1
|
Choi HG, Park SY, Bae SH, Chang SY, Kim SH. Loganin Ameliorates Acute Kidney Injury and Restores Tofacitinib Metabolism in Rats: Implications for Renal Protection and Drug Interaction. Biomol Ther (Seoul) 2024; 32:601-610. [PMID: 39091013 PMCID: PMC11392661 DOI: 10.4062/biomolther.2024.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 08/04/2024] Open
Abstract
Tofacitinib, a Janus kinase (JAK) inhibitor used to treat rheumatoid arthritis, is metabolized through hepatic cytochrome P450 (CYP), specifically CYP3A1/2 and CYP2C11. Prolonged administration of rheumatoid arthritis medications is generally associated with an increased risk of renal toxicity. Loganin (LGN), an iridoid glycoside, has hepatorenal regenerative properties. This study investigates the potential of LGN to mitigate acute kidney injury (AKI) and its effects on the pharmacokinetics of tofacitinib in rats with cisplatin-induced AKI. Both intravenous and oral administration of tofacitinib to AKI rats significantly increased the area under the plasma concentration-time curve from time 0 to infinity (AUC) compared with control (CON) rats, an increase attributed to the decelerated non-renal clearance (CLNR) and renal clearance (CLR) of tofacitinib. Administration of LGN to AKI rats, however, protected kidneys from severe impairment, restoring the pharmacokinetic parameters (AUC, CLNR, and CLR) of tofacitinib to those observed in untreated CON rats, with partial recovery of kidney function, as evidenced by an increase in creatinine clearance (CLCR). Possible interactions between drugs and natural components should be considered, especially when co-administering both a drug and a natural extract containing LGN or iridoid glycosides to patients with kidney injury.
Collapse
Affiliation(s)
- Hyeon Gyeom Choi
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - So Yeon Park
- Department of Biohealth Regulatory Science, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Sung Hun Bae
- AI-Superconvergence KIURI Translational Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sun-Young Chang
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Biohealth Regulatory Science, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - So Hee Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Biohealth Regulatory Science, Graduate School of Ajou University, Suwon 16499, Republic of Korea
- AI-Superconvergence KIURI Translational Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
2
|
Evaluation of Zuo-Gui Yin Decoction Effects on Six CYP450 Enzymes in Rats Using a Cocktail Method by UPLC-MS/MS. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4293062. [PMID: 36060135 PMCID: PMC9439930 DOI: 10.1155/2022/4293062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Background. Zuo-Gui Yin Decoction (ZGYD), a traditional Chinese prescription, is mainly used in various kinds of andrology and gynecology diseases. However, the study on the interaction of ZGYD and drugs has not been reported. Therefore, evaluating the interaction between ZGYD and metabolic enzymes is helpful to guide rational drug use. Objective. This study was conducted to explore the effects of ZGYD on the activity and mRNA expressions of six Cytochrome P450 (CYP450) enzymes in rats and to provide a basis for its rational clinical use. Methods. Sprague-Dawley rats were randomly divided into control, ZGYD high, medium, and low-dose group (
). The concentrations of six probe substrates in plasma of rats in each group were determined by UPLC-MS/MS. In addition, RT-PCR and Western blot were used to determine the effects of ZGYD on the expression of CYP450 isoforms in the liver. Results. Compared with the control group, the main pharmacokinetic parameters AUC(0-t), AUC (0~∞), of omeprazole, dextromethorphan, and midazolam in the high-dose group were significantly decreased, while the CL of these were significantly increased. The gene expressions of CYP2C11 and CYP3A1 were upregulated in the ZGYD medium, high-dose group. The protein expression of CYP2C11 was upregulated in the high-dose group, and the protein expression of CYP3A1 was upregulated in the medium, high-dose group. Conclusion. The results showed that ZGYD exhibited the induction effects on CYP2C11 and CYP3A1 (CYP2C19 and CYP3A4 in humans) in rats. However, no significant change in CYP1A2, CYP2B1, CYP2C7, and CYP2D2 activities was observed. It would be useful for the safe and effective usage of ZGYD in clinic.
