1
|
Wu K, Guo S, Zhang J, Wen D, Zhang L, Zhu M, Wang X, Li X, Chen Z, Lin F. Mechanism of Action of NvZhen ErXian HeJi in Ovariectomized Rats with Myocardial Infarction based on Network Pharmacology. Curr Pharm Des 2024; 30:3116-3130. [PMID: 39161145 DOI: 10.2174/0113816128308824240719093114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/26/2024] [Accepted: 06/10/2024] [Indexed: 08/21/2024]
Abstract
OBJECTIVE NvZhen ErXian HeJi (NZEXHJ) is used to treat perimenopausal syndrome (PS), but its effect on perimenopausal coronary heart disease is unclear. Furthermore, the aim of this research is to study the effect of NZEXHJ on perimenopausal coronary heart disease (PMCHD) in a rat model based on a network pharmacology approach. MATERIALS AND METHODS Based on network pharmacological analysis combined with molecular docking, we predicted the potential therapeutic target and pharmacological mechanism of NZEXHJ in the treatment of PMCHD. We used an ovariectomized rat (OVR) model to understand the effect of NZEXHJ on myocardial injury and further verified the target of NZEXHJ in the intervention of PMCHD. RESULTS We selected 52 active components of NZEXHJ against PMCHD and an intersection of their targets on network pharmacology, to which SCN5A, SER1, AR, and PGR were significantly correlated. The protein- protein interaction network revealed CASP3, CXCL8, IL6, MAPK1, TNF, TP53, and VEGFA in the treatment of PMCHD with NZEXHJ. Kaempferol, luteolin, and mistletoe presented good affinity towards the aforementioned targets by Molecular docking NZEXHJ exerted protecting cardiomyocytes for OVR. The mechanism was related to a reduction in the expression levels of the CXCL8, TNF, and regulating PI3K-Akt signaling pathways. CONCLUSION This study reveals the potential multi-component, multi-target, and multi-pathway pharmacological effects of NZEXHJ and predicts its protection against myocardial infarction in ovariectomized rats through the PI3K Akt pathway, providing a theoretical basis for the treatment of PMCHD.
Collapse
Affiliation(s)
- Kai Wu
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Heart Center of Xinxiang Medical University, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shuxun Guo
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Heart Center of Xinxiang Medical University, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jie Zhang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Heart Center of Xinxiang Medical University, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Desong Wen
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Heart Center of Xinxiang Medical University, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Linli Zhang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Heart Center of Xinxiang Medical University, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Mingyang Zhu
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Heart Center of Xinxiang Medical University, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Engineering Research Center for Clinical Treatment of Coronary Heart Disease, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Joint International Research Laboratory of Cardiovascular Injury and Repair, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiulong Wang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Heart Center of Xinxiang Medical University, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Engineering Research Center for Clinical Treatment of Coronary Heart Disease, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Joint International Research Laboratory of Cardiovascular Injury and Repair, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xuefang Li
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Heart Center of Xinxiang Medical University, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Engineering Research Center for Clinical Treatment of Coronary Heart Disease, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Joint International Research Laboratory of Cardiovascular Injury and Repair, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhigang Chen
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Heart Center of Xinxiang Medical University, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Engineering Research Center for Clinical Treatment of Coronary Heart Disease, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Joint International Research Laboratory of Cardiovascular Injury and Repair, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Fei Lin
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Heart Center of Xinxiang Medical University, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Engineering Research Center for Clinical Treatment of Coronary Heart Disease, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Joint International Research Laboratory of Cardiovascular Injury and Repair, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Huang P, Du J, Cao L, Gao J, Li Q, Sun Y, Shao N, Zhang Y, Xu G. Effects of prometryn on oxidative stress, immune response and apoptosis in the hepatopancreas of Eriocheir sinensis (Crustacea: Decapoda). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115159. [PMID: 37356403 DOI: 10.1016/j.ecoenv.2023.115159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Prometryn, a triazine pesticide product used to control weed growth, poses a high risk to aquatic organisms in the environment. Several toxicological evaluations have been performed on bony fish and shrimp exposed to prometryn. However, there have been no reports conducted on the toxic mechanism of prometryn with regard to Eriocheir sinensis. In this study, our research evaluated the toxic effects of prometryn via in vitro and in vivo toxicity tests on E. sinensis. Firstly, we estimated the exposure toxicity of prometryn to E. sinensis, and then we constructed a 6 h transcriptional profile and conducted an enrichment analysis. To further reveal the toxicity of prometryn, the hepatopancreas (hepatopancreatic cells) was analyzed for antioxidant, immune and lipid-metabolism-related enzymes, antioxidant- and apoptosis-related gene expression, histopathology and TUNEL. From the results, we determined that the 96 h-LD50 was 70.059 mg/kg, and using RNA-seq, we identified 933 differentially expressed genes (DEGs), which were mainly enriched in the amino and fatty acid metabolism and the cell-fate-determination-related signaling pathway. The results of the biochemical assays showed that prometryn could significantly decrease the activities/levels of CAT, SOD, GSH, AKP and ACP, reduce the levels of T-AOC, TG, TCH, C3 and C4, and increase the MDA content. In addition, the expression levels of Nrf2, GSTs and HO-1 were first upregulated and then downregulated with increasing time. Histopathology showed that prometryn damaged the structure of the hepatopancreas cells and induced apoptosis, suggesting that the PI3K-Akt signaling pathway may be involved in the damage process of hepatopancreas cells (PI3K, PDK and Akt were downregulated whereas Bax was upregulated), leading to their apoptosis. The above results indicated that prometryn could cause injury of the hepatopancreas through oxidative stress, induce cell apoptosis, disrupt the lipid metabolism and cause immune damage. This study provided useful data for understanding and evaluating the toxicity of prometryn to aquatic crustacea.
