1
|
Zhang Z, Song W, Yan R. Gbp3 is associated with the progression of lupus nephritis by regulating cell proliferation, inflammation and pyroptosis. Autoimmunity 2023; 56:2250095. [PMID: 37621179 DOI: 10.1080/08916934.2023.2250095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/18/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Lupus nephritis (LN) is a major cause death in patients with systemic lupus erythematosus. We aimed to find the differentially expressed genes (DEGs) in LN and confirm the regulatory mechanism on LN. The mouse model of LN was constructed by subcutaneous injection of pristane. RNA-seq screened 392 up-regulated and 447 down-regulated DEGs in LN mouse model, and KEGG analysis found that the top 20 DEGs were enriched in arachidonic acid metabolism, tryptophan metabolism, etc. The hub genes, Kynu, Spidr, Gbp3, Cbr1, Cyp4b1, and Cndp2 were identified, in which Gbp3 was selected for following study. Afterwards, the function of Gbp3 on the proliferation, inflammation, and pyroptosis of LN was verified by CCK-8, ELISA, and WB in vitro. The results demonstrated that si-Gbp3 promoted cell proliferation and inhibited the levels of inflammatory factors (IL-1β, TNF-α and IL-8) and pyroptosis-related proteins (GSDMD, Caspase-1 and NLRP3) in a cell model of LN. In constrast, Gbp3 overexpression played an opposite role. In summary, Gbp3 promoted the progression of LN via inhibiting cell proliferation and facilitating inflammation and pyroptosis.
Collapse
Affiliation(s)
- Zhongfeng Zhang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, P.R. China
| | - Wenyu Song
- Department of Nephrology, The Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, P.R. China
| | - Run Yan
- Department of Nephrology, The Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, P.R. China
| |
Collapse
|
2
|
Larrieux A, Sanjuán R. Cellular resistance to an oncolytic virus is driven by chronic activation of innate immunity. iScience 2022; 26:105749. [PMID: 36590165 PMCID: PMC9794979 DOI: 10.1016/j.isci.2022.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence of cellular resistances to oncolytic viruses is an underexplored process that could compromise the efficacy of cancer virotherapy. Here, we isolated and characterized B16 mouse melanoma cells that evolved resistance to an oncolytic vesicular stomatitis virus (VSV-D51). RNA-seq revealed that resistance was associated to broad changes in gene expression, which typically involved chronic upregulation of interferon-stimulated genes. Innate immunity activation was maintained in the absence of the virus or other infection signals, and conferred cross-resistance to wild-type VSV and the unrelated Sindbis virus. Furthermore, we identified differentially expressed genes with no obvious role in antiviral immunity, such as Mnda, Psmb8 and Btn2a2, suggesting novel functions for these genes. Transcriptomic changes associated to VSV resistance were similar among B16 clones and in some clones derived from the mouse colon carcinoma cell line CT26, suggesting that oncolytic virus resistance involves certain conserved mechanisms and is therefore a potentially predictable process.
Collapse
Affiliation(s)
- Alejandra Larrieux
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, València 46980, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, València 46980, Spain,Corresponding author
| |
Collapse
|
3
|
Gao S, Zou X, Wang Z, Shu X, Cao X, Xia S, Shao P, Bao X, Yang H, Xu Y, Liu P. Bergapten attenuates microglia-mediated neuroinflammation and ischemic brain injury by targeting Kv1.3 and Carbonyl reductase 1. Eur J Pharmacol 2022; 933:175242. [PMID: 36058290 DOI: 10.1016/j.ejphar.2022.175242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Microglia-mediated neuroinflammation plays a vital role in the pathogenesis of ischemic stroke, which serves as a prime target for developing novel therapeutic agent. However, feasible and effective agents for controlling neuroinflammation are scarce. Bergapten were acknowledged to hold therapeutic potential in restricting inflammation in multiple diseases, including peripheral neuropathy, migraine headaches and osteoarthritis. Here, we aimed to investigate the impact of bergapten on microglia-mediated neuroinflammation and its therapeutic potential in ischemic stroke. Our study demonstrated that bergapten significantly reduced the expression of pro-inflammatory cytokines and the activation of NF-κB signaling pathway in LPS-stimulated primary microglia. Mechanistically, bergapten suppressed cellular potassium ion efflux by inhibiting Kv1.3 channel and inhibits the degradation of Carbonyl reductase 1 induced by LPS, which might contribute to the anti-inflammatory effect of bergapten. Furthermore, bergapten suppressed microglial activation and post-stroke neuroinflammation in an experimental stroke model, leading to reduced infarct size and improved functional recovery. Thus, our study identified that bergapten might be a potential therapeutic compound for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Shenghan Gao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Xinxin Zou
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Zibu Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Xin Shu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Pengfei Shao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Haiyan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China; Nanjing Neurology Medical Center, Nanjing, 210008, China.