Collapse
|
4
|
Mishin V, Heck DE, Laskin DL, Laskin JD. The amplex red/horseradish peroxidase assay requires superoxide dismutase to measure hydrogen peroxide in the presence of NAD(P)H. Free Radic Res 2020; 54:620-628. [PMID: 32912004 PMCID: PMC7874521 DOI: 10.1080/10715762.2020.1821883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 01/08/2023]
Abstract
A sensitive fluorescence assay based on Amplex Red (AR) oxidation by horseradish peroxidase (AR/HRP) is described which continuously monitor rates of H2O2 production by microsomal enzymes in the presence of relatively high concentrations of NADPH. NADPH and NADH are known to interact with HRP and generate significant quantities of superoxide anion, a radical that spontaneously dismutates to form H2O2 which interferes with the AR/HRP assay. Microsomal enzymes generate H2O2 as a consequence of electron transfer from NADPH to cytochrome P450 hemoproteins with subsequent oxygen activation. We found that superoxide anion formation via the interaction of NADPH with HRP was inhibited by superoxide dismutase (SOD) without affecting H2O2 generation by microsomal enzymes. Using SOD in enzyme assays, we consistently detected rates of H2O2 production using microgram quantities of microsomal proteins (2.62 ± 0.20 picomol/min/µg protein for liver microsomes from naïve female rats, 12.27 ± 1.29 for liver microsomes from dexamethasone induced male rats, and 2.17 ± 0.25 picomol/min/µg protein for human liver microsomes). This method can also be applied to quantify rates of H2O2 production by oxidases where superoxide anion generation by NADH or NADPH and HRP can interfere with enzyme assays.
Collapse
Affiliation(s)
- Vladimir Mishin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Diane E Heck
- Department of Environmental Health Science, School of Health Sciences and Practice, New York Medical College, Valhalla, New York 10595
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, New Jersey 08854
| |
Collapse
|
5
|
Banerjee S, Das RK, Shapiro BH. Feminization imprinted by developmental growth hormone. Mol Cell Endocrinol 2019; 479:27-38. [PMID: 30170181 PMCID: PMC6263729 DOI: 10.1016/j.mce.2018.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
Abstract
Previously, we identified early developmental exposure to growth hormone (GH) as the requisite organizer responsible for programming the masculinization of the hepatic cytochromes P450 (CYP)-dependent drug metabolizing enzymes (Das et al., 2014, 2017). In spite of the generally held dogma that mammalian feminization requires no hormonal imprinting, numerous reports that the sex-dependent regulation and expression of hepatic CYPs in females are permanent and irreversible would suggest otherwise. Consequently, we selectively blocked GH secretion in a cohort of newborn female rats, some of whom received concurrent GH replacement or GH releasing factor. As adults, the feminine circulating GH profile was restored in the treated animals. Two categories of CYPs were measured. The principal and basically female specific CYP2C12 and CYP2C7; both completely and solely dependent on the adult feminine continuous GH profile for expression, and the female predominant CYP2C6 and CYP2E1 whose expression is maximum in the absence of plasma GH, suppressed by the feminine GH profile but more so by the masculine episodic GH profile. Our findings indicate that early developmental exposure to GH imprints the inchoate CYP2C12 and CYP2C7 in the differentiating liver to be solely dependent on the feminine GH profile for expression in the adult female. In contrast, adult expression of CYP2C6 and CYP2E1 in the female rat appears to require no GH imprinting.
