1
|
Donadio JLS, Prado SBRD, Soares CG, Tamarossi RI, Heidor R, Moreno FS, Fabi JP. Ripe papaya pectins inhibit the proliferation of colon cancer spheroids and the formation of chemically induced aberrant crypts in rats colons. Carbohydr Polym 2024; 331:121878. [PMID: 38388061 DOI: 10.1016/j.carbpol.2024.121878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Pectins are a class of soluble polysaccharides that can have anticancer properties through several mechanisms. This study aimed to characterize the molecular structure of water-soluble fractions (WSF) derived from ripe and unripe papayas and assess their biological effects in two models: the 3D colon cancer spheroids to measure cell viability and cytotoxicity, and the in vivo model to investigate the inhibition of preneoplastic lesions in rats. WSF yield was slightly higher in ripe papaya, and both samples mainly consisted of pectin. Both pectins inhibited the growth of colon cancer HT29 and HCT116 spheroids. Unripe pectin disturbed HT29/NIH3T3 spheroid formation, decreased HCT116 spheroid viability, and increased spheroid cytotoxicity. Ripe pectin had a more substantial effect on the reduction of spheroid viability for HT29 spheroids. Furthermore, in vivo experiments on a rat model revealed a decrease in aberrant crypt foci (ACF) formation for both pectins and increased apoptosis in colonocytes for ripe papaya pectins. The results suggest potential anticancer properties of papaya pectin, with ripe pectin showing a higher potency.
Collapse
Affiliation(s)
- Janaina L S Donadio
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers, São Paulo Research Foundation, Rua do Lago, 250, São Paulo, SP, Brazil
| | | | - Caroline Giacomelli Soares
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil
| | - Rodrigo Invernort Tamarossi
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil
| | - Renato Heidor
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil
| | - Fernando Salvador Moreno
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil
| | - João Paulo Fabi
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers, São Paulo Research Foundation, Rua do Lago, 250, São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Aljarrah D, Chalour N, Zorgani A, Nissan T, Pranjol MZI. Exploring the gut microbiota and its potential as a biomarker in gliomas. Biomed Pharmacother 2024; 173:116420. [PMID: 38471271 DOI: 10.1016/j.biopha.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
Gut microbiome alterations are associated with various cancers including brain tumours such as glioma and glioblastoma. The gut communicates with the brain via a bidirectional pathway known as the gut-brain axis (GBA) which is essential for maintaining homeostasis. The gut microbiota produces many metabolites including short chain fatty acids (SCFAs) and essential amino acids such as glutamate, glutamine, arginine and tryptophan. Through the modulation of these metabolites the gut microbiome is able to regulate several functions of brain cells, immune cells and tumour cells including DNA methylation, mitochondrial function, the aryl hydrocarbon receptor (AhR), T-cell proliferation, autophagy and even apoptosis. Here, we summarise current findings on gut microbiome with respect to brain cancers, an area of research that is widely overlooked. Several studies investigated the relationship between gut microbiota and brain tumours. However, it remains unclear whether the gut microbiome variation is a cause or product of cancer. Subsequently, a biomarker panel was constructed for use as a predictive, prognostic and diagnostic tool with respect to multiple cancers including glioma and glioblastoma multiforme (GBM). This review further presents the intratumoural microbiome, a fascinating microenvironment within the tumour as a possible treatment target that can be manipulated to maximise effectiveness of treatment via personalised therapy. Studies utilising the microbiome as a biomarker and therapeutic strategy are necessary to accurately assess the effectiveness of the gut microbiome as a clinical tool with respect to brain cancers.
Collapse
Affiliation(s)
- Dana Aljarrah
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| | - Naima Chalour
- Cognitive and Behavioural Neuroscience laboratory, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria; Faculty of Biological Sciences, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria.
| | - Amine Zorgani
- The Microbiome Mavericks, 60 rue Christian Lacouture, Bron 69500, France.
