Behlen J, McBee D, Prayaga K, Haugen F, Craig L, Shields M, Mustapha T, Harvey N, Johnson N. Lactational transfer of sulforaphane-N-acetylcysteine in vivo and in human breast milk. Toxicol Appl Pharmacol 2024; 482:116796. [PMID: 38145809 PMCID: PMC11005475 DOI: 10.1016/j.taap.2023.116796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Sulforaphane (SFN) is a bioactive phytonutrient found in cruciferous vegetables. There is a lack of detailed information on the lactational transfer of SFN and SFN metabolites, and potential pharmacological effects on breastfeeding infants. We carried out two maternal supplementation studies in a mouse model, wherein lactating dams received either vehicle, 300 or 600 ppm SFN from postnatal day (PND) 1 to 5, or in a second experiment, vehicle or 600 ppm SFN from PND 1 to 14. The parent compound was only detectable in milk and plasma from dams receiving 600 ppm SFN for five days. The predominant metabolite SFN-N-acetylcysteine (SFN-NAC) was readily detected in milk from dams receiving 300 and 600 ppm SFN for five days or 600 ppm for 14 days. Maternal SFN-NAC plasma levels were elevated in both 600 ppm groups. Maternal hepatic and pulmonary expression of NRF2-related genes, Nqo1, Gsta2, Gstm1, and Gstp1, were significantly increased, generally following a dose-response; however, offspring induction varied. PND5 neonates in the 600-ppm group exhibited significantly elevated expression of Nqo1, Gsta2, and Gstp1 in liver, and Gstm1 and Gstp1 in lung. Findings support maternal dietary supplementation with SFN induces NRF2-related gene expression in neonates via lactational transfer of SFN-NAC. However, NQO1 enzyme activity was not significantly elevated, highlighting the need to optimize dosing strategy. Additionally, in a pilot investigation of lactating women consuming a typical diet, without any purified SFN supplementation, 7 out of 8 breast milk samples showed SFN-NAC above the limit of quantification (LOQ). Notably, the one sample below the LOQ was collected from the only participant who reported no consumption of cruciferous vegetables in the past 24 h. The parent compound was not detected in any of the human breast milk samples. Overall, these data indicate lactational transfer of SFN-NAC at dietary relevant levels. Future studies are needed to evaluate pharmacokinetics and pharmacodynamics of lactational transfer for potential preventive or therapeutic effects in breastfeeding children.
Collapse
Affiliation(s)
- Ross Shore
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA
| | - Jonathan Behlen
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA
| | - Dylan McBee
- Department of Environmental & Occupational Health, Texas A&M University, College Station, TX 77843, USA
| | - Keerthana Prayaga
- Department of Environmental & Occupational Health, Texas A&M University, College Station, TX 77843, USA
| | - Faith Haugen
- Department of Environmental & Occupational Health, Texas A&M University, College Station, TX 77843, USA
| | - Lenore Craig
- Department of Environmental & Occupational Health, Texas A&M University, College Station, TX 77843, USA
| | - Michael Shields
- Geochemical & Environmental Research Group, Texas A&M University, College Station, TX 77845, USA
| | - Toriq Mustapha
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA
| | - Navada Harvey
- Department of Environmental & Occupational Health, Texas A&M University, College Station, TX 77843, USA
| | - Natalie Johnson
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; Department of Environmental & Occupational Health, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
3
|
Chen SY, Kannan M. Neural crest cells and fetal alcohol spectrum disorders: Mechanisms and potential targets for prevention. Pharmacol Res 2023; 194:106855. [PMID: 37460002 PMCID: PMC10528842 DOI: 10.1016/j.phrs.2023.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are a group of preventable and nongenetic birth defects caused by prenatal alcohol exposure that can result in a range of cognitive, behavioral, emotional, and functioning deficits, as well as craniofacial dysmorphology and other congenital defects. During embryonic development, neural crest cells (NCCs) play a critical role in giving rise to many cell types in the developing embryos, including those in the peripheral nervous system and craniofacial structures. Ethanol exposure during this critical period can have detrimental effects on NCC induction, migration, differentiation, and survival, leading to a broad range of structural and functional abnormalities observed in individuals with FASD. This review article provides an overview of the current knowledge on the detrimental effects of ethanol on NCC induction, migration, differentiation, and survival. The article also examines the molecular mechanisms involved in ethanol-induced NCC dysfunction, such as oxidative stress, altered gene expression, apoptosis, epigenetic modifications, and other signaling pathways. Furthermore, the review highlights potential therapeutic strategies for preventing or mitigating the detrimental effects of ethanol on NCCs and reducing the risk of FASD. Overall, this article offers a comprehensive overview of the current understanding of the impact of ethanol on NCCs and its role in FASD, shedding light on potential avenues for future research and intervention.