Collapse
Affiliation(s)
- Sarmistha Banerjee
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rajat K Das
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bernard H Shapiro
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Wei Y, Yang L, Zhang X, Sui D, Wang C, Wang K, Shan M, Guo D, Wang H. Generation and Characterization of a CYP2C11-Null Rat Model by Using the CRISPR/Cas9 Method. Drug Metab Dispos 2018; 46:525-531. [PMID: 29444903 DOI: 10.1124/dmd.117.078444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
CYP2C11 is involved in the metabolism of many drugs in rats. To assess the roles of CYP2C11 in physiology and drug metabolism, a CYP2C11-null rat model was generated using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9method. A 2-base pair insertion was added to exon 6 of CYP2C11 in Sprague-Dawley rats. CYP2C11 was not detected by western blotting in liver microsomes of CYP2C11-null rats. No off-target effects were found at 11 predicted sites of the knockout model. The CYP2C11-null rats were viable and had no obvious abnormalities, with the exception of reduced fertility. Puberty in CYP2C11-null rats appeared to be delayed by ∼20 days, and the average litter size fell by 43%. Tolbutamide was used as a probe in this drug metabolism study. In the liver microsomes of CYP2C11-null rats, the Vmax and intrinsicclearance values decreased by 22% and 47%, respectively, compared with those of wild-type rats. The Km values increased by 47% compared with that of wild types. However, our pharmacokinetics study showed no major differences in any parameters between the two strains, in both males and females. In conclusion, a CYP2C11-null rat model was successfully generated and is a valuable tool to study the in vivo function of CYP2C11.
Collapse
Affiliation(s)
- Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| | - Li Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| | - Xiaoyan Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| | - Danjuan Sui
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| | - Changsuo Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| | - Kai Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| | - Mangting Shan
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| | - Dayong Guo
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| | - Hongyu Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| |
Collapse
|
9
|
Fukuno S, Nagai K, Kasahara K, Mizobata Y, Omotani S, Hatsuda Y, Myotoku M, Konishi H. Altered tolbutamide pharmacokinetics by a decrease in hepatic expression of CYP2C6/11 in rats pretreated with 5-fluorouracil. Xenobiotica 2017; 48:53-59. [PMID: 28051340 DOI: 10.1080/00498254.2017.1278808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. We investigated the change in the pharmacokinetic profile of tolbutamide (TB), a substrate for CYP2C6/11, 4 days after single administration of 5-fluorouracil (5-FU), and the hepatic gene expression and activity of CYP2C6/11 were also examined in 5-FU-pretreated rats. 2. Regarding the pharmacokinetic parameters of the 5-FU group, the area under the curve (AUC) was significantly increased, and correspondingly, the elimination rate constant at the terminal phase (ke) was significantly decreased without significant change in the volume of distribution at the steady state (Vdss). 3. The metabolic production of 4-hydroxylated TB in hepatic microsomes was significantly reduced by the administration of 5-FU. 4. The expression level of mRNAs for hepatic CYP2C6 and CYP2C11 was significantly lower than in the control group when the rats were pretreated with 5-FU. 5. These results demonstrated that the pharmacokinetic profile of TB was altered by the treatment with 5-FU through a metabolic process, which may be responsible for the decreased CYP2C6/11 expression at mRNA levels.
Collapse
Affiliation(s)
- Shuhei Fukuno
- a Laboratory of Clinical Pharmacy and Therapeutics , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan and
| | - Katsuhito Nagai
- a Laboratory of Clinical Pharmacy and Therapeutics , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan and.,b Laboratory of Practical Pharmacy and Pharmaceutical Care , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan
| | - Keita Kasahara
- a Laboratory of Clinical Pharmacy and Therapeutics , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan and
| | - Yuki Mizobata
- a Laboratory of Clinical Pharmacy and Therapeutics , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan and
| | - Sachiko Omotani
- b Laboratory of Practical Pharmacy and Pharmaceutical Care , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan
| | - Yasutoshi Hatsuda
- b Laboratory of Practical Pharmacy and Pharmaceutical Care , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan
| | - Michiaki Myotoku
- b Laboratory of Practical Pharmacy and Pharmaceutical Care , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan
| | - Hiroki Konishi
- a Laboratory of Clinical Pharmacy and Therapeutics , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan and
| |
Collapse
|