1
|
Samii B, Jafarian A, Rabbani M, Zolfaghari B, Rahgozar S, Pouraboutaleb E. The effects of Astragalus polysaccharides, tragacanthin, and bassorin on methotrexate-resistant acute lymphoblastic leukemia. Res Pharm Sci 2023; 18:381-391. [PMID: 37614615 PMCID: PMC10443665 DOI: 10.4103/1735-5362.378085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/06/2022] [Accepted: 05/29/2023] [Indexed: 08/25/2023] Open
Abstract
Background and purpose One strategy to overcome methotrexate (MTX) resistance in acute lymphoblastic leukemia is suppressing MDR1 expression. It has been proved Astragalus polysaccharides (APS) exert their anticancer effect by reversing drug resistance. Due to the structural similarity of tragacanthin and bassorin with APS, we aimed to investigate the effects of the aforementioned polysaccharides on the expression of the MDR1 gene in the MTX-treated CCRF-CEM cells. Experimental approach Cytotoxicity of APS, bassorin, and tragacanthin on CCRF-CEM, CCRF-CEM/MTX (cells treated with MTX at IC50), and CCRF-CEM/R cells (CCRF-CEM cells resistant to MTX) was evaluated by MTT assay. The effect of all three compounds on MDR1 expression was evaluated using RT-PCR. Findings/Results All the concentrations of tragacanthin, bassorin, and APS (except at 0.8-100 μg/mL in CCRF-CEM) decreased the viability of all the cells compared to the negative control group; and against the positive control (MTX-treated cells), only bassorin at 20-100 μg/mL in CCRF-CEM/R and tragacanthin at 50 and 100 μg/mL in CCRF-CEM/MTX and at 2-100 μg/mL in CCRF-CEM/R decreased cell viability. Tragacanthin diminished MDR1 expression in CCRF-CEM/MTX and CCRF-CEM/R cells, which MTX had already induced. Conclusion and implication According to the results of this study, tragacanthin was a potent cytotoxic agent against CCRF-CEM cells and enhanced the chemosensitivity of CCRF-CEM/MTX and CCRF-CEM/R cells to MTX by down-regulation of MDR1 gene expression. Therefore, it could be a promising compound against cancer. Other possible mechanisms of action of tragacanthin should be evaluated and further in vitro and in vivo investigations are required.
Collapse
Affiliation(s)
- Bahareh Samii
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Abbas Jafarian
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Isfahan Pharmaceutical Sciences Research Centre, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohamad Rabbani
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Isfahan Pharmaceutical Sciences Research Centre, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Behzad Zolfaghari
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Soheila Rahgozar
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, I.R. Iran
| | - Elnaz Pouraboutaleb
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, I.R. Iran
| |
Collapse
|
2
|
Chen R, Shen C, Xu Q, Liu Y, Li B, Huang C, Ma T, Meng X, Wu M, Li J. The permeability characteristics and interaction of main components from Si-Ni-San in a MDCK epithelial cell monolayer model. Xenobiotica 2020; 51:239-248. [PMID: 28745128 DOI: 10.1080/00498254.2017.1359433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. Si-Ni-San (SNS) possesses extensive therapeutic effects, however, the extent to which main components are absorbed and the mechanisms involved are controversial. 2. In this study, MDCK cell model was used to determine the permeability characteristics and interaction between the major components of Si-Ni-San, including saikosaponin a, paeoniflorin, naringin and glycyrrhizic acid. 3. The transport of the major components was concentration-dependent in both directions. Moreover, the transport of paeoniflorin, naringin and glycyrrhizic acid was significantly reduced at 4 °C or in the presence of NaN3. Additionally, the efflux of paeoniflorin and naringin were apparently reduced in the presence of P-gp inhibitor verapamil. The transport of glycyrrhizic acid was clearly inhibited by the inhibitors of MRP2, indicating that MRP2 may be involved in the transport of glycyrrhizic acid. However, the results indicated that saikosaponin a was absorbed mainly by passive diffusion. Furthermore, the combined incubation of four major components had a powerful sorbefacient effect than a single drug used alone which may be regulated by tight junctions. 4. Taken together, our study provides useful information for pharmacological applications of Si-Ni-San and offers new insights into this ancient decoction for further researches, especially in drug synergism.