Collapse
Affiliation(s)
- Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| | - Maharajan Kannan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| |
Collapse
|
4
|
Vermillion Maier ML, Siddens LK, Pennington JM, Uesugi SL, Tilton SC, Vertel EA, Anderson KA, Tidwell LG, Ognibene TJ, Turteltaub KW, Smith JN, Williams DE. Benzo[a]pyrene toxicokinetics in humans following dietary supplementation with 3,3'-diindolylmethane (DIM) or Brussels sprouts. Toxicol Appl Pharmacol 2023; 460:116377. [PMID: 36642108 PMCID: PMC9946811 DOI: 10.1016/j.taap.2023.116377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Utilizing the atto-zeptomole sensitivity of UPLC-accelerator mass spectrometry (UPLC-AMS), we previously demonstrated significant first-pass metabolism following escalating (25-250 ng) oral micro-dosing in humans of [14C]-benzo[a]pyrene ([14C]-BaP). The present study examines the potential for supplementation with Brussels sprouts (BS) or 3,3'-diindolylmethane (DIM) to alter plasma levels of [14C]-BaP and metabolites over a 48-h period following micro-dosing with 50 ng (5.4 nCi) [14C]-BaP. Volunteers were dosed with [14C]-BaP following fourteen days on a cruciferous vegetable restricted diet, or the same diet supplemented for seven days with 50 g of BS or 300 mg of BR-DIM® prior to dosing. BS or DIM reduced total [14C] recovered from plasma by 56-67% relative to non-intervention. Dietary supplementation with DIM markedly increased Tmax and reduced Cmax for [14C]-BaP indicative of slower absorption. Both dietary treatments significantly reduced Cmax values of four downstream BaP metabolites, consistent with delaying BaP absorption. Dietary treatments also appeared to reduce the T1/2 and the plasma AUC(0,∞) for Unknown Metabolite C, indicating some effect in accelerating clearance of this metabolite. Toxicokinetic constants for other metabolites followed the pattern for [14C]-BaP (metabolite profiles remained relatively consistent) and non-compartmental analysis did not indicate other significant alterations. Significant amounts of metabolites in plasma were at the bay region of [14C]-BaP irrespective of treatment. Although the number of subjects and large interindividual variation are limitations of this study, it represents the first human trial showing dietary intervention altering toxicokinetics of a defined dose of a known human carcinogen.
Collapse
Affiliation(s)
- Monica L Vermillion Maier
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, ALS 1007, Oregon State University, Corvallis, OR 97331, USA.