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
4
|
Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022; 74:1085-1116. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Ruan Y, Fan Y, Xie Y, Ma C, Mo B, Lai Y, Li G, Liu X, Kuang W. Modified Xiaoqinglong decoction alleviates lipopolysaccharide-induced acute lung injury in mice by regulating arachidonic acid metabolism and exerting anti-apoptotic and anti-inflammatory effects. Anat Rec (Hoboken) 2021; 305:1672-1681. [PMID: 34708578 DOI: 10.1002/ar.24822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 11/10/2022]
Abstract
Effective therapeutics are not available for acute lung injury (ALI) and acute respiratory distress syndrome. Modified Xiaoqinglong decoction (M-XQL) is reported to effectively treat pneumonia, but the underlying mechanisms are unclear. In this study, the therapeutic effect and mechanism of M-XQL were examined using a lipopolysaccharide (LPS)-induced ALI mouse model. The effects of M-XQL on lung injury, inflammatory responses, and cell apoptosis were analyzed. Additionally, high-throughput sequencing was performed to evaluate the therapeutic mechanism of M-XQL. Pretreatment with M-XQL significantly and dose-dependently mitigated the pathological changes and upregulation of pulmonary, nitric oxide content and cell apoptosis and serum tumor necrosis factor-alpha contents in the LPS-induced ALI mouse model. RNA sequencing analysis revealed that the expression of several arachidonic acid metabolism-associated genes in the LPS + high-dose M-XQL group differed from that in the LPS group. In particular, the Cbr2, Cyp4f18, and Cyp2e1 levels were upregulated, whereas the Alox12, Ptges, and Ptges2 levels were downregulated in the LPS + high-dose M-XQL group. These results suggest that M-XQL exerts therapeutic effects in ALI mice by regulating arachidonic acid metabolism and exerting anti-apoptotic and anti-inflammatory effects. Thus, M-XQL is a potential agent for the clinical treatment of ALI.
Collapse
Affiliation(s)
- Yongdui Ruan
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Yaohua Fan
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yanfeng Xie
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Chunling Ma
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Bingquan Mo
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Yanni Lai
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihong Kuang
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China.,Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
6
|
Mao L, Wang K, Zhang P, Ren S, Sun J, Yang M, Zhang F, Sun B. Carbonyl Reductase 1 Attenuates Ischemic Brain Injury by Reducing Oxidative Stress and Neuroinflammation. Transl Stroke Res 2021; 12:711-724. [PMID: 33964000 DOI: 10.1007/s12975-021-00912-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
Oxidative stress and neuroinflammatory response after the ischemic injury are important pathophysiologic mechanisms that cause brain tissue loss and neurological deficit. This study aims to observe the expression and role of carbonyl reductase 1 (CBR1), an NADPH-dependent oxidoreductase with specificity for carbonyl compounds such as 4-hydroxynonenal (4-HNE), in the brain after ischemic injury and to investigate the influence of CBR1 on ischemia-induced neuroinflammation. CBR1 expresses in the neurons, astrocyte, and microglia in the normal brain. The expression of CBR1 decreased in the ischemic regions following cerebral ischemia, and also reduced in primary neurons after OGD (oxygen-glucose deprivation); however, the expression of CBR1 significantly increased in microglia in the ischemic penumbra. Furthermore, TAT-CBR1 fusion protein played neuroprotective effects in reducing the infarct volume and improving neurological outcomes after ischemic injury. Mechanistically, CBR1 decreased the levels of 4-HNE in the brain after stroke; it also modulated microglial polarization toward the M2 phenotype, which was well-known to confer neuroprotection after ischemic injury. Our results demonstrate that CBR1 provides neuroprotection against ischemic injury by reducing oxidative stress and neuroinflammation, making a promising agent for cerebral ischemia treatment.
