1
|
Zhang Z, Huang J, Li C, Zhao Z, Cui Y, Yuan X, Wang X, Liu Y, Zhou Y, Zhu Z. The gut microbiota contributes to the infection of bovine viral diarrhea virus in mice. J Virol 2024; 98:e0203523. [PMID: 38299844 PMCID: PMC10878277 DOI: 10.1128/jvi.02035-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) is prevalent worldwide and causes significant economic losses. Gut microbiota is a large microbial community and has a variety of biological functions. However, whether there is a correlation between gut microbiota and BVDV infection and what kind of relation between them have not been reported. Here, we found that gut microbiota composition changed in normal mice after infecting with BVDV, but mainly the low abundance microbe was affected. Interestingly, BVDV infection significantly reduced the diversity of gut microbiota and changed its composition in gut microbiota-dysbiosis mice. Furthermore, compared with normal mice of BVDV infection, there were more viral loads in the duodenum, jejunum, spleen, and liver of the gut microbiota-dysbiosis mice. However, feces microbiota transplantation (FMT) reversed these effects. The data above indicated that the dysbiosis of gut microbiota was a key factor in the high infection rate of BVDV. It is found that the IFN-I signal was involved by investigating the underlying mechanisms. The inhibition of the proliferation and increase in the apoptosis of peripheral blood lymphocytes (PBL) were also observed. However, FMT treatment reversed these changes by regulating PI3K/Akt, ERK, and Caspase-9/Caspase-3 pathways. Furthermore, the involvement of butyrate in the pathogenesis of BVDV was also further confirmed. Our results showed for the first time that gut microbiota acts as a key endogenous defense mechanism against BVDV infection; moreover, targeting regulation of gut microbiota structure and abundance may serve as a new strategy to prevent and control the disease.IMPORTANCEWhether the high infection rate of BVDV is related to gut microbiota has not been reported. In addition, most studies on BVDV focus on in vitro experiments, which limits the study of its prevention and control strategy and its pathogenic mechanism. In this study, we successfully confirmed the causal relationship between gut microbiota and BVDV infection as well as the potential molecular mechanism based on a mouse model of BVDV infection and a mouse model of gut microbiota dysbiosis. Meanwhile, a mouse model which is more susceptible to BVDV provided in this study lays an important foundation for further research on prevention and control strategy of BVDV and its pathogenesis. In addition, the antiviral effect of butyrate, the metabolites of butyrate-producing bacteria, has been further revealed. Overall, our findings provide a promising prevention and control strategy to treat this infectious disease which is distributed worldwide.
Collapse
Affiliation(s)
- Zecai Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | - Jiang Huang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Agriculture and Rural Bureau of Sinan County, Sinan County, Guizhou, China
- Animal Health Supervision Institute of Sinan County, Sinan County, Guizhou, China
| | - Chuang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
| | - Zhicheng Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
| | - Yueqi Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
| | - Xueying Yuan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
| | - Xue Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
| | - Yu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, China
| |
Collapse
|
2
|
8a, a New Acridine Antiproliferative and Pro-Apoptotic Agent Targeting HDAC1/DNMT1. Int J Mol Sci 2021; 22:ijms22115516. [PMID: 34073721 PMCID: PMC8197214 DOI: 10.3390/ijms22115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
Epigenetic therapy using histone deacetylase (HDAC) inhibitors has become an attractive project in new drug development. However, DNA methylation and histone acetylation are important epigenetic ways to regulate the occurrence and development of leukemia. Given previous studies, N-(2-aminophenyl)benzamide acridine (8a), as a histone deacetylase 1 (HDAC1) inhibitor, induces apoptosis and shows significant anti-proliferative activity against histiocytic lymphoma U937 cells. HDAC1 plays a role in the nucleus, which we confirmed by finding that 8a entered the nucleus. Subsequently, we verified that 8a mainly passes through the endogenous (mitochondrial) pathway to induce cell apoptosis. From the protein interaction data, we found that 8a also affected the expression of DNA methyltransferase 1 (DNMT1). Therefore, an experiment was performed to assess the binding of 8a to DNMT1 at the molecular and cellular levels. We found that the binding strength of 8a to DNMT1 enhanced in a dose-dependent manner. Additionally, 8a inhibits the expression of DNMT1 mRNA and its protein. These findings suggested that the anti-proliferative and pro-apoptotic activities of 8a against leukemia cells were achieved by targeting HDAC1 and DNMT1.