| | - Lisbeth K Siddens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Jamie M Pennington
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Sandra L Uesugi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Emily A Vertel
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Lane G Tidwell
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Ted J Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Kenneth W Turteltaub
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; Biology and Biotechnology Research Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Jordan N Smith
- NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA; Chemical Biology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - David E Williams
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
5
|
Williams DE. Indoles Derived From Glucobrassicin: Cancer Chemoprevention by Indole-3-Carbinol and 3,3'-Diindolylmethane. Front Nutr 2021; 8:734334. [PMID: 34660663 PMCID: PMC8517077 DOI: 10.3389/fnut.2021.734334] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022] Open
Abstract
Hydrolysis of glucobrassicin by plant or bacterial myrosinase produces multiple indoles predominantly indole-3-carbinol (I3C). I3C and its major in vivo product, 3,3'-diindolylmethane (DIM), are effective cancer chemopreventive agents in pre-clinical models and show promise in clinical trials. The pharmacokinetics/pharmacodynamics of DIM have been studied in both rodents and humans and urinary DIM is a proposed biomarker of dietary intake of cruciferous vegetables. Recent clinical studies at Oregon State University show surprisingly robust metabolism of DIM in vivo with mono- and di-hydroxylation followed by conjugation with sulfate or glucuronic acid. DIM has multiple mechanisms of action, the most well-characterized is modulation of aryl hydrocarbon receptor (AHR) signaling. In rainbow trout dose-dependent cancer chemoprevention by dietary I3C is achieved when given prior to or concurrent with aflatoxin B1, polycyclic aromatic hydrocarbons, nitrosamines or direct acting carcinogens such as N-methyl-N'-nitro-nitrosoguanidine. Feeding pregnant mice I3C inhibits transplacental carcinogenesis. In humans much of the focus has been on chemoprevention of breast and prostate cancer. Alteration of cytochrome P450-dependent estrogen metabolism is hypothesized to be an important driver of DIM-dependent breast cancer prevention. The few studies done to date comparing glucobrassicin-rich crucifers such as Brussels sprouts with I3C/DIM supplements have shown the greater impact of the latter is due to dose. Daily ingestion of kg quantities of Brussels sprouts is required to produce in vivo levels of DIM achievable by supplementation. In clinical trials these supplement doses have elicited few if any adverse effects. Sulforaphane from glucoraphanin can act synergistically with glucobrassicin-derived DIM and this may lead to opportunities for combinatorial approaches (supplement and food-based) in the clinic.
Collapse
Affiliation(s)
- David E. Williams
- Department of Environmental and Molecular Toxicology, Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
6
|
Vermillion Maier ML, Siddens LK, Uesugi SL, Choi J, Leonard SW, Pennington JM, Tilton SC, Smith JN, Ho E, Chow HHS, Nguyen BD, Kolluri SK, Williams DE. 3,3'-Diindolylmethane Exhibits Significant Metabolism after Oral Dosing in Humans. Drug Metab Dispos 2021; 49:694-705. [PMID: 34035125 PMCID: PMC8407664 DOI: 10.1124/dmd.120.000346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/07/2021] [Indexed: 01/07/2023] Open
Abstract
3,3'-Diindolylmethane (DIM), a major phytochemical derived from ingestion of cruciferous vegetables, is also a dietary supplement. In preclinical models, DIM is an effective cancer chemopreventive agent and has been studied in a number of clinical trials. Previous pharmacokinetic studies in preclinical and clinical models have not reported DIM metabolites in plasma or urine after oral dosing, and the pharmacological actions of DIM on target tissues is assumed to be solely via the parent compound. Seven subjects (6 males and 1 female) ranging from 26-65 years of age, on a cruciferous vegetable-restricted diet prior to and during the study, took 2 BioResponse DIM 150-mg capsules (45.3 mg DIM/capsule) every evening for one week with a final dose the morning of the first blood draw. A complete time course was performed with plasma and urine collected over 48 hours and analyzed by UPLC-MS/MS. In addition to parent DIM, two monohydroxylated metabolites and 1 dihydroxylated metabolite, along with their sulfate and glucuronide conjugates, were present in both plasma and urine. Results reported here are indicative of significant phase 1 and phase 2 metabolism and differ from previous pharmacokinetic studies in rodents and humans, which reported only parent DIM present after oral administration. 3-((1H-indole-3-yl)methyl)indolin-2-one, identified as one of the monohydroxylated products, exhibited greater potency and efficacy as an aryl hydrocarbon receptor agonist when tested in a xenobiotic response element-luciferase reporter assay using Hepa1 cells. In addition to competitive phytochemical-drug adverse reactions, additional metabolites may exhibit pharmacological activity highlighting the importance of further characterization of DIM metabolism in humans. SIGNIFICANCE STATEMENT: 3,3'-Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, is an effective cancer chemopreventive agent in preclinical models and a popular dietary supplement currently in clinical trials. Pharmacokinetic studies to date have found little or no metabolites of DIM in plasma or urine. In marked contrast, we demonstrate rapid appearance of mono- and dihydroxylated metabolites in human plasma and urine as well as their sulfate and glucuronide conjugates. The 3-((1H-indole-3-yl)methyl)indolin-2-one metabolite exhibited significant aryl hydrocarbon receptor agonist activity, emphasizing the need for further characterization of the pharmacological properties of DIM metabolites.
