1
|
Litwin T, Dzieżyc K, Członkowska A. Wilson disease-treatment perspectives. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S68. [PMID: 31179305 DOI: 10.21037/atm.2018.12.09] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wilson disease (WD) is a genetic disorder caused by pathological tissue copper accumulation with secondary damage of affected organs (mainly, but not limited to, the liver and brain). The main clinical symptoms of WD are, in concordance with the pathogenesis, hepatic and/or neuropsychiatric. Current treatment options for WD, based on drugs leading to negative copper body balance like chelators or zinc salts, were introduced more than 40 years ago and are generally effective in the majority of WD cases if used lifelong. However, especially in neurological patients, treatment may lead to neurological deterioration, which is often irreversible. Further, almost 50% of neurologically affected WD patients present with persistent neurological deficits despite the use of anti-copper treatment. In addition, up to 30% of patients treated with the widely used drug, d-penicillamine, present with adverse events related to treatment, which often leads to treatment discontinuation. Finally, almost 25% of WD patients do not adhere with anti-copper treatment, partially due to drug-related adverse events and complex treatment regimens (3 times daily, before meals, etc.). These limitations with current treatments have led to the search for other WD treatment possibilities. Currently, research is mainly focused on: (I) new agents with better safety profiles and less neurological deterioration properties compared with traditional chelators, e.g., tetrathiomolybdate salts or central nervous system-penetrable trientine, with the aim to provide more effective copper removal from brain tissue; (II) other non-chelating drugs that lead to removal of copper from cells [e.g., methanobactin (currently in preclinical studies)]; (III) cell and gene therapy. In this article, current research on future treatments for WD is reviewed.
Collapse
Affiliation(s)
- Tomasz Litwin
- Second Department of Neurology, Institute Psychiatry and Neurology, Warsaw, Poland
| | - Karolina Dzieżyc
- Second Department of Neurology, Institute Psychiatry and Neurology, Warsaw, Poland
| | - Anna Członkowska
- Second Department of Neurology, Institute Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
2
|
Nguyen XB, Kislyuk S, Pham DH, Kecskés A, Maes J, Cabooter D, Annaert P, De Witte P, Ny A. Cell Imaging Counting as a Novel Ex Vivo Approach for Investigating Drug-Induced Hepatotoxicity in Zebrafish Larvae. Int J Mol Sci 2017; 18:E356. [PMID: 28208716 PMCID: PMC5343891 DOI: 10.3390/ijms18020356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/27/2017] [Accepted: 02/03/2017] [Indexed: 01/16/2023] Open
Abstract
Drug-induced liver injury (DILI) is the most common reason for failures during the drug development process and for safety-related withdrawal of drugs from the pharmaceutical market. Therefore, having tools and techniques that can detect hepatotoxic properties in drug candidates at an early discovery stage is highly desirable. In this study, cell imaging counting was used to measure in a fast, straightforward, and unbiased way the effect of paracetamol and tetracycline, (compounds known to cause hepatotoxicity in humans) on the amount of DsRed-labeled hepatocytes recovered by protease digestion from Tg(fabp10a:DsRed) transgenic zebrafish. The outcome was in general comparable with the results obtained using two reference methods, i.e., visual analysis of liver morphology by fluorescence microscopy and size analysis of fluorescent 2D liver images. In addition, our study shows that administering compounds into the yolk is relevant in the framework of hepatotoxicity testing. Taken together, cell imaging counting provides a novel and rapid tool for screening hepatotoxicants in early stages of drug development. This method is also suitable for testing of other organ-related toxicities subject to the organs and tissues expressing fluorescent proteins in transgenic zebrafish lines.
Collapse
Affiliation(s)
- Xuan-Bac Nguyen
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| | - Stanislav Kislyuk
- Division Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 923, 3000 Leuven, Belgium.
| | - Duc-Hung Pham
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| | - Angela Kecskés
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| | - Jan Maes
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| | - Deirdre Cabooter
- Division Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 923, 3000 Leuven, Belgium.
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 921, 3000 Leuven, Belgium.