Collapse
|
3
|
Chen X, Hu C, Zhang Y, Hao W, He X, Li Q, Huang Y, Huang Y, Chen Y. Anticancer Activity and Mechanism of Action of kla-TAT Peptide. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10019-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Hu C, Chen X, Huang Y, Chen Y. Synergistic effect of the pro-apoptosis peptide kla-TAT and the cationic anticancer peptide HPRP-A1. Apoptosis 2019; 23:132-142. [PMID: 29397453 DOI: 10.1007/s10495-018-1443-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, a peptide-peptide co-administration therapy between hybrid peptide kla-TAT and cationic anticancer peptide HPRP-A1 was designed to increase the anticancer activity of the combination peptides through synergistic effect. kla is a pro-apoptotic peptide which could induce rapid cancer cell apoptosis by disruption the mitochondrial membrane when internalized the cells. To enhance more kla peptides pass through cell membrane, a double improvement strategy was designed by chemically conjugation with cell penetration peptide TAT as well as co-administration with cationic membrane active peptide HPRP-A1, and the double anticancer mechanism of the kla-TAT peptide and HPRP-A1 including membrane disruption and apoptosis induction was verified through in vitro experiments. The CompuSyn synergism/antagonism analysis showed that kla-TAT acted synergistically with HPRP-A1 against a non-small cell lung cancer (NSCLC) A549 cell line. The anticancer activities of the two peptides were dramatically increased by co-administration, under the mechanism of cell membrane disruption, caspase-dependent apoptosis induction, as well as cyclin-D1 down-regulation based G1 phase arrest. We believe that the synergic therapeutic strategy would be a meaningful method for the anticancer peptides used in cancer treatment.
Collapse
Affiliation(s)
- Cuihua Hu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China.,College of Life Sciences, Jilin University, Changchun, 130021, China
| | - Xiaolong Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China.,College of Life Sciences, Jilin University, Changchun, 130021, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China.,College of Life Sciences, Jilin University, Changchun, 130021, China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China. .,College of Life Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
5
|
GSDMD is required for effector CD8+ T cell responses to lung cancer cells. Int Immunopharmacol 2019; 74:105713. [DOI: 10.1016/j.intimp.2019.105713] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023]
|
6
|
Yadav AK, Kumar V, Bailey DB, Jang BC. AZD1208, a Pan-Pim Kinase Inhibitor, Has Anti-Growth Effect on 93T449 Human Liposarcoma Cells via Control of the Expression and Phosphorylation of Pim-3, mTOR, 4EBP-1, S6, STAT-3 and AMPK. Int J Mol Sci 2019; 20:ijms20020363. [PMID: 30654529 PMCID: PMC6359068 DOI: 10.3390/ijms20020363] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
Overexpression of Pim kinases has an oncogenic/pro-survival role in many hematological and solid cancers. AZD1208 is a pan-Pim kinase inhibitor that has anti-cancer and anti-adipogenic actions. Here, we investigated the effects of AZD1208 on the growth of 93T449 cells, a differentiated human liposarcoma cell line. At 20 µM, AZD1208 was cytotoxic (cytostatic) but not apoptotic, reducing cell survival without DNA fragmentation, caspase activation or increasing cells in the sub G1 phase; known apoptotic parameters. Notably, AZD1208 reduced phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in 93T449 cells. STAT-3 inhibition by AG490, a JAK2/STAT-3 inhibitor similarly reduced cell survival. AZD1208 down-regulated phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal S6 while up-regulated eukaryotic initiation factor-2α (eIF-2α). In addition, AZD1208 induced a LKB-1-independent AMPK activation, which was crucial for its cytostatic effect, as knock-down of AMPK greatly blocked AZD1208s ability to reduce cell survival. AZD1208 had no effect on expression of two members of Pim kinase family (Pim-1 and Pim-3) but inhibited phosphorylation of 4EBP-1, a downstream effector of Pim kinases. Importantly, a central role for Pim-3 in the actions of AZD1208 was confirmed by knock-down, which not only reduced 93T449 cell survival but also led to the inhibition of 4EBP-1, mTOR, eIF-2α and STAT-3, along with the activation of AMPK. In summary, this is the first report demonstrating that AZD1208 inhibits growth of liposarcoma cells and that this activity is mediated through Pim-3 kinase, STAT-3, mTOR, S6 and AMPK expression and phosphorylation pathways.