Collapse
Affiliation(s)
- Monica L Vermillion Maier
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Lisbeth K Siddens
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Sandra L Uesugi
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Jaewoo Choi
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Scott W Leonard
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Jamie M Pennington
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Jordan N Smith
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Emily Ho
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - H H Sherry Chow
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Bach D Nguyen
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Siva K Kolluri
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - David E Williams
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| |
Collapse
|
7
|
Elkashty OA, Tran SD. Sulforaphane as a Promising Natural Molecule for Cancer Prevention and Treatment. Curr Med Sci 2021; 41:250-269. [PMID: 33877541 DOI: 10.1007/s11596-021-2341-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Tumorigenicity-inhibiting compounds have been identified in our daily diet. For example, isothiocyanates (ITCs) found in cruciferous vegetables were reported to have potent cancer-prevention activities. The best characterized ITC is sulforaphane (SF). SF can simultaneously modulate multiple cellular targets involved in carcinogenesis, including (1) modulating carcinogen-metabolizing enzymes and blocking the action of mutagens; (2) inhibition of cell proliferation and induction of apoptosis; and (3) inhibition of neo-angiogenesis and metastasis. SF targets cancer stem cells through modulation of nuclear factor kappa B (NF-κB), Sonic hedgehog (SHH), epithelial-mesenchymal transition, and Wnt/β-catenin pathways. Conventional chemotherapy/SF combination was tested in several studies and resulted in favorable outcomes. With its favorable toxicological profile, SF is a promising agent in cancer prevention and/or therapy. In this article, we discuss the human metabolism of SF and its effects on cancer prevention, treatment, and targeting cancer stem cells, as well as providing a brief review of recent human clinical trials on SF.
Collapse
Affiliation(s)
- Osama A Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, H3A 0G4, Canada.,Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura, 35516, Egypt
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, H3A 0G4, Canada.
| |
Collapse
|
8
|
Epigenetic Regulation of NRF2/KEAP1 by Phytochemicals. Antioxidants (Basel) 2020; 9:antiox9090865. [PMID: 32938017 PMCID: PMC7555619 DOI: 10.3390/antiox9090865] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetics has provided a new dimension to our understanding of nuclear factor erythroid 2–related factor 2/Kelch-like ECH-associated protein 1 (human NRF2/KEAP1 and murine Nrf2/Keap1) signaling. Unlike the genetic changes affecting DNA sequence, the reversible nature of epigenetic alterations provides an attractive avenue for cancer interception. Thus, targeting epigenetic mechanisms in the corresponding signaling networks represents an enticing strategy for therapeutic intervention with dietary phytochemicals acting at transcriptional, post-transcriptional, and post-translational levels. This regulation involves the interplay of histone modifications and DNA methylation states in the human NFE2L2/KEAP1 and murine Nfe2l2/Keap1 genes, acetylation of lysine residues in NRF2 and Nrf2, interaction with bromodomain and extraterminal domain (BET) acetyl “reader” proteins, and non-coding RNAs such as microRNA (miRNA) and long non-coding RNA (lncRNA). Phytochemicals documented to modulate NRF2 signaling act by reversing hypermethylated states in the CpG islands of NFE2L2 or Nfe2l2, via the inhibition of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), through the induction of ten-eleven translocation (TET) enzymes, or by inducing miRNA to target the 3′-UTR of the corresponding mRNA transcripts. To date, fewer than twenty phytochemicals have been reported as NRF2 epigenetic modifiers, including curcumin, sulforaphane, resveratrol, reserpine, and ursolic acid. This opens avenues for exploring additional dietary phytochemicals that regulate the human epigenome, and the potential for novel strategies to target NRF2 signaling with a view to beneficial interception of cancer and other chronic diseases.