Collapse
Affiliation(s)
- Peng Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Quanjie Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Nailin Shao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
3
|
He S, Gao K, Mao L, Bhushan S, Xiao Z. Gene Silencing of Transcription Factor TEAD4 Inhibits Esophageal Cancer Cells by Regulating TCF7. Cancer Biother Radiopharm 2023; 38:132-139. [PMID: 32822226 DOI: 10.1089/cbr.2020.3870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: The procancer effect of TEA domain transcription factor 4 (TEAD4) has been gradually discovered. However, its expression in esophageal cancer (EC) cells and its effect on proliferation and apoptosis have not been reported. In this study, we investigated the possible role of TEAD4 in EC cells. Materials and Methods: TEAD4 messenger RNA and protein expression were assessed in EC cell lines by real-time quantitative-PCR and Western blot. Gene silencing approach was employed to investigate the potential role of TEAD4 in cellular growth, proliferation, migration, and invasion in EC cells. The interaction between TEAD4 and transcription factor 7 (TCF7) was verified by co-immunoprecipitation reaction. The cell apoptosis rates of KYSE-30 cells were detected by flow cytometry. Meanwhile, the expression of apoptosis-related proteins in KYSE-30 cells was detected by Western blot analysis. Results: TEAD4 was significantly increased in EC cell lines, interference of TEAD4 inhibited EC cell viability, invasion, and migration, and promotes apoptosis. TCF7 was found when using STRING website to interact with TEAD4 proteins and TCF7 was significantly increased in EC and knockdown expression of TEAD4 hindered biological function of KYSE-30 cells and this effect was reversed by overexpression of TCF7. Conclusions: The findings concluded that TEAD4 is highly expressed in EC cells and gene silencing of TEAD4 inhibits proliferation and promotes apoptosis of EC cells by regulating TCF7. These findings suggested that TEAD4 might be a novel therapeutic target for the prevention of EC.
Collapse
Affiliation(s)
- Songlin He
- Department of Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, China
| | - Ke Gao
- Department of Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, China
| | - Long Mao
- Department of Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, China
| | - Sandeep Bhushan
- Department of Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, China
| | - Zongwei Xiao
- Department of Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, China
| |
Collapse
|
4
|
Liu Z, Huang Y, Jin X, Liu L, Gu H. PCB153 suppressed autophagy via PI3K/Akt/mTOR and RICTOR/Akt/mTOR signaling by the upregulation of microRNA-155 in rat primary chondrocytes. Toxicol Appl Pharmacol 2022; 449:116135. [PMID: 35732230 DOI: 10.1016/j.taap.2022.116135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a typical type of persistent organic pollutant. PCB exposure is associated to the occurrence and development of osteoarthritis (OA); however, the involved mechanisms have yet to be elucidated. Here, we investigated the pro-osteoarthritic effect of 2, 2', 4, 4', 5, 5'-hexachlorobiphenyl (PCB153), and the involvement of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) and the RICTOR/Akt/mTOR signaling pathways. PCB153 of 20 and 30 μM increased the expression of MMP13 and decreased the expression of type II collagen, in a concentration-dependent manner. PCB153 treatment reduced the expression of Beclin 1 and LC3B, but increased the expression of p62 by upregulating miR-155 levels. PCB153 treatment activated the PI3K/Akt/mTOR signaling pathway by upregulating miR-155 levels. RICTOR was involved in activating the Akt/mTOR signaling pathway, and was also regulated by miR-155. In conclusion, PCB153 could promote the degradation of the extracellular matrix of chondrocytes by upregulating miR-155 via a mechanism related to the activation of the PI3K/Akt/mTOR and RICTOR/Akt/mTOR signaling pathway, which suppressed autophagy and facilitated the development of OA. MiR-155 may represent potential therapeutic targets to alleviate the development of OA.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 110122, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 110122, China
| | - Xin Jin
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 110122, China
| | - Li Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 110122, China
| | - Hailun Gu
- Department of Orthopedics, Shengjing Hospital, China Medical University, 110004, China.
| |
Collapse
|
5
|
Liu S, Yan L, Zhang Y, Junaid M, Wang J. Toxicological effects of polystyrene nanoplastics and perfluorooctanoic acid to Gambusia affinis. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1100-1112. [PMID: 35835386 DOI: 10.1016/j.fsi.2022.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Plastic pollution has attracted huge attention from public and scientific community in recent years. In the environment, nanoplastics (NPs, <100 nm) can interact with persistent organic pollutants (POPs) such as perfluorooctanoic acid (PFOA) and may exacerbate associated toxic impacts. The present study aims to explore the single and combined ecotoxicological effects of PFOA and polystyrene nanoplastics (PS-NPs, 80 nm) on the PI3K/AKT3 signaling pathway using a freshwater fish model Gambusia affinis. Fish were exposed individually to PS-NPs (200 μg/L) and PFOA (50, 500, 5000 μg/L) and their chemical mixtures for 96 h. Our results showed that the co-exposure significantly altered the mRNA relative expression of PI3K, AKT3, IKKβ and IL-1β, compared to corresponding single exposure and control groups, indicating that the PFOA-NP co-exposure can activate the PI3K/AKT3 signaling pathway. The bioinformatic analyses showed that AKT3 had more probes and exhibited a significantly sensitive correlation with DNA methylation, compared to other genes (PIK3CA, IKBKB, and IL1B). Further, the mRNA expressions of PIK3CA, AKT3, and IKBKB had a significant correlation with copy number variation (CNV) in human liver hepatocellular carcinoma (LIHC). And PIK3CA had the highest mutation rate among other genes of interest for LIHC. Moreover, AKT3 showed a relatively lower expression in TAM and CAF cells, compared to PIK3CA, IKBKB, and IL1B. Besides, hsa-mir-155-5p was closely correlated with AKT3, PIK3CA, IKBKB, and IL1B. In summary, these results provide evidence that NPs could enhance the carcinogenic effects of POPs on aquatic organisms and highlight possible targets of LIHC induced by PFOA-NP co-exposure.