Collapse
Affiliation(s)
- Anil Kumar Yadav
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| | - Vinoth Kumar
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| | - David Bishop Bailey
- Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK.
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| |
Collapse
|
7
|
Park N, Park Y, Ramalingam M, Yadav AK, Cho H, Hong VS, More KN, Bae J, Bishop‐Bailey D, Kano J, Noguchi M, Jang I, Lee K, Lee J, Choi J, Jang B. Meridianin C inhibits the growth of YD-10B human tongue cancer cells through macropinocytosis and the down-regulation of Dickkopf-related protein-3. J Cell Mol Med 2018; 22:5833-5846. [PMID: 30246484 PMCID: PMC6237585 DOI: 10.1111/jcmm.13854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Meridianin C is a marine natural product known for its anti-cancer activity. At present, the anti-tumour effects of meridianin C on oral squamous cell carcinoma are unknown. Here, we investigated the effect of meridianin C on the proliferation of four different human tongue cancer cells, YD-8, YD-10B, YD-38 and HSC-3. Among the cells tested, meridianin C most strongly reduced the growth of YD-10B cells; the most aggressive and tumorigenic of the cell lines tested. Strikingly, meridianin C induced a significant accumulation of macropinosomes in the YD-10B cells; confirmed by the microscopic and TEM analysis as well as the entry of FITC-dextran, which was sensitive to the macropinocytosis inhibitor amiloride. SEM data also revealed abundant long and thin membrane extensions that resemble lamellipodia on the surface of YD-10B cells treated with meridianin C, pointing out that meridianin C-induced macropinosomes was the result of macropinocytosis. In addition, meridianin C reduced cellular levels of Dickkopf-related protein-3 (DKK-3), a known negative regulator of macropinocytosis. A role for DKK-3 in regulating macropinocytosis in the YD-10B cells was confirmed by siRNA knockdown of endogenous DKK-3, which led to a partial accumulation of vacuoles and a reduction in cell proliferation, and by exogenous DKK-3 overexpression, which resulted in a considerable inhibition of the meridianin C-induced vacuole formation and decrease in cell survival. In summary, this is the first study reporting meridianin C has novel anti-proliferative effects via macropinocytosis in the highly tumorigenic YD-10B cell line and the effects are mediated in part through down-regulation of DKK-3.