Collapse
Affiliation(s)
- Leilei Mao
- Department of Neurology, The Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation in Universities of Shandong; Brain Science Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China. .,Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Kun Wang
- Department of Neurology, The Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation in Universities of Shandong; Brain Science Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Pengjie Zhang
- Department of Neurology, The Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation in Universities of Shandong; Brain Science Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Shihao Ren
- Department of Neurology, The Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation in Universities of Shandong; Brain Science Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mingfeng Yang
- Department of Neurology, The Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation in Universities of Shandong; Brain Science Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Baoliang Sun
- Department of Neurology, The Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation in Universities of Shandong; Brain Science Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| |
Collapse
|
7
|
Jiang Q, Chen Z, Jiang H. Flufenamic acid alleviates sepsis-induced lung injury by up-regulating CBR1. Drug Dev Res 2020; 81:885-892. [PMID: 32542754 DOI: 10.1002/ddr.21706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/09/2023]
Abstract
Investigate the effect of flufenamic acid (FFA) on lung injury of sepsis rats. Rat sepsis model was established using cecal ligation and puncture (CLP). The pathomorphology of lung tissue was detected by Hematoxylin-eosin (H&E) staining. The expression levels of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and high mobility group box-1 (HMGB-1) in serum and TNF-α, IL-6, malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) in lung tissues. The viability of RLE-6TN cells was detected by CCK-8 assay. The expression of carbonyl reductase 1 (CBR1) in RLE-6TN cells was analyzed by Western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The inflammatory response was obviously enhanced in CLP-constructed sepsis rats and alleviated by FFA treatment. Sepsis induced the increase of W/D ratio, promoted the levels of TNF-α, IL-6, HMGBR1, and MDA and inhibited the levels of SOD and GSH. FFA could effectively alleviate the sepsis-induced lung injury. The viability of RLE-6TN cells induced by LPS was improved with the treatment of FFA. CBR1 expression in LPS-induced RLE-6TN cells was decreased and FFA could up-regulate the CBR1 expression. In addition, LPS-induced lung injury promoted the inflammatory response in lung tissues, increased the W/D ratio and levels of TNF-α, IL-6, HMGBR1, and MDA while inhibited the levels of SOD and GSH. FFA could effectively improve the LPS-induced lung injury while the effect of FFA on LPS-induced lung injury was alleviated by CBR1 interference. FFA may alleviate sepsis-induced lung injury by up-regulating CBR1.
Collapse
Affiliation(s)
- Qiannan Jiang
- Qingdao University, Qingdao, China.,Department of Pediatrics, Qingdao Women and Children's Hospital, Qingdao, China
| | - Zhenzhen Chen
- Qingdao University, Qingdao, China.,Department of Pediatrics, Qingdao Women and Children's Hospital, Qingdao, China
| | - Hong Jiang
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Luan W, Liu X, Wang X, An Y, Wang Y, Wang C, Shen K, Xu H, Li S, Liu M, Yu LU. Inhibition of Drug Resistance of Staphylococcus aureus by Efflux Pump Inhibitor and Autolysis Inducer to Strengthen the Antibacterial Activity of β-lactam Drugs. Pol J Microbiol 2019; 68:477-491. [PMID: 31880892 PMCID: PMC7260704 DOI: 10.33073/pjm-2019-047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 01/17/2023] Open
Abstract
This study explored a potential treatment against methicillin-resistant Staphylococcus aureus (MRSA) infections that combines thioridazine (TZ), an efflux pump inhibitor, and miconazole (MCZ), an autolysis inducer, with the anti-microbial drug cloxacillin (CXN). In vitro, the combination treatment of TZ and MCZ significantly reduced 4096-fold (Σ (FIC) = 0.1 – 1.25) the MIC value of CXN against S. aureus. In vivo, the combination therapy significantly relieved breast redness and swelling in mice infected with either clinical or standard strains of S. aureus. Meanwhile, the number of bacteria isolated from the MRSA135-infected mice decreased significantly (p = 0.0427 < 0.05) after the combination therapy when compared to monotherapy. Moreover, the number of bacteria isolated from the mice infected with a reference S. aureus strain also decreased significantly (p = 0.0191 < 0.05) after the combination therapy when compared to monotherapy. The pathological changes were more significant in the CXN-treated group when compared to mice treated with a combination of three drugs. In addition, we found that combination therapy reduced the release of the bacteria-stimulated cytokines such as IL-6, IFN-γ, and TNF-α. Cytokine assays in serum revealed that CXN alone induced IL-6, IFN-γ, and TNF-α in the mouse groups infected with ATCC 29213 or MRSA135, and the combination of these three drugs significantly reduced IL-6, IFN-γ, and TNF-α concentrations. Also, the levels of TNF-α and IFN-γ in mice treated with a combination of three drugs were significantly lower than in the CXN-treated group. Given the synergistic antibacterial activity of CXN, we concluded that the combination of CXN with TZ, and MCZ could be developed as a novel therapeutic strategy against S. aureus.