Collapse
Affiliation(s)
- Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanling Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 528478, China.
| |
Collapse
|
6
|
Kong D, Li J, Li N, Zhang S, Xu Y. Multiple bioanalytical methods reveal a thyroid-disrupting mechanism related to the membrane receptor integrin α vβ 3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116933. [PMID: 33773180 DOI: 10.1016/j.envpol.2021.116933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a manufactured chemical, is suitable for large-scale production and has extensive applications. Although restricted for use, DEHP is still ubiquitous in the environment and shows potential to disrupt the structure or function of the thyroid system. However, its toxic mechanism is complex and not clearly understood. In this study, a battery of methods was employed to investigate DEHP-induced thyroid-disrupting effects and their mechanism of action, focusing on a newly discovered membrane receptor-mediated mechanism. The results showed that DEHP promoted rat pituitary tumor (GH3) cell proliferation and c-fos gene expression at environment level concentrations (2 and 5 μmol/L) in a manner similar to that of the natural thyroid hormone 3,3',5-triiodo-L-thyronine (T3). The macromolecule DEHP-BSA cannot pass through the cell membrane to interact with nuclear receptors but upregulated the c-fos gene expression when administered at concentrations comparable to DEHP concentrations; molecular docking demonstrated that DEHP has affinity for the membrane receptor integrin αvβ3; DEHP at 2 μmol/L upregulated the β3 gene expression in GH3 cells; after the addition of integrin αvβ3-inhibiting RGD peptide, DEHP-induced c-fos gene upregulation decreased. All of these findings support the supposition that DEHP-induced thyroid-disrupting effects might be mediated by the membrane receptor integrin αvβ3. Moreover, DEHP activated the downstream extracellular regulated protein kinase (ERK1/2) pathway, upregulating the gene expression of raf-1, MEK-1 and MAPK1 and increasing the protein levels of p-ERK; interestingly, ERK1/2 activation and c-fos upregulation induced by DEHP were attenuated by PD98059 (an ERK1/2 inhibitor). Taken together, the data suggest that the membrane receptor integrin αvβ3 and the downstream ERK1/2 pathway might be involved in DEHP-induced thyroid-disrupting effects. This study provides new insight into the thyroid-disrupting effect and the underlying mechanism and will advance the effort to construct adverse outcome pathways of DEHP and other thyroid hormone disrupting chemicals.
Collapse
Affiliation(s)
- Dongdong Kong
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shurong Zhang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ying Xu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
7
|
Aluru N, Krick KS, McDonald AM, Karchner SI. Developmental Exposure to PCB153 (2,2',4,4',5,5'-Hexachlorobiphenyl) Alters Circadian Rhythms and the Expression of Clock and Metabolic Genes. Toxicol Sci 2021; 173:41-52. [PMID: 31621872 DOI: 10.1093/toxsci/kfz217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are highly persistent and ubiquitously distributed environmental pollutants. Based on their chemical structure, PCBs are classified into non-ortho-substituted and ortho-substituted congeners. Non-ortho-substituted PCBs are structurally similar to dioxin and their toxic effects and mode of action are well-established. In contrast, very little is known about the effects of ortho-substituted PCBs, particularly, during early development. The objective of this study is to investigate the effects of exposure to an environmentally prominent ortho-substituted PCB (2,2',4,4',5,5'-hexachlorobiphenyl; PCB153) on zebrafish embryos. We exposed zebrafish embryos to 3 different concentrations of PCB153 starting from 4 to 120 hours post-fertilization (hpf). We quantified gross morphological changes, behavioral phenotypes, gene expression changes, and circadian behavior in the larvae. There were no developmental defects during the exposure period, but starting at 7 dpf, we observed spinal deformity in the 10 μM PCB153 treated group. A total of 633, 2227, and 3378 differentially expressed genes were observed in 0.1 μM (0.036 μg/ml), 1 μM (0.36 μg/ml), and 10 μM (3.6 μg/ml) PCB153-treated embryos, respectively. Of these, 301 genes were common to all treatment groups. KEGG pathway analysis revealed enrichment of genes related to circadian rhythm, FoxO signaling, and insulin resistance pathways. Behavioral analysis revealed that PCB153 exposure significantly alters circadian behavior. Disruption of circadian rhythms has been associated with the development of metabolic and neurological diseases. Thus, understanding the mechanisms of action of environmental chemicals in disrupting metabolism and other physiological processes is essential.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Keegan S Krick
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Adriane M McDonald
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543.,Biology Department, Spelman College, Atlanta, Georgia 30314
| | - Sibel I Karchner
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
8
|
