1
|
Zhu L, Jia X, Xie H, Zhang J, Zhu Q. Trichloroethylene exposure, multi-organ injury, and potential mechanisms: A narrative review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174029. [PMID: 38944297 DOI: 10.1016/j.scitotenv.2024.174029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024]
Abstract
Trichloroethylene (TCE) is a common environmental pollutant and industrial chemical that has been associated with adverse health effects, especially on organ systems. The purpose of this review is to summarize the current findings on organ system damage caused by TCE exposure and the underlying mechanisms involved. Numerous studies have shown that TCE exposure may cause damage to multiple organ systems, mainly the skin, liver, kidney, and circulatory system. The mechanisms leading to TCE-induced organ system damage are complex and diverse. TCE is metabolized in vivo to reactive intermediates, through which TCE can induce oxidative stress, interfere with cell signaling pathways, and promote inflammatory responses. In addition, studies have shown that TCE interferes with DNA repair mechanisms, leading to genotoxicity and potentially carcinogenic effects. This review highlights the importance of understanding the deleterious effects of TCE exposure on organ systems and provides insights into the underlying mechanisms involved. Further research is needed to elucidate the full range of organ system damage caused by TCE and to develop effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Lifu Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Xueqian Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Haibo Xie
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China; The Center for Scientific Research, AnhuiMedical University, Hefei, Anhui, China.
| | - Qixing Zhu
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| |
Collapse
|
2
|
Zhao J, Yan S, Ma X, Song Y, Pan Y. Nrf2 regulates the activation of THP-1 cells induced by chloral hydrate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114841. [PMID: 36989555 DOI: 10.1016/j.ecoenv.2023.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Trichloroethylene (TCE) triggers a severe hypersensitivity syndrome in the occupational population dependent on dendritic cells (DCs). Chloral hydrate (CH), the major oxidative metabolite of TCE, has been proved to be the culprit causative substance of TCE-induced hypersensitivity by human patch tests. Because redox imbalance is essential for chemical sensitizers-induced maturation of DCs, we predicted that CH would activate DCs by the nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant response. This study selected THP-1 cells as the in vitro DC model, and we evaluated the cell activation markers, intracellular oxidative stress, and Nrf2 pathway related genes expression in response to CH in THP-1 cells. CH displayed significant stimulation of THP-1 cells activation, including CD54 and CD86 expression, IL-8 release, and cell migration, and damaged the redox balance by triggering ROS generation, GSH consumption, and antioxidase activities modulation. The levels of Nrf2 and its downstream genes (HO-1 and NQO1) in mRNA and protein expressions were upregulated by CH, and CH also promoted the nuclear translocation of Nrf2. Subsequently, we investigated the effects of antioxidant on Nrf2-mediated cell defense in CH treated cells. Pretreatment with curcumin dramatically reduced cell activation and oxidative stress triggered by CH in THP-1 cells. We also confirmed the specific role of Nrf2 in CH-induced cell activation using NRF2-knockout cells. Deficiency of Nrf2 inhibited cell activation and downregulated HO-1 and NQO1 expression in CH-challenged cells. These findings suggest that Nrf2-dependent redox homeostasis plays a pivotal role in CH-induced activation of THP-1 cells, thereby providing new knowledge of the allergen as well as the molecular mechanism involving in TCE-induce hypersensitivity syndrome.
Collapse
Affiliation(s)
- Jinfeng Zhao
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Shiyu Yan
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Xue Ma
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Yanqing Song
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Yao Pan
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China.
| |
Collapse
|
3
|
Pan Y, Hou X, Meng Q, Yang X, Shang L, Wei X, Hao W. The critical role for TAK1 in trichloroethylene-induced contact hypersensitivity in vivo and in CD4 + T cell function alteration by trichloroethylene and its metabolites in vitro. Toxicol Appl Pharmacol 2019; 380:114705. [PMID: 31400415 DOI: 10.1016/j.taap.2019.114705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Occupational exposure to trichloroethylene (TCE) has been associated with severe, generalized contact hypersensitivity (CHS) skin disorder, which is considered a delayed-type hypersensitivity reaction mediated by antigen-specific T cells. Transforming growth factor-β activated kinase-1 (TAK1) is essential for regulating the development and effector function of T cells. We hypothesized that disrupting TAK1 activity might inhibit TCE-induced CHS response. In this study, a local lymph node assay was employed to build a CHS model induced by TCE combined with the inducible-TAK1 deletion system to study the effect of TAK1 on it. It was observed that TAK1 deficiency ameliorated the TCE-induced CHS response and was associated with defective T cell expansion and activation and IFN-γ production in vivo. Furthermore, we investigated the effects of TCE and its metabolites trichloroacetic acid (TCA) and dichloroacetic acid (DCA) on CD4+ T cell function and the effect of TAK1 on it in vitro. The results showed that TCE, TCA and DCA augmented the proliferation, activation and differentiation of CD4+ T cells through Jnk MAPK and NF-κB pathways. TAK1 deletion significantly attenuated these effects induced by TCE, TCA or DCA on CD4+ T cells. In conclusion, it is suggested that TAK1 plays a critical role both in TCE-induced CHS response in vivo and in TCE and its metabolite-induced CD4+ T cell activation in vitro. Local inhibition of TAK1 might offer a promising alternative feasible strategy for TCE-induced CHS.
Collapse
Affiliation(s)
- Yao Pan
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China; Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaohong Hou
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Xiaohua Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Lanqin Shang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China.
| |
Collapse
|
4
|
Zhang JX, Li N, Wang H, Shen T, Zhu QX. The immune response in trichloroethylene hypersensitivity syndrome: A review. Toxicol Ind Health 2017; 33:876-883. [PMID: 29020883 DOI: 10.1177/0748233717731213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Trichloroethylene (TCE) has been used for a variety of industrial and consumer cleaning purposes because of its ability to dissolve organic substances. The multisystem injuries include those of skin, liver, and kidney, which are defined as TCE hypersensitivity syndrome (THS). THS is a serious occupational health issue. However, the mechanism of immune dysfunction leading to organ injury is poorly understood. Many studies reveal that skin lesions and organ injury caused by TCE are consistent with type IV hypersensitivity, also called delayed hypersensitivity, mediated by T cells. However, many researchers found T cell-mediated type IV hypersensitivity could not account for the pathogenesis of THS fully. Humoral immunity, including immunoglobulins and complement activation, may also play a possible role in THS pathogenesis. This review will describe the history, current understanding, and future research directions of the mechanism of THS.
Collapse
Affiliation(s)
- Jia-Xiang Zhang
- 1 Institute of Dermatology, Anhui Medical University, Anhui, China.,2 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Anhui, China
| | - Na Li
- 2 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Anhui, China
| | - Hui Wang
- 3 Department of Nutrition, Chaohu Hospital of Anhui Medical University, Anhui, China
| | - Tong Shen
- 2 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Anhui, China
| | - Qi-Xing Zhu
- 1 Institute of Dermatology, Anhui Medical University, Anhui, China
| |
Collapse
|