Collapse
Affiliation(s)
- Nam‐Sook Park
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Yu‐Kyoung Park
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Mahesh Ramalingam
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Anil Kumar Yadav
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Hyo‐Rim Cho
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Victor Sukbong Hong
- Department of ChemistryCollege of Natural SciencesKeimyung UniversityDaeguRepublic of Korea
| | - Kunal N. More
- Department of ChemistryCollege of Natural SciencesKeimyung UniversityDaeguRepublic of Korea
| | - Jae‐Hoon Bae
- Department of PhysiologyCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | | | - Junko Kano
- Faculty of MedicineDepartment of PathologyUniversity of TsukubaTsukubaJapan
| | - Masayuki Noguchi
- Faculty of MedicineDepartment of PathologyUniversity of TsukubaTsukubaJapan
| | - Ik‐Soon Jang
- Biological Disaster Analysis GroupDivision of Convergence BiotechnologyKorea Basic Science InstituteDaejeonRepublic of Korea
| | - Kyung‐Bok Lee
- Biological Disaster Analysis GroupDivision of Convergence BiotechnologyKorea Basic Science InstituteDaejeonRepublic of Korea
| | - Jinho Lee
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeonRepublic of Korea
| | - Jong‐Soon Choi
- Biological Disaster Analysis GroupDivision of Convergence BiotechnologyKorea Basic Science InstituteDaejeonRepublic of Korea
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeonRepublic of Korea
| | - Byeong‐Churl Jang
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| |
Collapse
|
8
|
Chen X, Bai J, Liu X, Song Z, Zhang Q, Wang X, Jiang P. Nsp1α of Porcine Reproductive and Respiratory Syndrome Virus Strain BB0907 Impairs the Function of Monocyte-Derived Dendritic Cells via the Release of Soluble CD83. J Virol 2018; 92:e00366-18. [PMID: 29793955 PMCID: PMC6052304 DOI: 10.1128/jvi.00366-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), a virulent pathogen of swine, suppresses the innate immune response and induces persistent infection. One mechanism used by viruses to evade the immune system is to cripple the antigen-processing machinery in monocyte-derived dendritic cells (MoDCs). In this study, we show that MoDCs infected by PRRSV express lower levels of the major histocompatibility complex (MHC)-peptide complex proteins TAP1 and ERp57 and are impaired in their ability to stimulate T cell proliferation and increase their production of CD83. Neutralization of sCD83 removes the inhibitory effects of PRRSV on MoDCs. When MoDCs are incubated with exogenously added sCD83 protein, TAP1 and ERp57 expression decreases and T lymphocyte activation is impaired. PRRSV nonstructural protein 1α (Nsp1α) enhances CD83 promoter activity. Mutations in the ZF domain of Nsp1α abolish its ability to activate the CD83 promoter. We generated recombinant PRRSVs with mutations in Nsp1α and the corresponding repaired PRRSVs. Viruses with Nsp1α mutations did not decrease levels of TAP1 and ERp57, impair the ability of MoDCs to stimulate T cell proliferation, or increase levels of sCD83. We show that the ZF domain of Nsp1α stimulates the secretion of CD83, which in turn inhibits MoDC function. Our study provides new insights into the mechanisms of immune suppression by PRRSV.IMPORTANCE PRRSV has a severe impact on the swine industry throughout the world. Understanding the mechanisms by which PRRSV infection suppresses the immune system is essential for a robust and sustainable swine industry. Here, we demonstrated that PRRSV infection manipulates MoDCs by interfering with their ability to produce proteins in the MHC-peptide complex. The virus also impairs the ability of MoDCs to stimulate cell proliferation, due in large part to the enhanced release of soluble CD83 from PRRSV-infected MoDCs. The viral nonstructural protein 1 (Nsp1) is responsible for upregulating CD83 promoter activity. Amino acids in the ZF domain of Nsp1α (L5-2A, rG45A, G48A, and L61-6A) are essential for CD83 promoter activation. Viruses with mutations at these sites no longer inhibit MoDC-mediated T cell proliferation. These findings provide novel insights into the mechanism by which the adaptive immune response is suppressed during PRRSV infection.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xuewei Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhongbao Song
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiaoya Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
9
|
Hu C, Chen X, Huang Y, Chen Y. Co‐administration of kla‐TAT peptide and iRGD to enhance the permeability on A549 3D multiple sphere cells and accumulation on xenograft mice. Chem Biol Drug Des 2018; 92:1567-1575. [DOI: 10.1111/cbdd.13323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Cuihua Hu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of EducationJilin University Changchun China