Zhou J, Peng F, Cao X, Xie X, Chen D, Yang L, Rao C, Peng C, Pan X. Risk Compounds, Preclinical Toxicity Evaluation, and Potential Mechanisms of Chinese Materia Medica-Induced Cardiotoxicity. Front Pharmacol 2021; 12:578796. [PMID: 33867974 PMCID: PMC8044783 DOI: 10.3389/fphar.2021.578796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Chinese materia medica (CMM) has been applied for the prevention and treatment of diseases for thousands of years. However, arrhythmia, myocardial ischemia, heart failure, and other cardiac adverse reactions during CMM application were gradually reported. CMM-induced cardiotoxicity has aroused widespread attention. Our review aimed to summarize the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity. All relevant articles published on the PubMed, Embase, and China National Knowledge Infrastructure (CNKI) databases for the latest twenty years were searched and manually extracted. The risk substances of CMM-induced cardiotoxicity are relatively complex. A single CMM usually contains various risk compounds, and the same risk substance may exist in various CMM. The active and risk substances in CMM may be transformed into each other under different conditions, such as drug dosage, medication methods, and body status. Generally, the risk compounds of CMM-induced cardiotoxicity can be classified into alkaloids, terpenoids, steroids, heavy metals, organic acids, toxic proteins, and peptides. Traditional evaluation methods of chemical drug-induced cardiotoxicity primarily include cardiac function monitoring, endomyocardial biopsy, myocardial zymogram, and biomarker determination. In the preclinical stage, CMM-induced cardiotoxicity should be systematically evaluated at the overall, tissue, cellular, and molecular levels, including cardiac function, histopathology, cytology, myocardial zymogram, and biomarkers. Thanks to the development of systematic biology, the higher specificity and sensitivity of biomarkers, such as genes, proteins, and metabolic small molecules, are gradually applied for evaluating CMM-induced cardiotoxicity. Previous studies on the mechanisms of CMM-induced cardiotoxicity focused on a single drug, monomer or components of CMM. The interaction among ion homeostasis (sodium, potassium, and calcium ions), oxidative damage, mitochondrial injury, apoptosis and autophagy, and metabolic disturbance is involved in CMM-induced cardiotoxicity. Clarification on the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity must be beneficial to guide new CMM development and post-marketed CMM reevaluation.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dayi Chen
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lian Yang
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaolong Rao
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Ha M, Huang X, Li L, Lu D, Liu C. PKCα mediated by the PI3K/Akt-FOXA1 cascade facilitates cypermethrin-induced hyperthyroidism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143727. [PMID: 33250241 DOI: 10.1016/j.scitotenv.2020.143727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/14/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Cypermethrin (CYP), a broad-spectrum pyrethroid insecticide is extensively used. CYP is also considered as a potential endocrine disruptor with the thyroid-disturbing property. Protein kinase C alpha (PKCα) is a pleiotropic signal transduction molecule that functions crucially in thyroid hormone (TH) homeostasis and thyroid functions. To explore underlying roles of PKCα in CYP-mediated disturbance of TH homeostasis, Sprague-Dawley rats and rat thyroid cells were used in this study. Results showed that β-CYP stimulated TH biosynthesis, as shown by the increase in plasma levels of TT4, FT4, TT3, FT3, and TSH. After β-CYP treatment, expressions of PKCα, three miRNAs (miR-17-5p, miR-330-3p, and miR-331-3p), thyroid transcription factor TTF-1, and thyroid-specific proteins (TSHr, TPO, and Tg) were significantly increased, while expressions of PI3K p110α, p-Akt, FOXA1, and thyroid transcription factors (TTF-2 and Pax8) were decreased. Further studies found that β-CYP induced PKCα translation by the miR-330-3p-targeted PI3K/Akt-FOXA1 cascade and then PKCα positively regulated TTF-1 to promote TPO and Tg expressions, which in turn facilitated TH biosynthesis. Likewise, PKCα positively modulated TSHr expressions to strengthen the TSH/TSHr signal in the HPT axis, thereby synergistically contributing to TH biosynthesis. Moreover, β-CYP also disturbed TH biotransformation and biotransport by inducing DIO1 and inhibiting DIO3 in thyroids and TTR expressions in livers. Taken together, β-CYP has the thyroid-disturbing effect and could promote TH biosynthesis, and PKCα plays vital roles in β-CYP-caused hyperthyroidism.
Collapse
Affiliation(s)
- Mei Ha
- School of Nursing, Chongqing Medical and Pharmaceutical College, Chongqing 400020, China
| | - Xu Huang
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020, China
| | - Lianbing Li
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020, China
| | - Daru Lu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020, China
| | - Changjiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020, China.
| |
Collapse
|
10
|
Urbani C, Mattiello A, Ferri G, Raggi F, Russo D, Marconcini G, Cappellani D, Manetti L, Marcocci C, Cardarelli F, Bogazzi F. PCB153 reduces apoptosis in primary cultures of murine pituitary cells through the activation of NF-κB mediated by PI3K/Akt. Mol Cell Endocrinol 2021; 520:111090. [PMID: 33242503 DOI: 10.1016/j.mce.2020.111090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent pollutants involved in human tumorigenesis. PCB153 is a ubiquitous non-dioxin-like PCB with proliferative and anti-apoptotic effects. To explore the impact of PCB153 in the survival of pituitary cells, we exposed murine pituitary primary cells to PCB153 10 μM for 24 h. Apoptosis was assessed by RT-qPCR, Western-blot, immunoprecipitation, caspase activity, and immunofluorescence. We found that PCB153 decreased pituitary apoptosis through both the extrinsic and intrinsic pathways. PCB153 reduced the level of the pro-apoptotic protein p38-MAPK. Otherwise, PCB153 activated PI3K/Akt and Erk1/2 pathways and enhanced the expression and nuclear translocation of NF-κB. Cotreatments with specific inhibitors revealed that only PI3K/Akt changed the caspase-3 expression and NF-κB activation induced by PCB153. Also, PCB153 decreased the expression of the pro-apoptotic and pro-senescent cyclins p53 and p21. In summary, exposure to PCB153 leads to a downregulation of apoptosis in the pituitary driven by a PI3K/Akt-mediated activation of NF-κB.