| | - Tracy Nissan
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Md Zahidul I Pranjol
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
3
|
Pant K, Venugopal SK, Lorenzo Pisarello MJ, Gradilone SA. The Role of Gut Microbiome-Derived Short-Chain Fatty Acid Butyrate in Hepatobiliary Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1455-1467. [PMID: 37422149 PMCID: PMC10548274 DOI: 10.1016/j.ajpath.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/10/2023]
Abstract
The short-chain fatty acid butyrate, produced from fermentable carbohydrates by gut microbiota in the colon, has multiple beneficial effects on human health. At the intestinal level, butyrate regulates metabolism, helps in the transepithelial transport of fluids, inhibits inflammation, and induces the epithelial defense barrier. The liver receives a large amount of short-chain fatty acids via the blood flowing from the gut via the portal vein. Butyrate helps prevent nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, inflammation, cancer, and liver injuries. It ameliorates metabolic diseases, including insulin resistance and obesity, and plays a direct role in preventing fatty liver diseases. Butyrate has different mechanisms of action, including strong regulatory effects on the expression of many genes by inhibiting the histone deacetylases and modulating cellular metabolism. The present review highlights the wide range of beneficial therapeutic and unfavorable adverse effects of butyrate, with a high potential for clinically important uses in several liver diseases.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, Minnesota.
| | - Senthil K Venugopal
- Laboratory of Molecular Medicine and Hepatology, Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Maria J Lorenzo Pisarello
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA), National Council of Scientific and Technological Research, San Miguel de Tucuman, Argentina; Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
4
|
Festa Ortega JF, Heidor R, Auriemo AP, Marques Affonso J, Pereira D' Amico T, Herz C, de Conti A, Ract J, Gioieli LA, Purgatto E, Lamy E, P Pogribny I, Salvador Moreno F. Butyrate-containing structured lipids act on HDAC4, HDAC6, DNA damage and telomerase activity during promotion of experimental hepatocarcinogenesis. Carcinogenesis 2021; 42:1026-1036. [PMID: 33999989 DOI: 10.1093/carcin/bgab039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) presents with a high treatment resistance and poor prognosis. Early diagnosis and preventive approaches such as chemoprevention are essential for the HCC control. Therefore, we evaluated the chemopreventive effects of butyrate-containing structured lipids (STLs) administered during the promotion stage of hepatocarcinogenesis in rats submitted to the 'resistant hepatocyte' (RH) model. Administration of butyrate-containing STLs inhibited the incidence and mean number of visible hepatic nodules per rat and reduced the number and area of glutathione S-transferase placental form-positive (GST-P+) preneoplastic focal lesions in the livers. This was accompanied by the induction of apoptosis and an increased level of hepatic butyric acid. Treatment with butyrate-containing STLs resulted in increased histone H3 lysine 9 (H3K9) acetylation, reduction of total histone deacetylase (HDAC) activity, and lower levels of HDAC4 and HDAC6 proteins. The chemopreventive effect of butyrate-containing STLs was also associated with the increased nuclear compartmentalization of p53 protein and reduced expression of the Bcl-2 protein. In addition, rats treated with butyrate-containing STLs showed decreased DNA damage and telomerase activity in the livers. These results demonstrate that the suppressive activity of butyrate-containing STLs is associated with inhibition of elevated during hepatocarcinogenesis chromatin-modifying proteins HDAC4 and HDAC6, subcellular redistribution of the p53 protein, and decreased DNA damage and telomerase activity.