Collapse
Affiliation(s)
- Ruonan Chen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chenlin Shen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qingqing Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yaru Liu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Bo Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Taotao Ma
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Maomao Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Wu Z, Han X, Tan G, Zhu Q, Chen H, Xia Y, Gong J, Wang Z, Wang Y, Yan J. Dioscin Inhibited Glycolysis and Induced Cell Apoptosis in Colorectal Cancer via Promoting c-myc Ubiquitination and Subsequent Hexokinase-2 Suppression. Onco Targets Ther 2020; 13:31-44. [PMID: 32021252 PMCID: PMC6954095 DOI: 10.2147/ott.s224062] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose Dioscin is a natural product isolated from traditional Chinese medicines and is reported to have antitumor activities against several cancers. In the present study, we aimed to investigate its potency against colorectal cancers, especially the effects on tumor glycolysis, and to elaborate related molecular mechanisms. Methods The antitumor activities of dioscin were evaluated by cell proliferation assays and colony formation assays in vitro and the mouse xenograft models in vivo. The effects of dioscin on tumor glycolysis were determined by measuring glucose absorption and lactate generation. Cell apoptosis was detected by cleaved PARP and the activity of caspase-3. Protein overexpression or gene knockdown was conducted to illustrate molecular mechanisms. Immunoprecipitation experiments were applied to identify the interaction between different proteins. Results Dioscin substantially inhibited colorectal cancer cell proliferation in vitro and suppressed the xenograft growth in nude mice. After dioscin treatment, with the suppression of hexokinase-2, the tumor glycolysis was significantly decreased. Dioscin substantially impaired the interaction between hexokinase-2 and VDAC-1, and induced cell apoptosis. Exogenous overexpression of hexokinase-2 significantly antagonized the glycolysis suppression and apoptosis induction by dioscin. Through enhancing the binding of E3 ligase FBW7 to c-myc, dioscin promoted the ubiquitination of c-myc and gave rise to c-myc degradation, which contributed to the inhibition of hexokinase-2. Conclusion Our studies revealed a novel mechanism by which dioscin exerted its antitumor activity in colorectal cancer, and verified that dioscin or its analog might have potentials for colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhenqian Wu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Xiaodong Han
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Gewen Tan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Qingchao Zhu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Hongqi Chen
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Yang Xia
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Jianfeng Gong
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Zhigang Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Yu Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Jun Yan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| |
Collapse
|
4
|
Yang L, Ren S, Xu F, Ma Z, Liu X, Wang L. Recent Advances in the Pharmacological Activities of Dioscin. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5763602. [PMID: 31511824 PMCID: PMC6710808 DOI: 10.1155/2019/5763602] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023]
Abstract
Dioscin is a typical saponin with multiple pharmacological activities. The past few years have seen an emerging interest in and growing research on this pleiotropic saponin. Here, we review the emerging pharmacological activities reported recently, with foci on its antitumor, antimicrobial, anti-inflammatory, antioxidative, and tissue-protective properties. The potential use of dioscin in therapies of diverse clinical disorders is also discussed.
