1
|
Wang X, Wang P, Liao Y, Zhao X, Hou R, Li S, Guan Z, Jin Y, Ma W, Liu D, Zheng J, Shi M. Expand available targets for CAR-T therapy to overcome tumor drug resistance based on the "Evolutionary Traps". Pharmacol Res 2024; 204:107221. [PMID: 38768669 DOI: 10.1016/j.phrs.2024.107221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Based on the concept of "Evolutionary Traps", targeting survival essential genes obtained during tumor drug resistance can effectively eliminate resistant cells. While, it still faces limitations. In this study, lapatinib-resistant cells were used to test the concept of "Evolutionary Traps" and no suitable target stand out because of the identified genes without accessible drug. However, a membrane protein PDPN, which is low or non-expressed in normal tissues, is identified as highly expressed in lapatinib-resistant tumor cells. PDPN CAR-T cells were developed and showed high cytotoxicity against lapatinib-resistant tumor cells in vitro and in vivo, suggesting that CAR-T may be a feasible route for overcoming drug resistance of tumor based on "Evolutionary Trap". To test whether this concept is cell line or drug dependent, we analyzed 21 drug-resistant tumor cell expression profiles reveal that JAG1, GPC3, and L1CAM, which are suitable targets for CAR-T treatment, are significantly upregulated in various drug-resistant tumor cells. Our findings shed light on the feasibility of utilizing CAR-T therapy to treat drug-resistant tumors and broaden the concept of the "Evolutionary Trap".
Collapse
Affiliation(s)
- Xu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Pu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Ying Liao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Xuan Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yuhang Jin
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Wen Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
2
|
Constantinescu DR, Sorop A, Ghionescu AV, Lixandru D, Herlea V, Bacalbasa N, Dima SO. EM-transcriptomic signature predicts drug response in advanced stages of high-grade serous ovarian carcinoma based on ascites-derived primary cultures. Front Pharmacol 2024; 15:1363142. [PMID: 38510654 PMCID: PMC10953505 DOI: 10.3389/fphar.2024.1363142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction: High-grade serous ovarian carcinoma (HGSOC) remains a medical challenge despite considerable improvements in the treatment. Unfortunately, over 75% of patients have already metastasized at the time of diagnosis. Advances in understanding the mechanisms underlying how ascites cause chemoresistance are urgently needed to derive novel therapeutic strategies. This study aimed to identify the molecular markers involved in drug sensitivity and highlight the use of ascites as a potential model to investigate HGSOC treatment options. Methods: After conducting an in silico analysis, eight epithelial-mesenchymal (EM)-associated genes related to chemoresistance were identified. To evaluate differences in EM-associated genes in HGSOC samples, we analyzed ascites-derived HGSOC primary cell culture (AS), tumor (T), and peritoneal nodule (NP) samples. Moreover, in vitro experiments were employed to measure tumor cell proliferation and cell migration in AS, following treatment with doxorubicin (DOX) and cisplatin (CIS) and expression of these markers. Results: Our results showed that AS exhibits a mesenchymal phenotype compared to tumor and peritoneal nodule samples. Moreover, DOX and CIS treatment leads to an invasive-intermediate epithelial-to-mesenchymal transition (EMT) state of the AS by different EM-associated marker expression. For instance, the treatment of AS showed that CDH1 and GATA6 decreased after CIS exposure and increased after DOX treatment. On the contrary, the expression of KRT18 has an opposite pattern. Conclusion: Taken together, our study reports a comprehensive investigation of the EM-associated genes after drug exposure of AS. Exploring ascites and their associated cellular and soluble components is promising for understanding the HGSOC progression and treatment response at a personalized level.
Collapse
Affiliation(s)
| | - Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | | | - Daniela Lixandru
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
| | - Vlad Herlea
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Department of Pathology-Fundeni Clinical Institute, Bucharest, Romania
| | - Nicolae Bacalbasa
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
3
|
Alam S, Giri PK. Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:6. [PMID: 38434767 PMCID: PMC10905178 DOI: 10.20517/cdr.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.