Collapse
Affiliation(s)
- Juliana Festa Festa Ortega
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Renato Heidor
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FORC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Auriemo
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Marques Affonso
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais Pereira D' Amico
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Corinna Herz
- Molecular Preventive Medicine, University of Freiburg, Breisacherstraße 115b, 79106 Freiburg im Breisgau, Germany
| | - Aline de Conti
- Division of Biochemical Toxicology, FDA National Center for Toxicological Research, Jefferson, AR, USA
| | - Juliana Ract
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luiz Antônio Gioieli
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eduardo Purgatto
- Food Research Center (FORC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Food Chemistry and Biochemistry, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Evelyn Lamy
- Molecular Preventive Medicine, University of Freiburg, Breisacherstraße 115b, 79106 Freiburg im Breisgau, Germany
| | - Igor P Pogribny
- Division of Biochemical Toxicology, FDA National Center for Toxicological Research, Jefferson, AR, USA
| | - Fernando Salvador Moreno
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FORC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Jung DH, Yong JH, Hwang W, Yoon MY, Yoon SS. An efficient system for intestinal on-site butyrate production using novel microbiome-derived esterases. J Biol Eng 2021; 15:9. [PMID: 33676548 PMCID: PMC7936488 DOI: 10.1186/s13036-021-00259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
Short-chain fatty acids, especially butyrate, play beneficial roles in sustaining gastrointestinal health. However, due to limitations associated with direct consumption of butyrate, there has been interest in using prodrugs of butyrate. Tributyrin (TB), a triglyceride composed of three butyrate molecules and a glycerol, is a well-studied precursor of butyrate. We screened a metagenome library consisting of 5760 bacterial artificial chromosome clones, with DNA inserts originating from mouse microbiomes, and identified two clones that efficiently hydrolyse TB into butyrate. Nucleotide sequence analysis indicated that inserts in these two clones are derived from unknown microbes. BLASTp analysis, however, revealed that each insert contains a gene homologous to acetylesterase or esterase genes, from Clostridium spp. and Bacteroides spp., respectively. Predicted structures of these two proteins both contain serine-histidine-aspartate catalytic triad, highly conserved in the family of esterases. Escherichia coli host expressing each of the two candidate genes invariably produced greater amounts of butyrate in the presence of TB. Importantly, administration of TB together with cloned E. coli cells alleviated inflammatory symptoms in a mouse model of acute colitis. Based on these results, we established an efficient on-site and real-time butyrate production system that releases butyrate in a controlled manner inside the intestine.
Collapse
Affiliation(s)
- Dah Hyun Jung
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Yong
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wontae Hwang
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Young Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea. .,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Wang X, Liu K, Gong H, Li D, Chu W, Zhao D, Wang X, Xu D. Death by histone deacetylase inhibitor quisinostat in tongue squamous cell carcinoma via apoptosis, pyroptosis, and ferroptosis. Toxicol Appl Pharmacol 2020; 410:115363. [PMID: 33290780 DOI: 10.1016/j.taap.2020.115363] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022]
Abstract
Tongue cancer is one of the most common oral malignancies. Quisinostat is a histone deacetylase inhibitor with antitumor activity. The aim of this study was to evaluate the effects of quisinostat on the viability of tongue squamous cell carcinoma (TSCC) cells (CAL-27, TCA-8113) in vitro and in vivo. Cell viability, cell morphological observation, scratch wound-healing assay, transwell migration assay, transmission electron microscope, flow cytometry and cellular reactive oxygen species were assessed in vitro. The results showed that quisinostat can significantly inhibit the viability, growth and migration of TSCC cells. And quisinostat could significantly induce TSCC cells apoptosis, pyroptosis, and ferroptosis. Quisinostat significantly inhibited tumor tissue growth in animal experiments. Up-regulation of the expression of Bax, cleaved-caspase3, caspase-1, p53, phospho-p53 and down-regulated of the expression of caspase-3, Bcl-2, GPX4 in cell lines and tumor tissues of nude mice were observed by Western blotting analysis. Up-regulation of the expression of caspase-1, Bax, cleaved-caspase3, p53 and down-regulated of the expression of ki67, caspase-3, Bcl-2, GPX4 in tumor tissues of nude mice were observed by immunohistochemistry. TUNEL analysis showed that quisinostat could increase the apoptosis rate in the tumor tissues of nude mice. Up-regulation of the expression of p53 and down-regulated expression of GPX4 in cell lines were observed by immunofluorescent staining, and the expression locations of p53 and GPX4 proteins in TSCC cells were observed. Based on these findings, quisinostat may be a potential drug for the treatment of tongue squamous cell carcinoma.