Collapse
Affiliation(s)
- Claudio Urbani
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Alessandro Mattiello
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Gianmarco Ferri
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Francesco Raggi
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Dania Russo
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Giulia Marconcini
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Daniele Cappellani
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Luca Manetti
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Francesco Cardarelli
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Fausto Bogazzi
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy.
| |
Collapse
|
11
|
Li K, Jiang Y, Li G, Liu T, Yang Z. Novel Multitarget Directed Tacrine Hybrids as Anti-Alzheimer's Compounds Improved Synaptic Plasticity and Cognitive Impairment in APP/PS1 Transgenic Mice. ACS Chem Neurosci 2020; 11:4316-4328. [PMID: 33216529 DOI: 10.1021/acschemneuro.0c00574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a complex pathological neurodegenerative disease that seriously threatens human health. Therefore, how to effectively improve and treat AD is an urgent problem. In this study, a novel multitarget derivative based on tacrine (named 9i), which could work simultaneously on more than one pathological target, was used to treat AD model APP/PS1 transgenic mice. After 4 weeks of intragastric administration, cognitive function and synaptic plasticity were significantly improved and β-amyloid (Aβ) plaques that are main pathological hallmarks of AD were decreased in the APP/PS1 mice. On the one hand, 9i inhibited the excessive activation of the Raf/MEK/ERK signaling pathway to alleviate the loss of neurons, which provides a foundation for structural integrity. On the other hand, synaptic associated proteins and the density of synaptic spines were increased in APP/PS1 mice treated with 9i, which provides the basis for the improvement of synaptic plasticity and cognitive impairment. Interestingly, 9i also reduced Aβ plaques in the DG region, which is consistent with previous in vitro experiments showing that 9i inhibited the self-assembly of Aβ fibers, thus protecting neurons from Aβ plaque neurotoxicity. Our results suggest that 9i as a novel compound can effectively improve the cognitive function and the pathological changes of AD in APP/PS1 transgenic mice.
Collapse
Affiliation(s)
- Kai Li
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yu Jiang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Guoliang Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Tianjun Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhuo Yang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Li J, Liu H, Li N, Wang J, Song L. TDCPP mimics thyroid hormones associated with the activation of integrin α vβ 3 and ERK1/2. CHEMOSPHERE 2020; 256:127066. [PMID: 32434091 DOI: 10.1016/j.chemosphere.2020.127066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Tri(1,3-dichloropropyl) phosphate (TDCPP) potentially damages the thyroid system in humans and animals. However, knowledge of its toxic effects and underlying mechanisms is limited. The present study was conducted to determine the thyroid hormone-disrupting effects of TDCPP and its major metabolite, bis(1,3-dichloro-2-propyl) phosphate (BDCPP) in rat pituitary cell lines (GH3). TDCPP and BDCPP, that mimic the thyroid hormone (TH), promoted GH3 cell proliferation and modulated the progression of the cell cycle at 20 and 200 μmol/L, respectively. Similar to T3, TDCPP and BDCPP also significantly upregulated c-fos and downregulated Tshβ gene expression. Although the binding affinity of these chemicals for thyroid receptor β (TRβ) was not measured, significant competition between these chemicals to bind to the membrane thyroid hormone receptor (integrin αvβ3) was found, suggesting that TDCPP and BDCPP were strongly bound to integrin αvβ3. Results from a molecular docking analysis provided further evidence of strong binding affinities of TDCPP and BDCPP for integrin αvβ3, and the ligand binding site of Arg-Gly-Asp (RGD) was identified. Real-time PCR also supported the supposition that, after binding to integrin αvβ3, TDCPP and BDCPP may induce the activation of the extracellular signal-regulated protein kinase (ERK1/2) signal transduction pathway. Taken together, our data suggest that TDCPP and BDCPP have the ability to mimic THs and that the underlying mechanism might be associated with their interactions with integrin αvβ3 and the activation of the ERK1/2 pathway, providing new insight into the mechanism of TDCPP- and BDCPP-induced cytotoxicity.
Collapse
Affiliation(s)
- Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Hedan Liu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinsheng Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Liuting Song
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
13
|
Jing L, Feng L, Zhou Z, Shi S, Deng R, Wang Z, Liu Y. Limonoid compounds from Xylocarpus granatum and their anticancer activity against esophageal cancer cells. Thorac Cancer 2020; 11:1817-1826. [PMID: 32449599 PMCID: PMC7327699 DOI: 10.1111/1759-7714.13455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 11/29/2022] Open
Abstract
Background To investigate the anticancer effects of limonoid compounds that were isolated and purified from Xylocarpus granatum fruits on human esophageal cancer (EC) cells. A structure‐activity relationship experiment was designed to identify the functional moiety of limonoid compounds identified as being critical for its anticancer activity. Methods Eca109 cells were cultured in RPMI1640 medium and treated with limonoid compounds. Cell proliferation was determined by the MTT assay in vitro. Eca109 cells apoptosis was analyzed by by flow cytometry after being treated with xylogranatin C. The expression of p53, Bax, bcl‐2, caspase‐3 and GRP78 in Eca109 cells after xylogranatin C treatment was examined by western blot assay. Results Four linonoid compounds strongly inhibited the cellular proliferation of Eca109 cells. Xylogranatin C was the strongest inhibitor, whose inhibitory effect was comparable to that of the well‐known chemotherapeutic agent, cisplatin. Furthermore, xylogranatin C might induce Eca109 cell apoptosis through joint effects on multiple pathways, including the death receptor and endoplasmic reticulum pathways. Additionally, xylogranatin C suppressed tumor cell proliferation by upregulating miR‐203a expression in Eca109 cells. Conclusions Xylogranatin C induced Eca109 cellular apoptosis and exerted antitumor activity. Xylogranatin C suppressed tumor cell proliferation by upregulating miR‐203a expression in Eca109 cells.