Collapse
Affiliation(s)
- Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shengnan Ren
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Fei Xu
- Department of Acupuncture and Moxibustion, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| | - Lufei Wang
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| |
Collapse
|
5
|
Xiao Y, Xin L, Li L, Li G, Shi X, Ji G, Mi J, Xie Y. Quercetin and kaempferol increase the intestinal absorption of isorhamnetin coexisting in Elaeagnus rhamnoides (L.) A. Nelson (Elaeagnaceae) extracts via regulating multidrug resistance-associated protein 2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:154-162. [PMID: 30668394 DOI: 10.1016/j.phymed.2018.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/21/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Isorhamnetin (IS) is a flavonoid component with many biological activities such as antioxidant, anti-inflammatory, and anticancer, which is also the main active component in total flavones of Elaeagnus rhamnoides (L.) A. Nelson (Elaeagnaceae) (TFH); however, the interaction between IS and other components in TFH is unclear. PURPOSE The aim of the present study was to investigate the enhancement of quercetin (QU) or kaempferol (KA) on the intestinal absorption of IS coexisting in TFH, and then preliminarily illuminate the related mechanisms. METHODS Firstly, the intestinal absorption of IS in the presence or absence of QU or KA was conducted by in vivo pharmacokinetics model, in situ single-pass intestinal perfusion model (SPIP), and MDCK II-MRP2 monolayer cell model to confirm the enhancement of QU or KA on IS absorption. Secondly, the effects of multidrug resistance-associated protein 2 (MRP2) inhibitors on the IS intestinal absorption were investigated to ascertain the mediation of MRP2 on IS absorption. Finally, the effects of QU or KA on MRP2 activity, protein expression, and mRNA level were performed by SPIP, everted-gut sacs, western blotting, and real-time polymerase chain reaction experiments to elucidate the related mechanisms. RESULTS QU or KA increased IS intestinal absorption according to the increased AUC0-96h, Cmax, and Peff of IS after co-administrated with QU or KA to rats; the oral absorption of IS was mediated by MRP2 based on the facts that the average plasma concentration, AUC0-96h, and Peff of IS were increased when co-administrated with PR or MK571 (MRP2 inhibitors) as well as the Pratio(BL/AP) of IS was decreased by MK571 in MDCK II-MRP2 cell monolayer; the activity, protein expression, and mRNA level of MRP2 were inhibited or down-regulated by QU or KA because of the increased Peff of MRP2 substrate calcein (CA) and the down-regulated relative protein and mRNA intensity after co-treated with QU or KA. CONCLUSION QU and KA increased the intestinal absorption of IS in TFH by regulating the activity and expression of MRP2, which provides useful information for the investigation of the transporter-mediated interaction of flavonoid components in herbal extracts.
Collapse
Affiliation(s)
- Yi Xiao
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Lei Xin
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Pharmacy Department, Long Hua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lujia Li
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Guowen Li
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xiufeng Shi
- Pharmacy Department, Long Hua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jinxia Mi
- Science and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
6
|
CYP3A4 inducer and inhibitor strongly affect the pharmacokinetics of triptolide and its derivative in rats. Acta Pharmacol Sin 2018; 39:1386-1392. [PMID: 29283173 DOI: 10.1038/aps.2017.170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/25/2017] [Indexed: 11/09/2022] Open
Abstract
Triptolide is the most active ingredient of Tripterygium wilfordii Hook F, which is used to treat rheumatoid arthritis. (5R)-5-Hydroxytriptolide is a hydroxylation derivative of triptolide with a reduced toxicity. To investigate the metabolic enzymes of the two compounds and the drug-drug interactions with enzyme inducers or inhibitors, a series of in vitro and in vivo experiments were conducted. In vitro studies using recombinant human cytochrome P450 enzyme demonstrated that cytochrome P450 3A4 (CYP3A4) was predominant in the metabolism of triptolide and (5R)-5-hydroxytriptolide, accounting for 94.2% and 64.2% of the metabolism, respectively. Pharmacokinetics studies were conducted in male SD rats following administration of triptolide or (5R)-5-hydroxytriptolide (0.4 mg/kg, po). The plasma exposure to triptolide and (5R)-5-hydroxytriptolide in the rats was significantly increased when co-administered with the CYP3a inhibitor ritonavir (30 mg/kg, po) with the values of AUC0-∞ (area under the plasma concentration-time curve from time zero extrapolated to infinity) being increased by 6.84 and 1.83 times, respectively. When pretreated with the CYP3a inducer dexamethasone (50 mg·kg-1·d-1, for 3 d), the AUC0-∞ values of triptolide and (5R)-5-hydroxytriptolide were decreased by 85.4% and 91.4%, respectively. These results suggest that both triptolide and (5R)-5-hydroxytriptolide are sensitive substrates of CYP3a. Because of their narrow therapeutic windows, clinical drug-drug interaction studies should be carried out to ensure their clinical medication safety and efficacy.