- College of Life SciencesJilin University Changchun China
| | - Xiaolong Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of EducationJilin University Changchun China
- College of Life SciencesJilin University Changchun China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of EducationJilin University Changchun China
- College of Life SciencesJilin University Changchun China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of EducationJilin University Changchun China
- College of Life SciencesJilin University Changchun China
| |
Collapse
|
10
|
Su L, Yang JF, Fu X, Dong L, Zhou DY, Sun LM, Gong Z. Ultraviolet-Ray-Induced Sea Cucumber (Stichopus japonicus) Melting Is Mediated by the Caspase-Dependent Mitochondrial Apoptotic Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:45-52. [PMID: 29232945 DOI: 10.1021/acs.jafc.7b03888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sea cucumber body-wall melting occurs under certain circumstances. We have shown that apoptosis but not autolysis plays a critical role in the initial stage. However, it is still unclear how apoptosis is triggered in this process. In this study, we examined the levels of reactive oxygen species (ROS), the levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X (Bax) proteins, the depolarization of mitochondrial transmembrane potentials, and cytochrome c (Cyt c) release during sea cucumber melting induced by ultraviolet (UV) exposure. We also investigated the contribution of caspase in this process by injecting a pan-caspase inhibitor. Our data showed that UV exposure stimulates ROS production, dysfunction of mitochondria, and the release of Cyt c in sea cucumber coelomic fluid cells and body walls. We found a decrease of Bcl-2 and increase of Bax in the mitochondria after UV exposure. We also demonstrated that these changes are associated with elevated caspase-9 and -3 activity. Finally, our data showed that the inhibition of caspases-9 and -3 using an inhibitor suppresses UV-induced sea cucumber melting. These results suggest that apoptosis during sea cucumber melting is mediated by mitochondrial dysfunction and follows the activation of the caspase-signaling pathway. This study presents a novel insight into the mechanism of sea cucumber melting.
Collapse
Affiliation(s)
- Li Su
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood , Number 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Jing-Feng Yang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood , Number 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Xi Fu
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood , Number 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Liang Dong
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood , Number 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood , Number 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Li-Ming Sun
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood , Number 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Zhenwei Gong
- Division of Pediatric Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine , 4401 Penn Avenue, Pittsburgh, Pennsylvania 15224, United States
| |
Collapse
|
11
|
The cathepsin B inhibitor z-FA-CMK induces cell death in leukemic T cells via oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 2017; 391:71-82. [PMID: 29085973 DOI: 10.1007/s00210-017-1436-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023]
Abstract
The cathepsin B inhibitor benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was recently found to induce apoptosis at low concentrations in Jurkat T cells, while at higher concentrations, the cells die of necrosis. In the present study, we showed that z-FA-CMK readily depletes intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) generation. The toxicity of z-FA-CMK in Jurkat T cells was completely abrogated by N-acetylcysteine (NAC), suggesting that the toxicity mediated by z-FA-CMK is due to oxidative stress. We found that L-buthionine sulfoximine (BSO) which depletes intracellular GSH through the inhibition of GSH biosynthesis in Jurkat T cells did not promote ROS increase or induce cell death. However, NAC was still able to block z-FA-CMK toxicity in Jurkat T cells in the presence of BSO, indicating that the protective effect of NAC does not involve GSH biosynthesis. This is further corroborated by the protective effect of the non-metabolically active D-cysteine on z-FA-CMK toxicity. Furthermore, in BSO-treated cells, z-FA-CMK-induced ROS increased which remains unchanged, suggesting that the depletion of GSH and increase in ROS generation mediated by z-FA-CMK may be two separate events. Collectively, our results demonstrated that z-FA-CMK toxicity is mediated by oxidative stress through the increase in ROS generation.