Collapse
|
9
|
Li S, Chen M, Wu H, Li Y, Tollefsbol TO. Maternal Epigenetic Regulation Contributes to Prevention of Estrogen Receptor-negative Mammary Cancer with Broccoli Sprout Consumption. Cancer Prev Res (Phila) 2020; 13:449-462. [PMID: 32184225 PMCID: PMC7203003 DOI: 10.1158/1940-6207.capr-19-0491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/11/2020] [Accepted: 03/13/2020] [Indexed: 02/04/2023]
Abstract
Cruciferous vegetables have been of special interest due to the rich presence of bioactive compounds such as sulforaphane which show promising potential on cancer prevention and therapy as an epigenetic dietary strategy. Abnormal epigenetic alteration as one of the primary contributors to tumor development is closely related to breast cancer initiation and progression. In the present study, we investigated the effect of dietary broccoli sprouts (BSp), a common cruciferous vegetable, on prevention of estrogen receptor (ER)-negative mammary tumors at three different temporal exposure windows using a spontaneous breast cancer mouse model. Our findings indicate that maternal BSp treatment exhibited profound inhibitory and preventive effects on mammary cancer formation in the nontreated mouse offspring. The BSp diet administered to adult mice also showed suppressive effects on mammary cancer but was not as profound as the maternal BSp preventive effects. Moreover, such protective effects were linked with differentially expressed tumor- and epigenetic-related genes, as well as altered global histone acetylation, DNA methylation, and DNA hydroxymethylation levels. We also found that the expression changes of tumor-related genes were associated with the levels of histone methylation of H3K4 and H3K9 in the gene promoter regions. In addition, BSp-enriched sulforaphane was shown to increase protein expression of tumor suppressor genes such as p16 and p53 and inhibit the protein levels of Bmi1, DNA methyltransferases, and histone deacetylases in ERα-negative breast cancer cell lines. Collectively, these results suggest that maternal exposure to key phytochemicals may contribute to ER-negative mammary tumor prevention in their offspring through epigenetic regulations.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Min Chen
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Huixin Wu
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yuanyuan Li
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
10
|
Yagishita Y, Fahey JW, Dinkova-Kostova AT, Kensler TW. Broccoli or Sulforaphane: Is It the Source or Dose That Matters? Molecules 2019; 24:E3593. [PMID: 31590459 PMCID: PMC6804255 DOI: 10.3390/molecules24193593] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022] Open
Abstract
There is robust epidemiological evidence for the beneficial effects of broccoli consumption on health, many of them clearly mediated by the isothiocyanate sulforaphane. Present in the plant as its precursor, glucoraphanin, sulforaphane is formed through the actions of myrosinase, a β-thioglucosidase present in either the plant tissue or the mammalian microbiome. Since first isolated from broccoli and demonstrated to have cancer chemoprotective properties in rats in the early 1990s, over 3000 publications have described its efficacy in rodent disease models, underlying mechanisms of action or, to date, over 50 clinical trials examining pharmacokinetics, pharmacodynamics and disease mitigation. This review evaluates the current state of knowledge regarding the relationships between formulation (e.g., plants, sprouts, beverages, supplements), bioavailability and efficacy, and the doses of glucoraphanin and/or sulforaphane that have been used in pre-clinical and clinical studies. We pay special attention to the challenges for better integration of animal model and clinical studies, particularly with regard to selection of dose and route of administration. More effort is required to elucidate underlying mechanisms of action and to develop and validate biomarkers of pharmacodynamic action in humans. A sobering lesson is that changes in approach will be required to implement a public health paradigm for dispensing benefit across all spectrums of the global population.