Collapse
Affiliation(s)
| | - Pankaj Kumar Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
4
|
Li W, Huang L, Qi N, Zhang Q, Qin Z. Upregulation of CALD1 predicted a poor prognosis for platinum-treated ovarian cancer and revealed it as a potential therapeutic resistance target. BMC Genomics 2024; 25:183. [PMID: 38365611 PMCID: PMC10870461 DOI: 10.1186/s12864-024-10056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/27/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) has the worst prognosis among gynecological malignancies, most of which are found to be in advanced stage. Cell reduction surgery based on platinum-based chemotherapy is the current standard of treatment for OC, but patients are prone to relapse and develop drug resistance. The objective of this study was to identify a specific molecular target responsible for platinum chemotherapy resistance in OC. RESULTS We screened the protein-coding gene Caldesmon (CALD1), expressed in cisplatin-resistant OC cells in vitro. The prognostic value of CALD1 was evaluated using survival curve analysis in OC patients treated with platinum therapy. The diagnostic value of CALD1 was verified by drawing a Receiver Operating Characteristic (ROC) curve using clinical samples from OC patients. This study analyzed data from various databases including Gene Expression Omnibus (GEO), Human Protein Atlas (HPA), The Cancer Cell Line Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA), GEPIA 2, UALCAN, Kaplan-Meier (KM) plotter, LinkedOmics database, and String. Different expression genes (DEGs) between cisplatin-sensitive and cisplatin-resistant cells were acquired respectively from 5 different datasets of GEO. CALD1 was selected as a common gene from 5 groups DEGs. Online data analysis of HPA and CCLE showed that CALD1 was highly expressed in both normal ovarian tissue and OC. In TCGA database, high expression of CALD1 was associated with disease stage and venous invasion in OC. Patients with high CALD1 expression levels had a worse prognosis under platinum drug intervention, according to Kaplan-Meier (KM) plotter analysis. Analysis of clinical sample data from GEO showed that CALD1 had superior diagnostic value in distinguishing patients with platinum "resistant" and platinum "sensitive" (AUC = 0.816), as well as patients with worse progression-free survival (AUC = 0.741), and those with primary and omental metastases (AUC = 0.811) in ovarian tumor. At last, CYR61 was identified as a potential predictive molecule that may play an important role alongside CALD1 in the development of platinum resistance in OC. CONCLUSIONS CALD1, as a member of cytoskeletal protein, was associated with poor prognosis of platinum resistance in OC, and could be used as a target protein for mechanism study of platinum resistance in OC.
Collapse
Affiliation(s)
- Wei Li
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Limei Huang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Nana Qi
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Qinle Zhang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China.
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China.
| |
Collapse
|
5
|
Ovarian Cancer—Insights into Platinum Resistance and Overcoming It. Medicina (B Aires) 2023; 59:medicina59030544. [PMID: 36984544 PMCID: PMC10057458 DOI: 10.3390/medicina59030544] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy. Platinum-based chemotherapy is the backbone of treatment for ovarian cancer, and although the majority of patients initially have a platinum-sensitive disease, through multiple recurrences, they will acquire resistance. Platinum-resistant recurrent ovarian cancer has a poor prognosis and few treatment options with limited efficacy. Resistance to platinum compounds is a complex process involving multiple mechanisms pertaining not only to the tumoral cell but also to the tumoral microenvironment. In this review, we discuss the molecular mechanism involved in ovarian cancer cells’ resistance to platinum-based chemotherapy, focusing on the alteration of drug influx and efflux pathways, DNA repair, the dysregulation of epigenetic modulation, and the involvement of the tumoral microenvironment in the acquisition of the platinum-resistant phenotype. Furthermore, we review promising alternative treatment approaches that may improve these patients’ poor prognosis, discussing current strategies, novel combinations, and therapeutic agents.
Collapse
|
6
|
Zeng Q, Yi C, Lu J, Wang X, Chen K, Hong L. Identification of EMP1 as a critical gene for cisplatin resistance in ovarian cancer by using integrated bioinformatics analysis. Cancer Med 2023; 12:9024-9040. [PMID: 36708070 PMCID: PMC10134351 DOI: 10.1002/cam4.5637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Cisplatin resistance is among the main reasons for the poor prognosis of ovarian cancer (OC) patients. Until now, effective biomarkers for predicting cisplatin resistance in OC and specific drugs for reversing this resistance are lacking. This study identified the critical gene associated with cisplatin resistance in OC and provided a potential target for overcoming this resistance. METHODS Differentially expressed genes between cisplatin-resistant and -sensitive OCs were identified by screening public datasets. Survival analysis was conducted to screen prognosis-related DEGs. CIBERSORT, ESTIMATE, and immune checkpoint genes were used to assess the association between EMP1 expression and tumor microenvironment features. CTRP and GDSC databases were employed to analyze the correlation between EMP1 expression and cisplatin resistance. Furthermore, immunohistochemistry, qPCR, Western blotting, siRNA interference, and the CCK8 assay were performed to verify the role of EMP1 in cisplatin resistance in vitro. Finally, xenograft mouse models were generated to further confirm the role of EMP1 in cisplatin resistance in vivo. RESULTS EMP1 was identified as a critical gene associated with cisplatin resistance in OC. According to bioinformatics analyses, increased EMP1 expression was linked to higher stromal/ESTIMATE scores as well as greater ICG expression levels. The in vitro experiments showed that EMP1 was highly expressed in cisplatin-resistant OC tissues and cells, and silencing this EMP1 expression enhanced OC cell sensitivity to cisplatin. Finally, in vivo experiments confirmed that EMP1 promotes tumor growth and cisplatin resistance. CONCLUSIONS EMP1 can act as a predictive biomarker for cisplatin resistance in OC and as a potential therapeutic target.