Collapse
Affiliation(s)
- Xinhuan Wang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Ke Liu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Huimin Gong
- Department of Oral, Dalian Stomatological Hospital, Dalian, Liaoning 116021, PR China
| | - Dezhi Li
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Wenfeng Chu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Dan Zhao
- Department of Clinical Pharmacy (Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment), the 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Xiaofeng Wang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| | - Dongyang Xu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| |
Collapse
|
7
|
Andrade FDO, Furtado KS, Heidor R, Sandri S, Hebeda CB, Miranda MLP, Fernandes LHG, Yamamoto RC, Horst MA, Farsky SHP, Moreno FS. Antiangiogenic effects of the chemopreventive agent tributyrin, a butyric acid prodrug, during the promotion phase of hepatocarcinogenesis. Carcinogenesis 2020; 40:979-988. [PMID: 30590392 DOI: 10.1093/carcin/bgy190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
Agents that inhibit angiogenic factors may prevent the development of hepatocellular carcinoma (HCC). Thus, the objective of this study was to kinetically evaluate the antiangiogenic activity of tributyrin (TB), a butyric acid prodrug, in the promotion stage of hepatocarcinogenesis. For this purpose, the resistant hepatocyte (RH) model was used for induction of preneoplastic lesions in Wistar rats. During the promotion phase, the animals received TB or maltodextrin (MD) as control daily. The rats were killed at three time-points (P1, P2 and P3). Increased expression of Vegfa and Vegfr2 was observed during promotion phase of hepatocarcinogenesis, which was not reversed by TB treatment. However, TB treatment reduced the expression of cluster of differentiation (CD) 34-positive vessels at P3 and α-smooth muscle actin (α-SMA)-positive vessels at P2 compared with MD. Enhanced levels of hypoxia inducible factor-1α (HIF-1α) and phosphorylated extracellular signal-regulated kinases (pERK) were detected at P3 when compared with P1 and P2 in the MD treatment. TB treatment reduced the levels of HIF-1α and pERK at P3 relative to the MD control. Experiments with human umbilical vein endothelial cells (HUVEC) showed that sodium butyrate (NaBu) inhibited cell migration and tube formation, confirming the antiangiogenic activity of its prodrug TB. In conclusion, antiangiogenic activity of TB is an early event that already occurs in preneoplastic livers, reinforcing its potential chemopreventive effects against HCC.
Collapse
Affiliation(s)
- Fabia de Oliveira Andrade
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| | - Kelly Silva Furtado
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| | - Renato Heidor
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristina Bichels Hebeda
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mayara Lilian Paulino Miranda
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| | - Laura Helena Gasparini Fernandes
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| | - Roberto Carvalho Yamamoto
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| | - Maria Aderuza Horst
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernando Salvador Moreno
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Fernandes MF, de Oliveira S, Portovedo M, Rodrigues PB, Vinolo MAR. Effect of Short Chain Fatty Acids on Age-Related Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:85-105. [PMID: 32304031 DOI: 10.1007/978-3-030-42667-5_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have indicated a prominent role of intestinal microbiota in regulation of several physiological aspects of the host including development and activation of the immune system and control of metabolism. In this review, we focused our discussion on bacterial metabolites produced from dietary fiber fermentation called short-chain fatty acids, which act as a link between the microbiota and host cells. Specifically, we described how modifications in their intestinal levels are associated with development of age-related pathologies including metabolic diseases and type 2 diabetes, hypertension, cardiovascular and neurodegenerative diseases. We also highlight their impact on the development of cancer.
Collapse
Affiliation(s)
- Mariane Font Fernandes
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Sarah de Oliveira
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Mariana Portovedo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Patrícia Brito Rodrigues
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
9
|
Tributyrin Inhibits Ethanol-Induced Epigenetic Repression of CPT-1A and Attenuates Hepatic Steatosis and Injury. Cell Mol Gastroenterol Hepatol 2019; 9:569-585. [PMID: 31654770 PMCID: PMC7078548 DOI: 10.1016/j.jcmgh.2019.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