Collapse
Affiliation(s)
- Li Jing
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Li Feng
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Zhiguo Zhou
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shuai Shi
- Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ruoying Deng
- Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Zhicong Wang
- Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yibing Liu
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
14
|
Shang J, Gao ZY, Zhang LY, Wang CY. Over-expression of JAZF1 promotes cardiac microvascular endothelial cell proliferation and angiogenesis via activation of the Akt signaling pathway in rats with myocardial ischemia-reperfusion. Cell Cycle 2019; 18:1619-1634. [PMID: 31177938 PMCID: PMC6619954 DOI: 10.1080/15384101.2019.1629774] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury is caused by endothelial dysfunction and enhanced oxidative stress. The overexpression of JAZF1, a zinc finger protein, has been reported to promote cell proliferation and suppress myogenic differentiation in type 2 diabetes. However, the involvement of JAZF1 in myocardial I/R injury remains to be unclear. The current study aims to investigate the role by which JAZF1 influences cardiac microvascular endothelial cells (CMECs) in a rat model of myocardial I/R injury. A total of 50 rats were established as a myocardial I/R model to isolate CMECs, with alterations in JAZF1 expression. After that, the gain- or loss-function of JAZF1 on the proliferation, apoptosis and tube formation ability of CMECs were evaluated by a series of in vitro experiments. Results indicated that JAZF1 was down-regulated in CMECs of rats with myocardial I/R injury. After treatment with JAZF1, the levels of VEGF, Bcl-2, PDGF and p-Akt/Akt were all increased; however, the expression of Bax, caspase-3, caspase-9, p-Bad/Bad, c-caspase-3/caspase-3, c-caspase-9/caspase-9, and p-FKHR/FKHR exhibited decreased levels; CMEC proliferation and angiogenesis were increased, while cell apoptosis was attenuated. CMECs transfected with JAZF1 shRNA exhibited the contrary tendencies. The key findings of this study suggest that the over-expression of JAZF1 alleviates myocardial I/R injury by enhancing proliferation and angiogenesis of CMECs and in turn inhibiting apoptosis of CMECs via the activation of the Akt signaling pathway.
Collapse
Affiliation(s)
- Jie Shang
- a Department of Electrocardiogram , Yantai Yuhuangding Hospital , Yantai , P. R. China
| | - Zhi-Yong Gao
- b Department of Rehabilitation , Yantai Yuhuangding Hospital , Yantai , P. R. China
| | - Li-Yan Zhang
- c Department of Cardiovascular Medicine , Longkou Nanshan Health Valley Tumor Hospital , Longkou , P.R. China
| | - Chun-Yu Wang
- a Department of Electrocardiogram , Yantai Yuhuangding Hospital , Yantai , P. R. China
| |
Collapse
|
15
|
Ding Y, Liu Y, Fei F, Yang L, Mao G, Zhao T, Zhang Z, Yan M, Feng W, Wu X. Study on the metabolism toxicity, susceptibility and mechanism of di-(2-ethylhexyl) phthalate on rat liver BRL cells with insulin resistance in vitro. Toxicology 2019; 422:102-120. [DOI: 10.1016/j.tox.2019.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/29/2019] [Accepted: 05/27/2019] [Indexed: 12/16/2022]
|
16
|
Li J, Dou X, Li D, He M, Han M, Zhang H. Dexmedetomidine Ameliorates Post-CPB Lung Injury in Rats by Activating the PI3K/Akt Pathway. J INVEST SURG 2019; 33:576-583. [PMID: 30913929 DOI: 10.1080/08941939.2018.1529839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: To investigate the protective effects of dexmedetomidine (Dex) on post cardiopulmonary bypass (CPB) lung injury in rats and to explore the possibility of underlying mechanisms involving phosphatidylinositol 3-kinase (PI3K)/Akt. Materials and Methods: Forty healthy male Sprague-Dawley rats were randomly divided into five groups (n = 8 for each). A left lung ischemia-reperfusion injury model of CPB was established in all five groups. Rats were given saline, dexmedetomidine (Dex), dimethyl sulfoxide (DMSO), wortmannin (Wtm), and Dex plus Wtm during the CPB process, in Group Saline, Dex, DMSO, Wtm, and Dex + Wtm, respectively. Mean arterial pressure, oxygenation index (OI), and respiratory index (RI) were measured at the following three timepoints: before CPB (T1), at the onset of opening of the left hilus pulmonis (T2), and at the end of the CPB process (T3). At T3, hematoxylin and eosin (H&E) staining was conducted to evaluate pathology of lung injury. The rate of lung tissue apoptosis was determined by flow-cytometry. The expression of Akt, p-Akt, caspase-3, and caspase-9 was assessed by Western blot. Results: Dex treatment during CPB protected rat lungs from post-CPB lung injury, manifested by improved lung function, mitigated pathological damage, and reduced lung tissue apoptosis. The expression and phosphorylation of Akt was significantly enhanced by Dex treatment compared to the saline/DMSO-treated group. Wtm, a recognized PI3K inhibitor, abolished the protective effect of Dex. The levels of caspase-3 and caspase-9 were also significantly elevated in the Wtm-treated group. Conclusions: Dex reduces post-CPB lung injury in rats, at least partially, by activating the PI3K/Akt pathway and inhibiting lung tissue apoptosis.
Collapse
Affiliation(s)
- Jian Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xuejiao Dou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dongdong Li
- Department of Anesthesiology, Yi Du Central Hospital, Weifang, China
| | - Miao He
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ming Han
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
17
|
Wang X, Xu Y, Song X, Jia Q, Zhang X, Qian Y, Qiu J. Analysis of glycerophospholipid metabolism after exposure to PCB153 in PC12 cells through targeted lipidomics by UHPLC-MS/MS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:120-127. [PMID: 30445242 DOI: 10.1016/j.ecoenv.2018.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/01/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that have neurotoxicity, reproductive toxicity, hepatotoxicity and immunotoxicity in both animals and humans. Few studies have focused on the changes to endogenous glycerophospholipid metabolism caused by PCB153. To evaluate the relationships between exposure to PCB153 and specific endogenous glycerophospholipid metabolism, an ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was implemented in this study. Twenty-two endogenous glycerophospholipids in PC12 cells were analyzed after exposure to PCB153 at dosages of 0.05 μg mL-1, 0.5 μg mL-1 or 20 μg mL-1 for 120 h. PC(14:0/14:0), PE(16:0/18:1), PE(16:0/18:2), PS(18:0/18:1) and PI(16:0/18:1) were identified as potential biomarkers under the rules of t-test (P) value < 0.05 and variable importance at projection (VIP) value > 1. It was also found that the alterations at 0.05 μg mL-1 and 20 μg mL-1 PCB153 were similar at 120 h, while 0.5 μg mL-1 PCB153 presented an opposite trend. Additionally, significant upregulation of PC, PE and PS with the same fatty acid chains of 18:0/18:2 was found after exposure to 0.05 μg mL-1 and 20 μg mL-1 PCB153 at 120 h. This study revealed that PCB153 exposure modulated 22 endogenous glycerophospholipids in PC12 cells and provided the basis for the further study of PCB153 on the effects of glycerophospholipids on PC12 cells.
