1
|
Taghizadeh B, Moradi R, Mirzavi F, Barati M, Soleimani A, Jaafari MR, Zarghami N. The protection role of human growth hormone on skin cells following ultraviolet B exposure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112961. [PMID: 38917719 DOI: 10.1016/j.jphotobiol.2024.112961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Ultraviolet-B (UVB) radiation is the leading environmental cause of skin damage and photoaging. The epidermis and dermis layers of the skin mainly absorb UVB. UVB stimulates apoptosis, cell cycle arrest, generation of reactive oxygen species, and degradation of collagen and elastin fibers. OBJECTIVE This study investigated the potential of human growth hormone (hGH) in protecting the skin fibroblasts and keratinocytes (HFFF-2 and HaCaT cell lines) from UVB-induced damage. METHODS The MTT assay was performed to evaluate UVB-induced mitochondrial damage via assessing the mitochondrial dehydrogenase activity, and flow cytometry was carried out to investigate the effects of UVB and hGH on the cell cycle and apoptosis of UVB-irradiated cells. In addition, the fold change mRNA expression levels of Type I collagen and elastin in HFFF-2 cells were evaluated using the qRT-PCR method following UVB exposure. RESULTS We observed that treatment of cells with hGH before UVB exposure inhibited UVB-induced loss of mitochondrial dehydrogenase activity, apoptosis, and sub-G1 population formation in both cell lines. We also found that hGH-treated HFFF-2 cells showed up-regulated mRNA expression of Type I collagen, elastin, and IGF-1 in response to UVB irradiation. CONCLUSION These findings suggest hGH as a potential anti-UVB compound that can protect skin cells from UVB-induced damage. Our findings merit further investigation and can be used to better understand the role of hGH in skin photoaging.
Collapse
Affiliation(s)
- Bita Taghizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Moradi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Barati
- Department of Pathophysiology and Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Anvar Soleimani
- Department of Medical Microbiology, Cihan University - Sulaimaniya, Kurdistan Region, Iraq
| | - Mahmoud-Reza Jaafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
2
|
Negi S, Chopra D, Shukla S, Vikram A, Patel SK, Bala L, Dwivedi A, Ray RS. Involvement of type-1 pathway in phototoxicity of benzo[ghi]perylenean ingredient of tattoo ink at ambient exposure of UVR and sunlight. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 244:112700. [PMID: 37229973 DOI: 10.1016/j.jphotobiol.2023.112700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/15/2023] [Accepted: 03/21/2023] [Indexed: 05/27/2023]
Abstract
Tattooing on different parts of the body is a very common fashion trend in all sections of society globally. Skin allergies and other related skin diseases are very common among tattoo users. Benzo[ghi]perylene (BP) is a PAH and an important component of tattoo ink that showed prominent absorption under ultraviolet radiation (UVR) region. Therefore, to provide safety to the skin, a thorough safety study of BP exposed under UVR and Sunlight is very essential to understand their hazardous impact on the skin. BP showed a strong absorption of UVA and UVB radiation of sunlight. It is photolabile and degraded under UVA, UVB, and Sunlight in progressing order of time (1-4 h) without generating any novel photoproducts. Further, BP showed a specific generation of O2.- and OH radicals via activation of type I photodynamic reaction under exposure to UVA, UVB and Sunlight. Photocytotoxicity results illustrated concentration-dependent cell viability reduction in all exposure conditions of UVA, UVB, and Sunlight, respectively. Fluorescent probes (2',7'-dichlorofluorescein diacetate and dihydroethidium) for intracellular reactive oxygen species (ROS) generation supported the involvement of ROS in the phototoxicity of BP in the HaCaT cell line. Hoechst staining showed significant genomic insult induced by BP under UVA and UVB. Photoexcited BP promoted cell cycle arrest in the G1 phase and induced apoptosis confirmed via acridine orange/ethidium bromide staining. The findings of gene expression also supported apoptotic cell death in photoexcited BP via an increase in the level of pro-apoptotic gene (Bax) and a decrease in the level of anti-apoptotic gene (Bcl-2). The aforementioned finding indicates that tattoo users should avoid using BP since it can cause skin damage/diseases if they are exposed to UVR or Sunlight while tattooing on the body.