Collapse
Affiliation(s)
- Yoko Yagishita
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Jed W Fahey
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
- Cullman Chemoprotection Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Albena T Dinkova-Kostova
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
- Cullman Chemoprotection Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland DD1 9SY, UK.
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- Cullman Chemoprotection Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
11
|
Romagnolo DF, Daniels KD, Grunwald JT, Ramos SA, Propper CR, Selmin OI. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol Nutr Food Res 2017; 60:1310-29. [PMID: 27144894 DOI: 10.1002/mnfr.201501063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022]
Abstract
SCOPE Reduced expression of tumor suppressor genes (TSG) increases the susceptibility to breast cancer. However, only a small percentage of breast tumors is related to family history and mutational inactivation of TSG. Epigenetics refers to non-mutational events that alter gene expression. Endocrine disruptors found in foods and drinking water may disrupt epigenetically hormonal regulation and increase breast cancer risk. This review centers on the working hypothesis that agonists of the aromatic hydrocarbon receptor (AHR), bisphenol A (BPA), and arsenic compounds, induce in TSG epigenetic signatures that mirror those often seen in sporadic breast tumors. Conversely, it is hypothesized that bioactive food components that target epigenetic mechanisms protect against sporadic breast cancer induced by these disruptors. METHODS AND RESULTS This review highlights (i) overlaps between epigenetic signatures placed in TSG by AHR-ligands, BPA, and arsenic with epigenetic alterations associated with sporadic breast tumorigenesis; and (ii) potential opportunities for the prevention of sporadic breast cancer with food components that target the epigenetic machinery. CONCLUSIONS Characterizing the overlap between epigenetic signatures elicited in TSG by endocrine disruptors with those observed in sporadic breast tumors may afford new strategies for breast cancer prevention with specific bioactive food components or diet.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Kevin D Daniels
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jonathan T Grunwald
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Stephan A Ramos
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
12
|
Moon CJ, Kim E, Min A, Ahn A, Seong YG, Choi MY. Spectroscopic Study of Jet-cooled Indole-3-carbinol by Thermal Evaporation. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cheol Joo Moon
- Department of Chemistry (BK21+) and Research Institute of Natural Science; Gyeongsang National University; Jinju 52828 Republic of Korea
| | - Eunbin Kim
- College of Nursing; Gyeongsang National University; Jinju 52828 Republic of Korea
| | - Ahreum Min
- Department of Chemistry (BK21+) and Research Institute of Natural Science; Gyeongsang National University; Jinju 52828 Republic of Korea
| | - Ahreum Ahn
- Department of Chemistry (BK21+) and Research Institute of Natural Science; Gyeongsang National University; Jinju 52828 Republic of Korea
| | - Yeon Guk Seong
- Department of Chemistry (BK21+) and Research Institute of Natural Science; Gyeongsang National University; Jinju 52828 Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21+) and Research Institute of Natural Science; Gyeongsang National University; Jinju 52828 Republic of Korea
| |
Collapse
|
13
|
Fuse Y, Nguyen VT, Kobayashi M. Nrf2-dependent protection against acute sodium arsenite toxicity in zebrafish. Toxicol Appl Pharmacol 2016; 305:136-142. [PMID: 27306194 DOI: 10.1016/j.taap.2016.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
Transcription factor Nrf2 induces a number of detoxifying enzymes and antioxidant proteins to confer protection against the toxic effects of a diverse range of chemicals including inorganic arsenicals. Although a number of studies using cultured cells have demonstrated that Nrf2 has a cell-protective function against acute and high-dose arsenic toxicity, there is no clear in vivo evidence of this effect. In the present study, we genetically investigated the protective role of Nrf2 against acute sodium arsenite toxicity using the zebrafish Nrf2 mutant, nrf2a(fh318). After treatment with 1mM sodium arsenite, the survival of nrf2a(fh318) larvae was significantly shorter than that of wild-type siblings, suggesting that Nrf2 protected the zebrafish larvae against high-dose arsenite exposure. To understand the molecular basis of the Nrf2-dependent protection, we analyzed the gene expression profiles after arsenite exposure, and found that the genes involved in the antioxidative function (prdx1 and gclc), arsenic metabolism (gstp1) and xenobiotic elimination (abcc2) were induced in an Nrf2-dependent manner. Furthermore, pre-treatment with sulforaphane, a well-known Nrf2 activator improved the survival of zebrafish larvae after arsenic exposure. Based on these results, we concluded that Nrf2 plays a fundamental and conserved role in protection against acute sodium arsenite toxicity.