Collapse
|
7
|
Huo X, Liu K. Renal organic anion transporters in drug-drug interactions and diseases. Eur J Pharm Sci 2017; 112:8-19. [PMID: 29109021 DOI: 10.1016/j.ejps.2017.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/10/2017] [Accepted: 11/01/2017] [Indexed: 12/17/2022]
Abstract
The kidney plays a vital role in maintaining systemic homeostasis. Active tubular secretion and reabsorption, which are mainly mediated by transporters, is an efficient mechanism for retaining glucose, amino acids, and other nutrients and for the clearance of endogenous waste products and xenobiotics. These substances are recognized by uptake transporters located in the basolateral and apical membranes of renal proximal tubule cells and are extracted from plasma and urine. Organic anion transporters (OATs) belong to the solute carrier (SLC) 22 superfamily and facilitate organic anions across the plasma membranes of renal proximal tubule cells. OATs are responsible for the transmembrane transport of anionic and zwitterionic organic molecules, including endogenous substances and many drugs. The alteration in OAT expression and function caused by diseases, drug-drug interactions (DDIs) or other issues can thus change the renal disposition of substrates, induce the accumulation of toxic metabolites, and lead to unexpected clinically outcome. This review summarizes the recent information regarding the expression, regulation, and substrate spectrum of OATs and discusses the roles of OATs in diseases and DDIs. These findings will enables us to have a better understanding of the related disease therapy and the potential risk of DDIs mediated by OATs.
Collapse
Affiliation(s)
- Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China; College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China; College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
8
|
Zhang Y, Wang CY, Duan YJ, Huo XK, Meng Q, Liu ZH, Sun HJ, Ma XD, Liu KX. Afatinib Decreases P-Glycoprotein Expression to Promote Adriamycin Toxicity of A549T Cells. J Cell Biochem 2017; 119:414-423. [PMID: 28590019 DOI: 10.1002/jcb.26194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/06/2017] [Indexed: 12/26/2022]
Abstract
We investigated the reversal effect of afatinib (AFT) on activity of adriamycin (ADR) in A549T cells and clarified the related molecular mechanisms. A549T cells overexpressing P-glycoprotein (P-gp) were resistant to anticancer drug ADR. AFT significantly increased the antitumor activity of ADR in A549T cells. AFT increased the intracellular concentration of ADR by inhibiting the function and expression of P-gp at mRNA and protein levels in A549T cells. Additionally, the reversal effect of AFT on P-gp mediated multidrug resistance (MDR) might be related to the inhibition of PI3K/Akt pathway. Cotreatment with AFT and ADR could enhance ADR-induced apoptosis and autophagy in A549T cells. Meanwhile, the co-treatment significantly induced cell apoptosis and autophagy accompanied by increased expression of cleaved caspase-3, PARP, LC3B-II, and beclin 1. Apoptosis inhibitors had no significant effect on cell activity, while autophagy inhibitors decreased cell viability, suggesting that autophagy may be a self protective mechanism of cell survival in the absence of chemotherapy drugs. Interestingly, when combined with AFT and ADR, inhibition of apoptosis and/or autophagy could enhance cell viability. These results indicated that in addition to inhibit P-gp, ADR-induced apoptosis, and autophagy promoted by AFT contributed to the antiproliferation effect of combined AFT and ADR on A549T cells. These findings provide evidence that AFT combined ADR may achieve a better therapeutic effect to lung cancer in clinic. J. Cell. Biochem. 119: 414-423, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Chang-Yuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Ying-Jie Duan
- General Hospital of Fuxin Mining (Group) Co., Ltd, Fuxin, China
| | - Xiao-Kui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Zhi-Hao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Hui-Jun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Xiao-Dong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Ke-Xin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Dioscin strengthens the efficiency of adriamycin in MCF-7 and MCF-7/ADR cells through autophagy induction: More than just down-regulation of MDR1. Sci Rep 2016; 6:28403. [PMID: 27329817 PMCID: PMC4916600 DOI: 10.1038/srep28403] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/01/2016] [Indexed: 01/03/2023] Open
Abstract
The purpose of present study was to investigate the effect of dioscin on activity of adriamycin (ADR) in ADR-sensitive (MCF-7) and ADR-resistant (MCF-7/ADR) human breast cancer cells and to clarify the molecular mechanisms involved. Antiproliferation effect of ADR was enhanced by dioscin in MCF-7 and MCF-7/ADR cells. Dioscin significantly inhibited MDR1 mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activity in MCF-7/ADR cells. Additionally, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Moreover, dioscin induced the formation of vacuoles in the cytoplasm and protein level of LC3-II in MCF-7 and MCF-7/ADR cells. Autophagy inhibitor 3-MA abolished the effect of dioscin on ADR cytotoxicity. Dioscin inhibited phosphorylation of PI3K and Akt, resulting in upregulation of LC3-II expression. In conclusion, dioscin increased ADR chemosensitivity by down-regulating MDR1 expression through NF-κB signaling inhibition in MCF-7/ADR cells. Autophagy was induced by dioscin to ameliorate the cytotoxicity of ADR via inhibition of the PI3K/AKT pathways in MCF-7 and MCF-7/ADR cells. These findings provide evidence in support of further investigation into the clinical application of dioscin as a chemotherapy adjuvant.