Collapse
Affiliation(s)
- Wenjing Luan
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Department of Infectious Diseases of First Hospital of Jilin University, College of Veterinary Medicine Jilin University , Changchun , China
| | - Xiaolei Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Department of Infectious Diseases of First Hospital of Jilin University, College of Veterinary Medicine Jilin University , Changchun , China
| | - Xuefei Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Department of Infectious Diseases of First Hospital of Jilin University, College of Veterinary Medicine Jilin University , Changchun , China
| | - Yanan An
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Department of Infectious Diseases of First Hospital of Jilin University, College of Veterinary Medicine Jilin University , Changchun , China
| | - Yang Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Department of Infectious Diseases of First Hospital of Jilin University, College of Veterinary Medicine Jilin University , Changchun , China
| | - Chao Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Department of Infectious Diseases of First Hospital of Jilin University, College of Veterinary Medicine Jilin University , Changchun , China
| | - Keshu Shen
- Jilin Hepatobiliary Hospital , Changchun , China
| | - Hongyue Xu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Department of Infectious Diseases of First Hospital of Jilin University, College of Veterinary Medicine Jilin University , Changchun , China
| | - Shulin Li
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Department of Infectious Diseases of First Hospital of Jilin University, College of Veterinary Medicine Jilin University , Changchun , China
| | - Mingyuan Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Department of Infectious Diseases of First Hospital of Jilin University, College of Veterinary Medicine Jilin University , Changchun , China ; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - L U Yu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Department of Infectious Diseases of First Hospital of Jilin University, College of Veterinary Medicine Jilin University , Changchun , China
| |
Collapse
|
9
|
Peptide-based targeted therapeutics: Focus on cancer treatment. J Control Release 2018; 292:141-162. [DOI: 10.1016/j.jconrel.2018.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 12/14/2022]
|
10
|
Firmino M, Weis SN, Souza JMF, Gomes BRB, Mól AR, Mortari MR, Souza GEP, Coca GC, Williams TCR, Fontes W, Ricart CAO, de Sousa MV, Veiga-Souza FH. Label-free quantitative proteomics of rat hypothalamus under fever induced by LPS and PGE 2. J Proteomics 2018; 187:182-199. [PMID: 30056254 DOI: 10.1016/j.jprot.2018.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
Abstract
Fever is a brain-mediated increase in body temperature mainly during inflammatory or infectious challenges. Although there is considerable data regarding the inflammation pathways involved in fever, metabolic alterations necessary to orchestrate the complex inflammatory response are not totally understood. We performed proteomic analysis of rat hypothalamus using label-free LC-MS/MS in a model of fever induced by lipopolysaccharide (LPS) or prostaglandin E2 (PGE2). In total, 7021 proteins were identified. As far as we know, this is the largest rat hypothalamus proteome dataset available to date. Pathway analysis showed proteins from both stimuli associated with inflammatory and metabolic pathways. Concerning metabolic pathways, rats exposed to LPS or PGE2 presented lower relative abundance of proteins involved in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle. Mitochondrial function may also be altered by both stimuli because significant downregulation of several proteins was found, mainly in complexes I and IV. LPS was able to induce downregulation of important proteins in the enzymatic antioxidant system, thereby contributing to oxidative stress. The results offered comprehensive information about fever responses and helped to reveal new insights into proteins potentially involved in inflammatory signaling and metabolic changes in the hypothalamus during systemic LPS and central PGE2 administration. SIGNIFICANCE The evolutionary persistence of fever, despite the elevated cost for maintenance of this response, suggests that elevation in core temperature may represent an interesting strategy for survival. Fever response is achieved through the integrated behavioral, physiological, immunological and biochemical processes that determine the balance between heat generation and elimination. The development of such complex response arouses interest in studying how the cell metabolism responds or even contributes to promote fever. Our results offered comprehensive information about fever responses, including metabolic and inflammatory pathways, providing new insights into candidate proteins potentially involved in inflammatory signaling and metabolic changes in the hypothalamus during fever induced by systemic LPS and central PGE2 perturbation.
Collapse
Affiliation(s)
- Marina Firmino
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Simone N Weis
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Jaques M F Souza
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Bruna R B Gomes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Alan R Mól
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Márcia R Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Gloria E P Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Guilherme C Coca
- Laboratory of Plant Biochemistry, Department of Botany, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Thomas C R Williams
- Laboratory of Plant Biochemistry, Department of Botany, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Carlos André O Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Marcelo V de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil.
| | - Fabiane H Veiga-Souza
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil; School of Ceilandia, University of Brasilia, Brasília, DF 72220-275, Brazil.