Collapse
Affiliation(s)
- Yuji Fuse
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Vu Thanh Nguyen
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| |
Collapse
|
14
|
Madeen EP, Löhr CV, You H, Siddens LK, Krueger SK, Dashwood RH, Gonzalez FJ, Baird WM, Ho E, Bramer L, Waters KM, Williams DE. Dibenzo[def,p]chrysene transplacental carcinogenesis in wild-type, Cyp1b1 knockout, and CYP1B1 humanized mice. Mol Carcinog 2016; 56:163-171. [PMID: 26990437 DOI: 10.1002/mc.22480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/08/2016] [Accepted: 03/01/2016] [Indexed: 11/11/2022]
Abstract
The cytochrome P450 (CYP) 1 family is active toward numerous environmental pollutants, including polycyclic aromatic hydrocarbons (PAHs). Utilizing a mouse model, null for Cyp1b1 and expressing human CYP1B1, we tested the hypothesis that hCYP1B1 is important for dibenzo[def,p]chrysene (DBC) transplacental carcinogenesis. Wild-type mCyp1b1, transgenic hCYP1B1 (mCyp1b1 null background), and mCyp1b1 null mice were assessed. Each litter had an equal number of siblings with Ahrb-1/d and Ahrd/d alleles. Pregnant mice were dosed (gavage) on gestation day 17 with 6.5 or 12 mg/kg of DBC or corn oil. At 10 months of age, mortality, general health, lymphoid disease and lung tumor incidence, and multiplicity were assessed. hCYP1B1 genotype did not impact lung tumor multiplicity, but tended to enhance incidence compared to Cyp1b1 wild-type mice (P = 0.07). As with Cyp1b1 in wild-type mice, constitutive hCYP1B1 protein is non-detectable in liver but was induced with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Wild-type mice were 59% more likely to succumb to T-cell Acute Lymphoblastic Leukemia (T-ALL). Unlike an earlier examination of the Ahr genotype in this model (Yu et al., Cancer Res, 2006;66:755-762), but in agreement with a more recent study (Shorey et al., Toxicol Appl Pharmacol, 2013;270:60-69), this genotype was not associated with lung tumor incidence, multiplicity, or mortality. Sex was not significant with respect to lung tumor incidence or mortality but males exhibited significantly greater multiplicity. Lung tumor incidence was greater in mCyp1b1 nulls compared to wild-type mice. To our knowledge, this is the first application of a humanized mouse model in transplacental carcinogenesis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Erin P Madeen
- Department of Molecular and Environmental Toxicology, Oregon State University, Corvallis, Oregon.,Cancer Prevention and Intervention Program, Linus Pauling Institute, Oregon State University, Corvallis, Oregon.,Superfund Research Program, Oregon State University, Corvallis, Oregon
| | - Christiane V Löhr
- Cancer Prevention and Intervention Program, Linus Pauling Institute, Oregon State University, Corvallis, Oregon.,Superfund Research Program, Oregon State University, Corvallis, Oregon.,College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Hannah You
- Cancer Prevention and Intervention Program, Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Lisbeth K Siddens
- Department of Molecular and Environmental Toxicology, Oregon State University, Corvallis, Oregon.,Cancer Prevention and Intervention Program, Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Sharon K Krueger
- Cancer Prevention and Intervention Program, Linus Pauling Institute, Oregon State University, Corvallis, Oregon.,Superfund Research Program, Oregon State University, Corvallis, Oregon
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, M.D. Anderson Cancer Center, Houston, Texas
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - William M Baird
- Department of Molecular and Environmental Toxicology, Oregon State University, Corvallis, Oregon.,Superfund Research Program, Oregon State University, Corvallis, Oregon