| | - Peter De Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| | - Annelii Ny
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Rupp C, Stremmel W, Weiss KH. Novel perspectives on Wilson disease treatment. WILSON DISEASE 2017; 142:225-230. [DOI: 10.1016/b978-0-444-63625-6.00019-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Use of Zebrafish Larvae as a Multi-Endpoint Platform to Characterize the Toxicity Profile of Silica Nanoparticles. Sci Rep 2016; 6:37145. [PMID: 27872490 PMCID: PMC5131651 DOI: 10.1038/srep37145] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
Nanomaterials are being extensively produced and applied in society. Human and environmental exposures are, therefore, inevitable and so increased attention is being given to nanotoxicity. While silica nanoparticles (NP) are one of the top five nanomaterials found in consumer and biomedical products, their toxicity profile is poorly characterized. In this study, we investigated the toxicity of silica nanoparticles with diameters 20, 50 and 80 nm using an in vivo zebrafish platform that analyzes multiple endpoints related to developmental, cardio-, hepato-, and neurotoxicity. Results show that except for an acceleration in hatching time and alterations in the behavior of zebrafish embryos/larvae, silica NPs did not elicit any developmental defects, nor any cardio- and hepatotoxicity. The behavioral alterations were consistent for both embryonic photomotor and larval locomotor response and were dependent on the concentration and the size of silica NPs. As embryos and larvae exhibited a normal touch response and early hatching did not affect larval locomotor response, the behavior changes observed are most likely the consequence of modified neuroactivity. Overall, our results suggest that silica NPs do not cause any developmental, cardio- or hepatotoxicity, but they pose a potential risk for the neurobehavioral system.
Collapse
|
5
|
Verbandt S, Henriques ST, Spincemaille P, Harvey PJ, Chandhok G, Sauer V, De Coninck B, Cassiman D, Craik DJ, Cammue BPA, De Cremer K, Thevissen K. Identification of survival-promoting OSIP108 peptide variants and their internalization in human cells. Mech Ageing Dev 2016; 161:247-254. [PMID: 27491841 DOI: 10.1016/j.mad.2016.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/30/2016] [Accepted: 07/30/2016] [Indexed: 11/19/2022]
Abstract
The plant-derived decapeptide OSIP108 increases tolerance of yeast and human cells to apoptosis-inducing agents, such as copper and cisplatin. We performed a whole amino acid scan of OSIP108 and conducted structure-activity relationship studies on the induction of cisplatin tolerance (CT) in yeast. The use of cisplatin as apoptosis-inducing trigger in this study should be considered as a tool to better understand the survival-promoting nature of OSIP108 and not for purposes related to anti-cancer treatment. We found that charged residues (Arg, His, Lys, Glu or Asp) or a Pro on positions 4-7 improved OSIP108 activity by 10% or more. The variant OSIP108[G7P] induced the most pronounced tolerance to toxic concentrations of copper and cisplatin in yeast and/or HepG2 cells. Both OSIP108 and OSIP108[G7P] were shown to internalize equally into HeLa cells, but at a higher rate than the inactive OSIP108[E10A], suggesting that the peptides can internalize into cells and that OSIP108 activity is dependent on subsequent intracellular interactions. In conclusion, our studies demonstrated that tolerance/survival-promoting properties of OSIP108 can be significantly improved by single amino acid substitutions, and that these properties are dependent on (an) intracellular target(s), yet to be determined.
Collapse
Affiliation(s)
- Sara Verbandt
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | | | - Pieter Spincemaille
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium; Department of Laboratory Medicine, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Peta J Harvey
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Gursimran Chandhok
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Vanessa Sauer
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - David Cassiman
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - David J Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Verbandt S, Cammue BPA, Thevissen K. Yeast as a model for the identification of novel survival-promoting compounds applicable to treat degenerative diseases. Mech Ageing Dev 2016; 161:306-316. [PMID: 27287065 DOI: 10.1016/j.mad.2016.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 12/18/2022]
Abstract
Programmed cell death (PCD) plays an important role in development and normal metabolic functioning of organisms. Excessive cell death is the cause of many degenerative diseases, like neurodegenerative disorders and Wilson's disease, for which current therapies remain insufficient. Current therapies are mainly focused on decreasing the disease symptoms following cell death, rather than blocking the cell death process itself. The latter can be obtained by either decreasing the presence of the toxic trigger (like protein aggregation in case of many commonly known neurodegenerative diseases) or by blocking death-inducing signaling cascade(s). Given the high conservation in PCD processes between yeast and mammalian cells, in this review, we will focus on yeast as a model organism to study PCD-related diseases as well as on its use for drug discovery purposes. More specifically, we will provide a comprehensive overview of new compounds, which were identified in yeast-based drug screens, that either decrease the amount of toxic trigger or inhibit PCD signaling cascades under PCD-inducing conditions.