UNLABELLED Ethanol-mediated down-regulation of carnitine palmitoyltransferase-1 (CPT-1A) gene expression plays a major role in the development of hepatic steatosis; however, the underlying mechanisms are not completely elucidated. Tributyrin, a butyrate prodrug that can inhibit histone deacetylase (HDAC) activity, attenuates hepatic steatosis and injury. The present study examined the beneficial effect of tributyrin/butyrate in attenuating ethanol-induced pathogenic epigenetic mechanisms affecting CPT-1A promoter-histone modifications and gene expression and hepatic steatosis/injury. METHODS Mice were fed a liquid Lieber-DeCarli diet (Research Diet Inc, New Brunswick, NJ) with or without ethanol for 4 weeks. In a subset of mice, tributyrin (2 g/kg) was administered orally by gavage. Primary rat hepatocytes were treated with 50 mmol/L ethanol and/or 2 mmol/L butyrate. Gene expression and epigenetic modifications at the CPT-1A promoter were analyzed by chromatin immunoprecipitation analysis. RESULTS In vivo, ethanol induced hepatic CPT-1A promoter histone H3K9 deacetylation, which is indicative of a repressive chromatin state, and decreased CPT-1A gene expression. Our data identified HDAC1 as the predominant HDAC causing CPT-1A promoter histone H3K9 deacetylation and epigenetic down-regulation of gene expression. Significantly, Specificity Protein 1 (SP1) and Hepatocyte Nuclear Factor 4 Alpha (HNF4α) participated in the recruitment of HDAC1 to the proximal and distal regions of CPT-1A promoter, respectively, and mediated transcriptional repression. Importantly, butyrate, a dietary HDAC inhibitor, attenuated ethanol-induced recruitment of HDAC1 and facilitated p300-HAT binding by enabling SP1/p300 interaction at the proximal region and HNF4α/peroxisomal proliferator-activated receptor-γ coactivator-1α/p300 interactions at the distal region, leading to promoter histone acetylation and enhanced CPT-1A transcription. CONCLUSIONS This study identifies HDAC1-mediated repressive epigenetic mechanisms that underlie an ethanol-mediated decrease in CPT-1A expression. Importantly, tributyrin/butyrate inhibits HDAC1, rescues CPT-1A expression, and attenuates ethanol-mediated hepatic steatosis and injury, suggesting its potential use in therapeutic strategies for alcoholic liver disease.
Collapse
|
10
|
Rodríguez-Alcalá LM, Castro-Gómez MP, Pimentel LL, Fontecha J. Milk fat components with potential anticancer activity-a review. Biosci Rep 2017; 37:BSR20170705. [PMID: 29026007 PMCID: PMC6372256 DOI: 10.1042/bsr20170705] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/04/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023] Open
Abstract
During many years, the milk fat has been unfairly undervalued due to its association with higher levels of cardiovascular diseases, dyslipidaemia or obesity, among others. However, currently, this relationship is being re-evaluated because some of the dairy lipid components have been attributed potential health benefits. Due to this, and based on the increasing incidence of cancer in our society, this review work aims to discuss the state of the art concerning scientific evidence of milk lipid components and reported anticancer properties. Results from the in vitro and in vivo experiments suggest that specific fatty acids (FA) (as butyric acid and conjugated linoleic acid (CLA), among others), phospholipids and sphingolipids from milk globule membrane are potential anticarcinogenic agents. However, their mechanism of action remains still unclear due to limited and inconsistent findings in human studies.
Collapse
Affiliation(s)
- Luis M Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, Porto 4202-401, Portugal
- Research Center for Natural Resources and Sustainability (CIRENYS), Bernardo O'Higgins University, Fábrica N° 1990, Segundo Piso, Santiago de Chile, Chile
| | - M Pilar Castro-Gómez
- Institute of Food Science Research, (CIAL, CSIC-UAM), Department of Bioactivity and Food Analysis, Food Lipid Biomarkers and Health Group, Campus of Autónoma University of Madrid, C/Nicolás Cabrera, Madrid 9. 28049, Spain
| | - Lígia L Pimentel
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, Porto 4202-401, Portugal
| | - Javier Fontecha
- Institute of Food Science Research, (CIAL, CSIC-UAM), Department of Bioactivity and Food Analysis, Food Lipid Biomarkers and Health Group, Campus of Autónoma University of Madrid, C/Nicolás Cabrera, Madrid 9. 28049, Spain
| |
Collapse
|
11
|
van der Beek CM, Dejong CHC, Troost FJ, Masclee AAM, Lenaerts K. Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr Rev 2017; 75:286-305. [PMID: 28402523 DOI: 10.1093/nutrit/nuw067] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Short-chain fatty acids (SCFAs), mainly acetate, propionate, and butyrate, produced by microbial fermentation of undigested food substances are believed to play a beneficial role in human gut health. Short-chain fatty acids influence colonic health through various mechanisms. In vitro and ex vivo studies show that SCFAs have anti-inflammatory and anticarcinogenic effects, play an important role in maintaining metabolic homeostasis in colonocytes, and protect colonocytes from external harm. Animal studies have found substantial positive effects of SCFAs or dietary fiber on colonic disease, but convincing evidence in humans is lacking. Most human intervention trials have been conducted in the context of inflammatory bowel disease. Only a limited number of those trials are of high quality, showing little or no favorable effect of SCFA treatment over placebo. Opportunities for future research include exploring the use of combination therapies with anti-inflammatory drugs, prebiotics, or probiotics; the use of prodrugs in the setting of carcinogenesis; or the direct application of SCFAs to improve mucosal healing after colonic surgery.