| | - Emily Ho
- Cancer Prevention and Intervention Program, Linus Pauling Institute, Oregon State University, Corvallis, Oregon.,Department of Nutrition and Exercise Science, Oregon State University, Corvallis, Oregon
| | - Lisa Bramer
- Superfund Research Program, Oregon State University, Corvallis, Oregon.,Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Katrina M Waters
- Superfund Research Program, Oregon State University, Corvallis, Oregon.,Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - David E Williams
- Department of Molecular and Environmental Toxicology, Oregon State University, Corvallis, Oregon.,Cancer Prevention and Intervention Program, Linus Pauling Institute, Oregon State University, Corvallis, Oregon.,Superfund Research Program, Oregon State University, Corvallis, Oregon
| |
Collapse
|
15
|
Anti-cancer and cardioprotective effects of indol-3-carbinol in doxorubicin-treated mice. J Infect Chemother 2016; 22:36-43. [PMID: 26603425 DOI: 10.1016/j.jiac.2015.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 12/17/2022]
|
16
|
Philbrook NA, Winn LM. Benzoquinone toxicity is not prevented by sulforaphane in CD-1 mouse fetal liver cells. J Appl Toxicol 2015; 36:1015-24. [DOI: 10.1002/jat.3251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/06/2015] [Accepted: 09/06/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Nicola A. Philbrook
- Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology; Queen's University; Kingston ON Canada K7L3N6
| | - Louise M. Winn
- School of Environmental Studies; Queen's University; Kingston ON Canada K7L3N6
| |
Collapse
|
17
|
Ahn A, Min A, Moon CJ, Lee JH, Lee SJ, Warashina T, Ishiuchi SI, Fujii M, Choi MY. Spectroscopic study of jet-cooled indole-3-carbinol by laser desorption technique: Franck–Condon simulations and anharmonic calculations. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.08.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Claycombe KJ, Brissette CA, Ghribi O. Epigenetics of inflammation, maternal infection, and nutrition. J Nutr 2015; 145:1109S-1115S. [PMID: 25833887 PMCID: PMC4410493 DOI: 10.3945/jn.114.194639] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022] Open
Abstract
Studies have demonstrated that epigenetic changes such as DNA methylation, histone modification, and chromatin remodeling are linked to an increased inflammatory response as well as increased risk of chronic disease development. A few studies have begun to investigate whether dietary nutrients play a beneficial role by modifying or reversing epigenetically induced inflammation. Results of these studies show that nutrients modify epigenetic pathways. However, little is known about how nutrients modulate inflammation by regulating immune cell function and/or immune cell differentiation via epigenetic pathways. This overview will provide information about the current understanding of the role of nutrients in the epigenetic control mechanisms of immune function.
Collapse
Affiliation(s)
- Kate J Claycombe
- USDA-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND; and
| | - Catherine A Brissette
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| | - Othman Ghribi
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| |
Collapse
|
19
|
Philbrook NA, Winn LM. Sub-chronic sulforaphane exposure in CD-1 pregnant mice enhances maternal NADPH quinone oxidoreductase 1 (NQO1) activity and mRNA expression of NQO1, glutathione S-transferase, and glutamate-cysteine ligase: Potential implications for fetal protection against toxicant exposure. Reprod Toxicol 2014; 43:30-7. [DOI: 10.1016/j.reprotox.2013.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 11/29/2022]
|