Collapse
Affiliation(s)
- Sara Verbandt
- Centre of Microbial and Plant Genetics CMPG, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics CMPG, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics CMPG, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| |
Collapse
|
7
|
Spincemaille P, Chandhok G, Zibert A, Schmidt H, Verbeek J, Chaltin P, Cammue BP, Cassiman D, Thevissen K. Angiotensin II type 1 receptor blockers increase tolerance of cells to copper and cisplatin. MICROBIAL CELL 2014; 1:352-364. [PMID: 28357214 PMCID: PMC5349125 DOI: 10.15698/mic2014.11.175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The human pathology Wilson disease (WD) is characterized by toxic copper (Cu)
accumulation in brain and liver, resulting in, among other indications,
mitochondrial dysfunction and apoptosis of hepatocytes. In an effort to identify
novel compounds that can alleviate Cu-induced toxicity, we screened the
Pharmakon 1600 repositioning library using a Cu-toxicity yeast screen. We
identified 2 members of the drug class of Angiotensin II Type 1 receptor
blockers (ARBs) that could increase yeast tolerance to Cu, namely Candesartan
and Losartan. Subsequently, we show that specific ARBs can increase yeast
tolerance to Cu and/or the chemotherapeutic agent cisplatin (Cp). The latter
also induces mitochondrial dysfunction and apoptosis in mammalian cells. We
further demonstrate that specific ARBs can prevent the prevalence of Cu-induced
apoptotic markers in yeast, with Candesartan Cilexetil being the ARB which
demonstrated most pronounced reduction of apoptosis-related markers. Next, we
tested the sensitivity of a selection of yeast knockout mutants affected in
detoxification of reactive oxygen species (ROS) and Cu for Candesartan Cilexetil
rescue in presence of Cu. These data indicate that Candesartan Cilexetil
increases yeast tolerance to Cu irrespectively of major ROS-detoxifying
proteins. Finally, we show that specific ARBs can increase mammalian cell
tolerance to Cu, as well as decrease the prevalence of Cu-induced apoptotic
markers. All the above point to the potential of ARBs in preventing Cu-induced
toxicity in yeast and mammalian cells.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Gursimran Chandhok
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Andree Zibert
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Hartmut Schmidt
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Jef Verbeek
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Patrick Chaltin
- CISTIM Leuven vzw, Bio-Incubator 2, Wetenschapspark Arenberg, Gaston Geenslaan 2, 3001 Heverlee, Belgium. ; Centre for Drug Design and Discovery (CD3), KU Leuven R&D, Waaistraat 6, Box 5105, 3000 Leuven
| | - Bruno P Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium. ; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Ghent, Belgium
| | - David Cassiman
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
8
|
Spincemaille P, Alborzinia H, Dekervel J, Windmolders P, van Pelt J, Cassiman D, Cheneval O, Craik DJ, Schur J, Ott I, Wölfl S, Cammue BPA, Thevissen K. The plant decapeptide OSIP108 can alleviate mitochondrial dysfunction induced by cisplatin in human cells. Molecules 2014; 19:15088-102. [PMID: 25244288 PMCID: PMC6271462 DOI: 10.3390/molecules190915088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 02/07/2023] Open
Abstract
We investigated the effect of the Arabidopsis thaliana-derived decapeptide OSIP108 on human cell tolerance to the chemotherapeutic agent cisplatin (Cp), which induces apoptosis and mitochondrial dysfunction. We found that OSIP108 increases the tolerance of HepG2 cells to Cp and prevents Cp-induced changes in basic cellular metabolism. More specifically, we demonstrate that OSIP108 reduces Cp-induced inhibition of respiration, decreases glycolysis and prevents Cp-uptake in HepG2 cells. Apart from its protective action against Cp in human cells, OSIP108 also increases the yeast Saccharomyces cerevisiae tolerance to Cp. A limited yeast-based study of OSIP108 analogs showed that cyclization does not severely affect its activity, which was further confirmed in HepG2 cells. Furthermore, the similarity in the activity of the d-stereoisomer (mirror image) form of OSIP108 with the l-stereoisomer suggests that its mode of action does not involve binding to a stereospecific receptor. In addition, as OSIP108 decreases Cp uptake in HepG2 cells and the anti-Cp activity of OSIP108 analogs without free cysteine is reduced, OSIP108 seems to protect against Cp-induced toxicity only partly via complexation. Taken together, our data indicate that OSIP108 and its cyclic derivatives can protect against Cp-induced toxicity and, thus, show potential as treatment options for mitochondrial dysfunction- and apoptosis-related conditions.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, Heverlee 3001, Belgium
| | - Hamed Alborzinia
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Jeroen Dekervel
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, Leuven 3000, Belgium
| | - Petra Windmolders
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, Leuven 3000, Belgium
| | - Jos van Pelt
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, Leuven 3000, Belgium
| | - David Cassiman
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, Leuven 3000, Belgium
| | - Olivier Cheneval
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Old 4072, Australia
| | - David J Craik
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Old 4072, Australia
| | - Julia Schur
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität, Braunschweig, Beethovenstrasse 55, Braunschweig 38106, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität, Braunschweig, Beethovenstrasse 55, Braunschweig 38106, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, Heverlee 3001, Belgium.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, Heverlee 3001, Belgium
| |
Collapse
|