Collapse
Affiliation(s)
- Sandeep Negi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Saumya Shukla
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India
| | - Apeksha Vikram
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sunil Kumar Patel
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Lakshmi Bala
- Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India
| | - Ashish Dwivedi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Amar SK, Donohue KB, Gust KA. Cellular and molecular responses to ethyl-parathion in undifferentiated SH-SY5Y cells provide neurotoxicity pathway indicators for organophosphorus impacts. Toxicol Sci 2022; 191:285-295. [PMID: 36458919 PMCID: PMC9936206 DOI: 10.1093/toxsci/kfac125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
High-fidelity nonanimal screening methods are needed that can rapidly and accurately characterize organophosphorus compound (OP)-induced neurotoxicity. Herein, the efficacy of human neuroblastoma cell line (SH-SY5Y) to provide molecular and cellular responses characteristic of the OP neurotoxicity pathway was investigated in response to the OP-model compound, ethyl-parathion. Undifferentiated SH-SY5Y cells were exposed to ethyl-parathion for 30 min at 0 (control), 0.5, 2.5, 5, 10, and 25 µg/ml. Dose-responsive reductions in cell viability were observed with significant reductions at ≥10 µg/ml. From these results, ethyl-parathion exposures of 0 (control), 5, and 10 µg/ml were selected to examine bioindicators underlying the OP neurotoxicity pathway including: reactive oxygen species (ROS), cell membrane peroxidation, mitochondrial membrane potential (MMP), and apoptosis. Ethyl-parathion elicited highly significant increases in ROS relative to controls (p < .01) at both exposure concentrations, confirmed using N-acetyl cysteine (NAC) as a ROS quencher which alleviated ROS increases. A response characteristic of increased ROS exposure, cell membrane-lipid peroxidation, significantly increased (p < .05) at the highest ethyl-parathion exposure (10 µg/ml). As a likely consequence of membrane-lipid peroxidation, ethyl-parathion-induced reductions in MMP were observed with significant effects at 10 µg/ml, reducing MMP by 58.2%. As a culmination of these cellular-damage indicators, apoptosis progression was investigated by phosphatidylserine translocation where ethyl-parathion-induced dose-responsive, highly significant (p < .01) increases at both 5 and 10 µg/ml. Overall, the mechanistic responses observed in undifferentiated SH-SY5Y cells corresponded with in vivo mammalian results demonstrating potential for this nonanimal model to provide accurate OP neurotoxicology screening.
Collapse
Affiliation(s)
- Saroj K Amar
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830, USA,US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi 39180, USA
| | - Keri B Donohue
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi 39180, USA
| | - Kurt A Gust
- To whom correspondence should be addressed at US Army, Engineer Research and Development Center, Environmental Laboratory EPP, 3909 Halls Ferry Rd, Vicksburg, MS 39180, USA. E-mail:
| |
Collapse
|
4
|
Cell-derived artificial nanovesicle as a drug delivery system for malignant melanoma treatment. Pharmacotherapy 2022; 147:112586. [PMID: 34999373 DOI: 10.1016/j.biopha.2021.112586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023]
Abstract
Extracellular vehicles have a natural targeting ability and immune tolerance of being usually applied in drug delivery systems; however, the purification of EVs is complicated and the production yield was quite low. We developed an artificial cellular mimetic nanovesicle (NV) with melanoma fragment membrane for the transportation with curcumin to achieve the anticancer purpose. B16F10 derived NVs were manufactured by the breakdown of cells using a series of extrusions through cut-off size filters (10 and 5 µm), and the whole procedure was easy and time-saving. To terminate the suspicion of cancer metastatic issue, B16F10 cells were treated by 30-min sonication and 1-min UVB exposure to remove genetic materials before the extrusion. B16F10 derived NV loaded with curcumin was called NV(S30U1/Cur), and the anticancer effect was evaluated by cell-based viability, immune, migration, and invasion. The results showed that NVs were manufactured by passing through 10 and 5 µm filters having an enviable production yield, and the mRNA amounts were declined within NVs produced by B16F10 cells treated with UVB in a comparison to the control group. NV(S30U1/Cur) were effectively decreased B1610 cell viability, and migratory and invasive abilities were also reduced significantly. Besides, CD8+ expression of murine primary lymphocytes was activated with CD4+ reduction by NV(S30U1/Cur) to stimulate the inherent tumor suppressive capacity in the immune system. Taken together, we established bioengineered NVs serving as novel cell mimetic nanocarriers to deliver natural compound for malignant melanoma potential immune chemotherapy. DATA AVAILABILITY STATEMENT: The data used to support the findings of this study are available from the corresponding author upon requests.