| |
Collapse
|
11
|
Jo HS, Yeo HJ, Cha HJ, Kim SJ, Cho SB, Park JH, Lee CH, Yeo EJ, Choi YJ, Eum WS, Choi SY. Transduced Tat-DJ-1 protein inhibits cytokines-induced pancreatic RINm5F cell death. BMB Rep 2017; 49:297-302. [PMID: 26996344 PMCID: PMC5070711 DOI: 10.5483/bmbrep.2016.49.5.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 01/10/2023] Open
Abstract
Loss of pancreatic β-cells by oxidative stress or cytokines is associated with diabetes mellitus (DM). DJ-1 is known to as a multifunctional protein, which plays an important role in cell survival. We prepared cell permeable wild type (WT) and mutant type (M26I) Tat-DJ-1 proteins to investigate the effects of DJ-1 against combined cytokines (IL-1β, IFN-γ and TNF-α)-induced RINm5F cell death. Both Tat-DJ-1 proteins were transduced into RINm5F cells. WT Tat-DJ-1 proteins significantly protected against cell death from cytokines by reducing intracellular toxicities. Also, WT Tat-DJ-1 proteins markedly regulated cytokines-induced pro- and anti-apoptosis proteins. However, M26I Tat-DJ-1 protein showed relatively low protective effects, as compared to WT Tat-DJ-1 protein. Our experiments demonstrated that WT Tat-DJ-1 protein protects against cytokine-induced RINm5F cell death by suppressing intracellular toxicities and regulating apoptosisrelated protein expression. Thus, WT Tat-DJ-1 protein could potentially serve as a therapeutic agent for DM and cytokine related diseases. [BMB Reports 2016; 49(5): 297-302]
Collapse
Affiliation(s)
- Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Hyun Ju Cha
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Sang Jin Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Su Bin Cho
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Chi Hern Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| |
Collapse
|
12
|
Walker J, Ley JP, Schwerzler J, Lieder B, Beltran L, Ziemba PM, Hatt H, Hans J, Widder S, Krammer GE, Somoza V. Nonivamide, a capsaicin analogue, exhibits anti-inflammatory properties in peripheral blood mononuclear cells and U-937 macrophages. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201600474] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/22/2016] [Accepted: 08/28/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Walker
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna; Austria
| | | | - Johanna Schwerzler
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna; Austria
| | - Barbara Lieder
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna; Austria
| | - Leopoldo Beltran
- Department of Cell Physiology; Ruhr-University Bochum; Bochum Germany
| | - Paul M. Ziemba
- Department of Cell Physiology; Ruhr-University Bochum; Bochum Germany
| | - Hanns Hatt
- Department of Cell Physiology; Ruhr-University Bochum; Bochum Germany
| | | | | | | | - Veronika Somoza
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna; Austria
| |
Collapse
|
13
|
IFN-τ inhibits S. aureus-induced inflammation by suppressing the activation of NF-κB and MAPKs in RAW 264.7 cells and mice with pneumonia. Int Immunopharmacol 2016; 35:332-340. [DOI: 10.1016/j.intimp.2016.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 01/09/2023]
|
14
|
Zhao G, Wu H, Jiang K, Chen X, Wang X, Qiu C, Guo M, Deng G. The Anti-Inflammatory Effects of Interferon Tau by Suppressing NF-κB/MMP9 in Macrophages Stimulated with Staphylococcus aureus. J Interferon Cytokine Res 2016; 36:516-24. [PMID: 27142785 DOI: 10.1089/jir.2015.0170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previous studies have reported that interferon tau (IFNT) significantly mitigates tissue inflammation. However, this effect and its regulating pathways have not been reported for Staphylococcus aureus-induced inflammation. In this study, RAW 264.7 cells stimulated with S. aureus were used to identify the anti-inflammatory effects and mechanism of IFNT. First, IFNT was found to be noncytotoxic to macrophages treated with the high dose of 200 ng/mL IFNT. ELISA and qPCR revealed that IFNT decreased the expression of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6. TLR2, which is involved in the immune response during S. aureus infection, directly affected NF-κB pathway activation and was also downregulated by IFNT. Subsequent Western blotting showed that the phosphorylation of IκBα and NF-κB p65 was inhibited by IFNT. Therefore, although the MMP9 levels were significantly downregulated in a dose-dependent manner by IFNT, little change in MMP2 was observed in S. aureus-stimulated RAW 264.7 cells. Furthermore, PDTC, an inhibitor of NF-κB, also significantly decreased MMP9 levels by inhibiting NF-κB p65 activation. All of these findings strongly suggested that IFNT suppresses the NF-κB/MMP9 signal transduction pathway and subsequently exerts its anti-inflammatory effects in S. aureus-stimulated RAW 264.7 cells.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Xiuying Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Xiaoyan Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Mengyao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| |
Collapse
|