Collapse
Affiliation(s)
- Qingsong Zeng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Department of Obstetrics and Gynecology, Hubei Clinical Medicine Research Center for Individualized Cancer Diagnosis and Therapy, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China.,Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Cunjian Yi
- Department of Obstetrics and Gynecology, Hubei Clinical Medicine Research Center for Individualized Cancer Diagnosis and Therapy, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinzhi Lu
- Department of Laboratory Medicine, Hubei Clinical Medicine Research Center for Individualized Cancer Diagnosis and Therapy, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiaowen Wang
- Department of Obstetrics and Gynecology, Hubei Clinical Medicine Research Center for Individualized Cancer Diagnosis and Therapy, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Keming Chen
- Department of Obstetrics and Gynecology, Hubei Clinical Medicine Research Center for Individualized Cancer Diagnosis and Therapy, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Zhang X, Luo M, Zhang J, Guo B, Singh S, Lin X, Xiong H, Ju S, Wang L, Zhou Y, Zhou J. The role of lncRNA H19 in tumorigenesis and drug resistance of human Cancers. Front Genet 2022; 13:1005522. [PMID: 36246634 PMCID: PMC9555214 DOI: 10.3389/fgene.2022.1005522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Systemic therapy is one of the most significant cancer treatments. However, drug resistance often appears and has become the primary cause of cancer therapy failure. Regulation of drug target, drug metabolism and drug efflux, cell death escape (apoptosis, autophagy, et al.), epigenetic changes, and many other variables are complicatedly involved in the mechanisms of drug resistance. In various types of cancers, long non-coding RNA H19 (lncRNA H19) has been shown to play critical roles in tumor development, proliferation, metastasis, and multiple drug resistance as well. The efficacy of chemotherapy, endocrine therapy, and targeted therapy are all influenced by the expression of H19, especially in breast cancer, liver cancer, lung cancer and colorectal cancer. Here, we summarize the relationship between lncRNA H19 and tumorigenesis, and illustrate the drug resistance mechanisms caused by lncRNA H19 as well. This review may provide more therapeutic potential targets for future cancer treatments.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Mingpeng Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Bize Guo
- Zhejiang University School of Medicine, Hangzhou, China
| | - Shreya Singh
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xixi Lin
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hanchu Xiong
- Zhejiang University School of Medicine, Hangzhou, China
| | - Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- *Correspondence: Linbo Wang, ; Yulu Zhou, ; Jichun Zhou,
| | - Yulu Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- *Correspondence: Linbo Wang, ; Yulu Zhou, ; Jichun Zhou,
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- *Correspondence: Linbo Wang, ; Yulu Zhou, ; Jichun Zhou,
| |
Collapse
|
8
|
Liang Q, Xu Z, Liu Y, Peng B, Cai Y, Liu W, Yan Y. NR2F1 Regulates TGF-β1-Mediated Epithelial-Mesenchymal Transition Affecting Platinum Sensitivity and Immune Response in Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14194639. [PMID: 36230565 PMCID: PMC9563458 DOI: 10.3390/cancers14194639] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanism underlying platinum resistance in ovarian cancer (OC) remains unclear. We used bioinformatic analyses to screen differentially expressed genes responsible for platinum resistance and explore NR2F1′s correlation with prognostic implication and OC staging. Moreover, Gene-set enrichment analysis (GSEA) and Gene Ontology (GO) analyses were used for pathway analysis. Epithelial-mesenchymal transition (EMT) properties, invasion, and migration capacities were analyzed by biochemical methods. The association between NR2F1 and cancer-associated fibroblast (CAF) infiltration and immunotherapeutic responses were also researched. A total of 13 co-upregulated genes and one co-downregulated gene were obtained. Among them, NR2F1 revealed the highest correlation with a poor prognosis and positively correlated with OC staging. GSEA and GO analysis suggested the induction of EMT via TGFβ-1 might be a possible mechanism that NR2F1 participates in resistance. In vitro experiments showed that NR2F1 knockdown did not affect cell proliferation, but suppressed cell invasion and migration with or without cisplatin treatment through the EMT pathway. We also found that NR2F1 could regulate TGF-β1 signaling, and treating with TGF-β1 could reverse these effects. Additionally, NR2F1 was predominantly associated with immunosuppressive CAF infiltration, which might cause a poor response to immune check blockades. In conclusion, NR2F1 regulates TGF-β1-mediated EMT affecting platinum sensitivity and immune response in OC patients.