Collapse
|
5
|
Srivastav AK, Dubey D, Chopra D, Singh J, Negi S, Mujtaba SF, Dwivedi A, Ray RS. Oxidative stress–mediated photoactivation of carbazole inhibits human skin cell physiology. J Cell Biochem 2019; 121:1273-1282. [DOI: 10.1002/jcb.29360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Ajeet K. Srivastav
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
- Department of Biochemistry, School of Dental sciences Babu Banarasi Das University Lucknow Uttar Pradesh India
- Department of Research and Development Aryan Essentials Private Limited (Brand Name‐Wikka) New Delhi India
| | - Divya Dubey
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
- Department of Biochemistry, School of Dental sciences Babu Banarasi Das University Lucknow Uttar Pradesh India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
| | - Jyoti Singh
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
| | - Sandeep Negi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
- Department of Biochemistry, School of Dental sciences Babu Banarasi Das University Lucknow Uttar Pradesh India
| | - Syed Faiz Mujtaba
- Department of Zoology, Faculty of Science Shia P.G. College Lucknow Uttar Pradesh India
| | - Ashish Dwivedi
- Food Drug and Chemical Toxicology Division CSIR‐IITR Lucknow Uttar Pradesh India
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
| |
Collapse
|
6
|
Dubey D, Srivastav AK, Singh J, Chopra D, Qureshi S, Kushwaha HN, Singh N, Ray RS. Photoexcited triclosan induced DNA damage and oxidative stress via p38 MAP kinase signaling involving type I radicals under sunlight/UVB exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:270-282. [PMID: 30844667 DOI: 10.1016/j.ecoenv.2019.02.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Triclosan (TCS) is an antimicrobial preservative used in personal care products. Here, we have studied the phototoxicity, photogenotoxicity of TCS and its molecular mechanism involving p38 mitogen activated protein kinase (MAPK) pathway under UVB/sunlight exposure. We found that TCS showed photodegradation and photoproducts formation under UVB/sunlight. In silico study suggests that photosensitized TCS loses its preservative property due to the formation of its photoproducts. Photosensitized TCS induces significant O2•-, •OH generation and lipid peroxidation via type-I photochemical reaction mechanism under UVB/sunlight exposure. We performed intracellular study of TCS on human skin keratinocytes (HaCaT cell-line) under the ambient intensity of UVB (0.6 mW/cm2) and sunlight exposure. Significant intracellular ROS generation was observed through DCFH2-DA/DHE assays along with a significant reduction in cell viability through MTT and NRU assays in photosensitized TCS. Photosensitized TCS also induces endoplasmic reticulum (ER) stress as shown through ER-tracker/DAPI staining and Ca2+ release. It further induced cell cycle arrest through the sub-G1 phase augmentation and caused lysosomal/mitochondrial destabilization. Photogenotoxicity was shown through significant tail DNA, micronuclei and cyclobutane pyrimidine dimers (CPDs) formations. Cell signaling mechanism implicated upregulated expression of cleaved Caspase-3, Bax, phospho-p38, phospho-JNK and cytochrome C, thereby downregulated Bcl-2 expressions. Results advocate that TCS induces phototoxic effects via type I mediated photodynamic mechanism and activation of MAPK pathway. We conclude that photoexcited TCS may be deleterious to human health at the ambient environmental intensities of sunlight reaching at the earth's surface. Therefore, it may be replaced by alternative safe preservative.