Collapse
Affiliation(s)
- Xinlu Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Yanyang Xu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Xiao Song
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Xining Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China.
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
18
|
Kong D, Liu Y, Zuo R, Li J. DnBP-induced thyroid disrupting activities in GH3 cells via integrin α vβ 3 and ERK1/2 activation. CHEMOSPHERE 2018; 212:1058-1066. [PMID: 30286535 DOI: 10.1016/j.chemosphere.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/26/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
Di-n-butylphthalate (DnBP) exhibits alarming thyroid disrupting activities. However, the toxic mechanism of DnBP is not completely understood. In this study, we investigated the mechanism of DnBP in thyroid disruption. Rat pituitary tumor cell lines (GH3) were treated with DnBP in different scenarios, and cell viabilities, target gene transcriptions and protein levels were measured accordingly. The results showed that after treatment with DnBP (20 μmol/L), cell proliferation increased to 114.69% (p < 0.01) and c-fos gene was up-regulated by 1.57-fold (p < 0.01). Both nuclear thyroid hormone receptor β (TRβ) and membrane TR (integrin αv and integrin β3) genes were up-regulated by 1.31-, 1.08- and 2.39-fold (p < 0.01), respectively, the latter was inhibited by Arg-Gly-Asp (RGD) peptides; the macromolecular DnBP-BSA was unable to bind nuclear TRs, but still promoted cell proliferation to 104.18% and up-regulated c-fos by 2.99-fold (p < 0.01); after silencing TRβ gene, cell proliferation (106.64%, p < 0.05) and up-regulation of c-fos (1.23-fold, p < 0.01) were also observed. All of these findings indicated the existence of non-genomic pathway for DnBP-induced thyroid disruption. Finally, DnBP activated the downstream extracellular regulated protein kinases (ERK1/2) pathway, up-regulating Mapk1 (1.15-, p < 0.05), Mapk3 (1.26-fold, p < 0.01) and increasing protein levels of p-ERK (p < 0.01); notably, DnBP-induced ERK1/2 activation along with c-fos up-regulation were attenuated by PD98059 (ERK1/2 inhibitor). Taken together, it could be suggested that integrin αvβ3 and ERK1/2 pathway play significant roles in DnBP-induced thyroid disruption, and this novel mechanism warrants further investigation in living organisms.
Collapse
Affiliation(s)
- Dongdong Kong
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yun Liu
- South China Institute of Environmental Science, Ministry of Environmental Protection, No.7 West Street, Yuancun, Guangzhou 510655, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
19
|
Hardesty JE, Wahlang B, Falkner KC, Clair HB, Clark BJ, Ceresa BP, Prough RA, Cave MC. Polychlorinated biphenyls disrupt hepatic epidermal growth factor receptor signaling. Xenobiotica 2017; 47:807-820. [PMID: 27458090 DOI: 10.1080/00498254.2016.1217572] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
1. Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that disrupt hepatic xenobiotic and intermediary metabolism, leading to metabolic syndrome and nonalcoholic steatohepatitis (NASH). 2. Since phenobarbital indirectly activates Constitutive Androstane Receptor (CAR) by antagonizing growth factor binding to the epidermal growth factor receptor (EGFR), we hypothesized that PCBs may also diminish EGFR signaling. 3. The effects of the PCB mixture Aroclor 1260 on the protein phosphorylation cascade triggered by EGFR activation were determined in murine (in vitro and in vivo) and human models (in vitro). EGFR tyrosine residue phosphorylation was decreased by PCBs in all models tested. 4. The IC50 values for Aroclor 1260 concentrations that decreased Y1173 phosphorylation of EGFR were similar in murine AML-12 and human HepG2 cells (∼2-4 μg/mL). Both dioxin and non-dioxin-like PCB congeners decreased EGFR phosphorylation in cell culture. 5. PCB treatment reduced phosphorylation of downstream EGFR effectors including Akt and mTOR, as well as other phosphoprotein targets including STAT3 and c-RAF in vivo. 6. PCBs diminish EGFR signaling in human and murine hepatocyte models and may dysregulate critical phosphoprotein regulators of energy metabolism and nutrition, providing a new mechanism of action in environmental diseases.