Collapse
Affiliation(s)
- Christina M van der Beek
- C.M. van der Beek, C.H.C. Dejong, F.J. Troost, A.A.M. Masclee, and K. Lenaerts are with Top Institute Food and Nutrition, Wageningen, the Netherlands. C.M. van der Beek, C.H.C. Dejong, and K. Lenaerts are with the Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands. C.H.C. Dejong is with the School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, the Netherlands. F.J. Troost and A.A.M. Masclee are with the Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Cornelis H C Dejong
- C.M. van der Beek, C.H.C. Dejong, F.J. Troost, A.A.M. Masclee, and K. Lenaerts are with Top Institute Food and Nutrition, Wageningen, the Netherlands. C.M. van der Beek, C.H.C. Dejong, and K. Lenaerts are with the Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands. C.H.C. Dejong is with the School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, the Netherlands. F.J. Troost and A.A.M. Masclee are with the Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Freddy J Troost
- C.M. van der Beek, C.H.C. Dejong, F.J. Troost, A.A.M. Masclee, and K. Lenaerts are with Top Institute Food and Nutrition, Wageningen, the Netherlands. C.M. van der Beek, C.H.C. Dejong, and K. Lenaerts are with the Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands. C.H.C. Dejong is with the School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, the Netherlands. F.J. Troost and A.A.M. Masclee are with the Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Ad A M Masclee
- C.M. van der Beek, C.H.C. Dejong, F.J. Troost, A.A.M. Masclee, and K. Lenaerts are with Top Institute Food and Nutrition, Wageningen, the Netherlands. C.M. van der Beek, C.H.C. Dejong, and K. Lenaerts are with the Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands. C.H.C. Dejong is with the School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, the Netherlands. F.J. Troost and A.A.M. Masclee are with the Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Kaatje Lenaerts
- C.M. van der Beek, C.H.C. Dejong, F.J. Troost, A.A.M. Masclee, and K. Lenaerts are with Top Institute Food and Nutrition, Wageningen, the Netherlands. C.M. van der Beek, C.H.C. Dejong, and K. Lenaerts are with the Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands. C.H.C. Dejong is with the School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, the Netherlands. F.J. Troost and A.A.M. Masclee are with the Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
12
|
Effects of monobutyrin and tributyrin on liver lipid profile, caecal microbiota composition and SCFA in high-fat diet-fed rats. J Nutr Sci 2017; 6:e51. [PMID: 29152255 PMCID: PMC5672331 DOI: 10.1017/jns.2017.54] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/11/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023] Open
Abstract
Butyric acid has been shown to have suppressive effects on inflammation and diseases related to the intestinal tract. The aim of the present study was to investigate whether supplementation of two glycerol esters, monobutyrin (MB) and tributyrin (TB), would reach the hindgut of rats, thus having an effect on the caecal profile of SCFA, microbiota composition and some risk markers associated with chronic inflammation. For this purpose, rats were fed high-fat diets after adding MB (1 and 5 g/kg) and TB (5 g/kg) to a diet without any supplementation (high-fat control; HFC). A low-fat (LF) diet was also included. In the liver, total cholesterol concentrations, LDL-cholesterol concentrations, LDL:HDL ratio, and succinic acid concentrations were reduced in rats given the MB and TB (5 g/kg) diets, compared with the group fed the HFC diet. These effects were more pronounced in MB than TB groups as also expressed by down-regulation of the gene Cyp8b1. The composition of the caecal microbiota in rats fed MB and TB was separated from the group fed the HFC diet, and also the LF diet, as evidenced by the absence of the phylum TM7 and reduced abundance of the genera Dorea (similar to LF-fed rats) and rc4-4. Notably, the caecal abundance of Mucispirillum was markedly increased in the MB group compared with the HFC group. The results suggest that dietary supplementation of MB and TB can be used to counteract disturbances associated with a HFC diet, by altering the gut microbiota, and decreasing liver lipids and succinic acid concentrations.
Collapse
|