Collapse
Affiliation(s)
- Divya Dubey
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; School of Dental Sciences, Department of Biochemistry, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India
| | - Ajeet K Srivastav
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; School of Dental Sciences, Department of Biochemistry, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India; Aryan Essentials Private Limited (Brand Name-Wikka), Mahatma Gandhi Road, Ghitorni, New Delhi 110030, India
| | - Jyoti Singh
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; School of Dental Sciences, Department of Biochemistry, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India
| | - Saba Qureshi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Hari Narayan Kushwaha
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Nivedita Singh
- Department of Bioinformatics, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
7
|
Photosensitized methyl paraben induces apoptosis via caspase dependent pathway under ambient UVB exposure in human skin cells. Food Chem Toxicol 2017; 108:171-185. [DOI: 10.1016/j.fct.2017.07.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 11/19/2022]
|
8
|
Khalil C, Shebaby W. UVB damage onset and progression 24 h post exposure in human-derived skin cells. Toxicol Rep 2017; 4:441-449. [PMID: 28959672 PMCID: PMC5615164 DOI: 10.1016/j.toxrep.2017.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 12/14/2022] Open
Abstract
UVB radiation (280–320 nm) exposure and cellular damages assessment in vitro. Damage progression assessed immediately and 24 h post exposure using cultured human cells with more prominent damages expressed 24 h post exposure. Cytotoxicity assessment investigated mitochondria, lysosomes, cell membrane and, DNA damages. The research reported significant cellular and DNA damages in addition to upregulation and downregulation of various apoptotic proteins.
The focus of this research was on UVB radiation (280–320 nm) responsible for cellular changes in skin of acute and chronically exposed individuals. This study investigated the acute cellular damages triggered by UVB exposure of cultured human fibroblasts and keratinocyte cells immediately and 24 h post exposure in order to understand damage onset and progression. The study evaluated a number of cellular parameters including mitochondria, lysosomes, cell membrane, DNA damages as well as pro and anti-apoptotic protein expression levels. Cellular organelle damages were assessed by a battery of in vitro toxicological assays using MTS and Neutral red cytotoxicity assays. Cell membrane damages were also assessed by measuring lactate dehydrogenase (LDH) enzyme leakage from UVB exposed cells. Lastly DNA damages was assessed using the comet assay while protein expression was evaluated using Western Blot. In this study we reported in all our assay systems (MTS, NR and LDH) that cellular damages were UVB dose dependent with damages amplified 24 h post exposure. Our results also indicated that incubation of exposed cells for a period of 24 h increased the sensitivity of the assay systems used. The increased sensitivity in detecting early cytotoxic damages was manifested though organelle damage measurement at very low doses which were not manifested immediately post exposure. The data also indicated that HaCaT cells were most sensitive in detecting UVB triggered damages immediately and 24 h post exposure using the MTS assay. We also established upregulation and downregulation of various apoptotic proteins at various time points post exposure. The presented data clearly indicated the need for a comprehensive assessment of UVB damages 4 and 24 h post exposure due to the different assay sensitivities in addition to various signaling mechanisms activated at different time points post exposure.
Collapse
Affiliation(s)
- Christian Khalil
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University (LAU), Byblos, Lebanon.,Institute of Environmental Studies, University of New South Wales (UNSW), Sydney, Australia
| | - Wassim Shebaby
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University (LAU), Byblos, Lebanon
| |
Collapse
|
9
|
Comet assay: an essential tool in toxicological research. Arch Toxicol 2016; 90:2315-36. [DOI: 10.1007/s00204-016-1767-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|