Collapse
Affiliation(s)
- Josiah E Hardesty
- a Department of Biochemistry and Molecular Genetics , University of Louisville School of Medicine , Louisville , KY , USA
| | - Banrida Wahlang
- b University of Kentucky Superfund Research Center, University of Kentucky , Lexington , KY , USA
| | - K Cameron Falkner
- c Department of Medicine , Division of Gastroenterology, Hepatology and Nutrition , and
| | - Heather B Clair
- a Department of Biochemistry and Molecular Genetics , University of Louisville School of Medicine , Louisville , KY , USA
| | - Barbara J Clark
- a Department of Biochemistry and Molecular Genetics , University of Louisville School of Medicine , Louisville , KY , USA
| | - Brian P Ceresa
- d Department of Pharmacology and Toxicology , University of Louisville School of Medicine , Louisville , KY , USA
| | - Russell A Prough
- a Department of Biochemistry and Molecular Genetics , University of Louisville School of Medicine , Louisville , KY , USA
| | - Matthew C Cave
- a Department of Biochemistry and Molecular Genetics , University of Louisville School of Medicine , Louisville , KY , USA.,c Department of Medicine , Division of Gastroenterology, Hepatology and Nutrition , and.,d Department of Pharmacology and Toxicology , University of Louisville School of Medicine , Louisville , KY , USA.,e The Robley Rex Veterans Affairs Medical Center , Louisville , KY , USA , and.,f The Kentucky One Health Jewish Hospital Liver Transplant Program , Louisville , KY , USA
| |
Collapse
|
20
|
Casatta N, Stefani F, Viganò L. Hepatic gene expression profiles of a non-model cyprinid (Barbus plebejus) chronically exposed to river sediments. Comp Biochem Physiol C Toxicol Pharmacol 2017; 196:27-35. [PMID: 28286098 DOI: 10.1016/j.cbpc.2017.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 01/20/2023]
Abstract
In this study, we characterized the gene expression responses of the Padanian barbel (Barbus plebejus), a native benthivorous cyprinid with a very compromised presence within the fish community of the River Po. Barbel juveniles were exposed in the laboratory to two river sediments reflecting an upstream/downstream gradient of increasing contamination and collected from one of the most anthropized tributaries of the River Po. After 7months of exposure, hepatic transcriptional changes that were diagnostic of sediment exposure were assessed. We investigated a set of 24 genes involved in xenobiotic biotransformation (cyp1a, gstα, ugt), antioxidant defense (gpx, sod, cat, hsp70), trace metal exposure (mt-I, mt-II), DNA repair (xpa, xpc), apoptosis (bax, casp3), growth (igf2), and steroid (erα, erβ1, erβ2, ar, vtg) and thyroid (dio1, dio2, trα, trβ, nis) hormone signaling pathways. In a consistent overall picture, the results showed that long-term sediment exposure mainly increased the levels of mRNAs encoding proteins involved in xenobiotic metabolism, oxidative stress defense, repair of DNA damage and activation of the apoptotic process. Transcript up-regulation of three receptor genes (erβ2, ar, trβ), likely representing compensatory responses to antagonistic/toxic effects, was also observed, confirming the exposure to disruptors of the reproductive and thyroidal axes. In contrast to expectations, a few genes showed no response (e.g., casp3) or even downregulation (vtg), further suggesting that the timing of exposure/assessment, potential compensatory effects or post-transcriptional modifications interact to modify the gene expression profiles, particularly during exposure to mixtures of contaminants.
Collapse
Affiliation(s)
- Nadia Casatta
- Water Research Institute, National Research Council of Italy, Via del Mulino 19, 20861 Brugherio, (MB), Italy.
| | - Fabrizio Stefani
- Water Research Institute, National Research Council of Italy, Via del Mulino 19, 20861 Brugherio, (MB), Italy
| | - Luigi Viganò
- Water Research Institute, National Research Council of Italy, Via del Mulino 19, 20861 Brugherio, (MB), Italy
| |
Collapse
|
21
|
Divergent Effects of Dioxin- or Non-Dioxin-Like Polychlorinated Biphenyls on the Apoptosis of Primary Cell Culture from the Mouse Pituitary Gland. PLoS One 2016; 11:e0146729. [PMID: 26752525 PMCID: PMC4709048 DOI: 10.1371/journal.pone.0146729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/20/2015] [Indexed: 11/25/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) can disrupt the endocrine function, promote neoplasms and regulate apoptosis in some tissues; however, it is unknown whether PCBs can affect the apoptosis of pituitary cells. The study evaluated the effect of PCBs on the apoptosis of normal pituitary cells and the underlying mechanisms. Primary cell cultures obtained from mouse pituitary glands were exposed to Aroclor 1254 or selected dioxin-like (PCB 77, PCB 126) or non-dioxin-like (PCB 153, PCB 180) congeners. Apoptosis was evaluated by Annexin V staining, DNA fragmentation, and TUNEL assay. Both the expression and activity of caspases were analyzed. Selective thyroid hormone receptor (TR) or aryl-hydrocarbon receptor (AhR) or CYP1A1 antagonist were used to explore the mechanisms underlying PCBs action. Our results showed that Aroclor 1254 induced the apoptosis of pituitary cells as well as the final caspase-3 level and activity through the extrinsic pathway, as shown by the increased caspase-8 level and activity. On the other hand, the intrinsic pathway evaluated by measuring caspase-9 expression was silent. The selected non-dioxin-like congeners either increased (PCB 180) or reduced (PCB 153) pituitary cell apoptosis, affecting the extrinsic pathway (PCB 180), or both the extrinsic and intrinsic pathways (PCB 153), respectively. In contrast, the dioxin-like congeners (PCB 77 and PCB 126) did not affect apoptosis. The anti-apoptotic phenotype of PCB 153 was counteracted by a TR or a CYP1A1 antagonist, whereas the pro-apoptotic effect of PCB 180 was counteracted by an AhR antagonist. The induced apoptosis of Aroclor 1254 or PCB 180 was associated with a reduction of cell proliferation, whereas the decreased apoptosis due to PCB 153 increased cell proliferation by 30%. In conclusion, our data suggest that non-dioxin-like PCBs may modulate apoptosis and the proliferation rate of pituitary cells that have either pro- or anti-apoptotic effects depending on the specific congeners. However, the impact of PCBs on the process of pituitary tumorigenesis remains to be elucidated.
Collapse
|
22
|
Li J, Lai Y, Cao Y, Du T, Zeng L, Wang G, Chen X, Chen J, Yu Y, Zhang S, Zhang Y, Huang H, Guo Z. SHARPIN overexpression induces tumorigenesis in human prostate cancer LNCaP, DU145 and PC-3 cells via NF-κB/ERK/Akt signaling pathway. Med Oncol 2015; 32:444. [DOI: 10.1007/s12032-014-0444-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/07/2014] [Indexed: 12/28/2022]
|