Collapse
|
10
|
Qian Z, Huang C, Shen C, Meng X, Chen Z, Hu T, Li Y, Li J. The permeability characteristics and interaction of the main components from Zhizi Bopi decoction in the MDCK cell model. Xenobiotica 2015; 46:733-42. [DOI: 10.3109/00498254.2015.1113575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Johari-Ahar M, Barar J, Alizadeh AM, Davaran S, Omidi Y, Rashidi MR. Methotrexate-conjugated quantum dots: synthesis, characterisation and cytotoxicity in drug resistant cancer cells. J Drug Target 2015; 24:120-33. [PMID: 26176269 DOI: 10.3109/1061186x.2015.1058801] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methotrexate (MTX), a folic acid derivative, is a potent anticancer used for treatment of different malignancies, but possible initiation of drug resistance to MTX by cancer cells has limited its applications. Nanoconjugates (NCs) of MTX to quantum dots (QDs) may favour the cellular uptake via folate receptors (FRs)-mediated endocytosis that circumvents the efflux functions of cancer cells. We synthesised MTX-conjugated l-cysteine capped CdSe QDs (MTX-QD nanoconjugates) and evaluated their internalisation and cytotoxicity in the KB cells with/without resistancy to MTX. The NCs were fully characterised by high resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and optical spectroscopy. Upon conjugation with MTX, the photoluminescence (PL) properties of QDs altered, while an obvious quenching in PL of QDs was observed after physical mixing. The MTX-QD nanoconjugates efficiently internalised into the cancer cells, and induced markedly high cytotoxicity (IC50, 12.0 µg/mL) in the MTX-resistant KB cells as compared to the free MTX molecules (IC50,105.0 µg/mL), whereas, these values were respectively about 7.0 and 0.6 µg/mL in the MTX-sensitive KB cells. Based on these findings, the MTX-QD nanoconjugates are proposed for the targeted therapy of MTX-resistant cancers, which may provide an improved outcome in the relapsed FR-overexpressing cancers.
Collapse
Affiliation(s)
- Mohammad Johari-Ahar
- a Research Centre for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran .,b School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran , and
| | - Jaleh Barar
- a Research Centre for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran .,b School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran , and
| | | | - Soodabeh Davaran
- a Research Centre for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran .,b School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran , and
| | - Yadollah Omidi
- a Research Centre for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran .,b School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran , and
| | - Mohammad-Reza Rashidi
- a Research Centre for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran .,b School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran , and
| |
Collapse
|
12
|
Xia YZ, Yang L, Wang ZD, Guo C, Zhang C, Geng YD, Kong LY. Schisandrin A enhances the cytotoxicity of doxorubicin by the inhibition of nuclear factor-kappa B signaling in a doxorubicin-resistant human osteosarcoma cell line. RSC Adv 2015. [DOI: 10.1039/c4ra14324h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Schisandrin A reversed chemoresistance in doxorubicin-induced MG-63 subline by inhibiting NF-kappaB-mediate expression of P-gp.
Collapse
Affiliation(s)
- Yuan-Zheng Xia
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- NanJing 210009
- People's Republic of China
| | - Lei Yang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- NanJing 210009
- People's Republic of China
| | - Zhen-Dong Wang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- NanJing 210009
- People's Republic of China
| | - Chao Guo
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- NanJing 210009
- People's Republic of China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- NanJing 210009
- People's Republic of China
| | - Ya-Di Geng
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- NanJing 210009
- People's Republic of China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- NanJing 210009
- People's Republic of China
| |
Collapse
|