Collapse
|
12
|
Yeo EH, Goh WL, Chow SC. The aminopeptidase inhibitor, z-L-CMK, is toxic and induces cell death in Jurkat T cells through oxidative stress. Toxicol Mech Methods 2017; 28:157-166. [PMID: 28849708 DOI: 10.1080/15376516.2017.1373882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The leucine aminopeptidase inhibitor, benzyloxycarbonyl-leucine-chloromethylketone (z-L-CMK), was found to be toxic and readily induce cell death in Jurkat T cells. Dose-response studies show that lower concentration of z-L-CMK induced apoptosis in Jurkat T cells whereas higher concentration causes necrosis. In z-L-CMK-induced apoptosis, both the initiator caspases (-8 and -9) and effector caspases (-3 and -6) were processed to their respective subunits. However, the caspases remained intact in z-L-CMK-induced necrosis. The caspase inhibitor, z-VAD-FMK inhibited z-L-CMK-mediated apoptosis and caspase processing but has no effect on z-L-CMK-induced necrosis in Jurkat T cells. The high mobility group protein B1 (HMGB1) protein was found to be released into the culture medium by the necrotic cells and not the apoptotic cells. These results indicate that the necrotic cell death mediated by z-L-CMK at high concentrations is via classical necrosis rather than secondary necrosis. We also demonstrated that cell death mediated by z-L-CMK was associated with oxidative stress via the depletion of intracellular glutathione (GSH) and increase in reactive oxygen species (ROS), which was blocked by N-acetyl cysteine. Taken together, the results demonstrated that z-L-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. The toxic side effects in Jurkat T cells mediated by z-L-CMK are associated with oxidative stress via the depletion of GSH and accumulation of ROS.
Collapse
Affiliation(s)
- E H Yeo
- a School of Science , Monash University Malaysia , Bandar Sunway , Malaysia
| | - W L Goh
- a School of Science , Monash University Malaysia , Bandar Sunway , Malaysia
| | - S C Chow
- a School of Science , Monash University Malaysia , Bandar Sunway , Malaysia
| |
Collapse
|
13
|
Oxidative stress in multiple sclerosis: Central and peripheral mode of action. Exp Neurol 2015; 277:58-67. [PMID: 26626971 PMCID: PMC7094520 DOI: 10.1016/j.expneurol.2015.11.010] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/08/2015] [Accepted: 11/21/2015] [Indexed: 01/18/2023]
|
14
|
Rajah T, Chow SC. Suppression of Human T Cell Proliferation Mediated by the Cathepsin B Inhibitor, z-FA-FMK Is Due to Oxidative Stress. PLoS One 2015; 10:e0123711. [PMID: 25915766 PMCID: PMC4411069 DOI: 10.1371/journal.pone.0123711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/05/2015] [Indexed: 01/01/2023] Open
Abstract
The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-fluoromethyl ketone (z-FA-FMK) readily inhibits anti-CD3-induced human T cell proliferation, whereas the analogue benzyloxycarbonyl-phenylalanine-alanine-diazomethyl ketone (z-FA-DMK) had no effect. In contrast, benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was toxic. The inhibition of T cell proliferation mediated by z-FA-FMK requires not only the FMK moiety, but also the benzyloxycarbonyl group at the N-terminal, suggesting some degree of specificity in z-FA-FMK-induced inhibition of primary T cell proliferation. We showed that z-FA-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-induced T cell proliferation mediated by z-FA-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. The inhibition of anti-CD3-induced up-regulation of CD25 and CD69 expression mediated by z-FA-FMK was also attenuated in the presence of exogenous GSH. Similar to cell proliferation, GSH, NAC and L-cysteine but not D-cysteine, completely restored the processing of caspase-8 and caspase-3 to their respective subunits in z-FA-FMK-treated activated T cells. Our collective results demonstrated that the inhibition of T cell activation and proliferation mediated by z-FA-FMK is due to oxidative stress via the depletion of GSH.
Collapse
Affiliation(s)
- Tanuja Rajah
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor Darul Ehsan, Malaysia
| | - Sek Chuen Chow
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor Darul Ehsan, Malaysia
- * E-mail:
| |
Collapse
|