Collapse
Affiliation(s)
- Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence:
| |
Collapse
|
9
|
Monayo SM, Liu X. The Prospective Application of Melatonin in Treating Epigenetic Dysfunctional Diseases. Front Pharmacol 2022; 13:867500. [PMID: 35668933 PMCID: PMC9163742 DOI: 10.3389/fphar.2022.867500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
In the past, different human disorders were described by scientists from the perspective of either environmental factors or just by genetically related mechanisms. The rise in epigenetic studies and its modifications, i.e., heritable alterations in gene expression without changes in DNA sequences, have now been confirmed in diseases. Modifications namely, DNA methylation, posttranslational histone modifications, and non-coding RNAs have led to a better understanding of the coaction between epigenetic alterations and human pathologies. Melatonin is a widely-produced indoleamine regulator molecule that influences numerous biological functions within many cell types. Concerning its broad spectrum of actions, melatonin should be investigated much more for its contribution to the upstream and downstream mechanistic regulation of epigenetic modifications in diseases. It is, therefore, necessary to fill the existing gaps concerning corresponding processes associated with melatonin with the physiological abnormalities brought by epigenetic modifications. This review outlines the findings on melatonin’s action on epigenetic regulation in human diseases including neurodegenerative diseases, diabetes, cancer, and cardiovascular diseases. It summarizes the ability of melatonin to act on molecules such as proteins and RNAs which affect the development and progression of diseases.
Collapse
|
10
|
Lin S, Zhou J, Xiao Y, Neary B, Teng Y, Qiu P. Integrative analysis of TCGA data identifies miRNAs as drug-specific survival biomarkers. Sci Rep 2022; 12:6785. [PMID: 35474090 PMCID: PMC9042876 DOI: 10.1038/s41598-022-10662-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/11/2022] [Indexed: 01/03/2023] Open
Abstract
Biomarkers predictive of drug-specific outcomes are important tools for personalized medicine. In this study, we present an integrative analysis to identify miRNAs that are predictive of drug-specific survival outcome in cancer. Using the clinical data from TCGA, we defined subsets of cancer patients who suffered from the same cancer and received the same drug treatment, which we call cancer-drug groups. We then used the miRNA expression data in TCGA to evaluate each miRNA’s ability to predict the survival outcome of patients in each cancer-drug group. As a result, the identified miRNAs are predictive of survival outcomes in a cancer-specific and drug-specific manner. Notably, most of the drug-specific miRNA survival markers and their target genes showed consistency in terms of correlations in their expression and their correlations with survival. Some of the identified miRNAs were supported by published literature in contexts of various cancers. We explored several additional breast cancer datasets that provided miRNA expression and survival data, and showed that our drug-specific miRNA survival markers for breast cancer were able to effectively stratify the prognosis of patients in those additional datasets. Together, this analysis revealed drug-specific miRNA markers for cancer survival, which can be promising tools toward personalized medicine.
Collapse
Affiliation(s)
- Shuting Lin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Jie Zhou
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Yiqiong Xiao
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Bridget Neary
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, USA
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA.
| |
Collapse
|
11
|
Liu M, Zhou X, Sun L, Tan S, Liu T, Xiao W, Tang J. Chronic stress induces platinum and Niraparib resistance in mouse models of ovarian cancer. Exp Cell Res 2022; 410:112935. [PMID: 34875218 DOI: 10.1016/j.yexcr.2021.112935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/25/2021] [Accepted: 11/14/2021] [Indexed: 11/04/2022]
Abstract
Resistance to platinum and PARP inhibitors represents a major barrier to the long-term survival of ovarian cancer patients. We aim to explore the potential role of chronic stress in drug resistance in ovarian cancer. Leveraging four ovarian cancer with chronic stress (OCCS) mouse models, we explore the therapeutic efficacy of platinum, Niraparib, and Docetaxel treatment in vivo, and compare the efficacy of these anti-tumor drugs in vitro using cell viability assays. Comparing the transcriptional characteristics in RNA-Seq of OCCS mice with public databases, we analyze the molecular mechanism of chronic stress promoting drug resistance in ovarian cancer. We find that chronic stress is positively correlated with platinum-resistant recurrence in ovarian cancer patients. Chronic stress can induce platinum and Niraparib resistance of ovarian cancer, but it does not affect the therapeutic efficacy of Docetaxel treatment in vivo. And the platinum-resistant cell lines are not sensitive to these anti-tumor drugs, which is different from the result in vivo. Then, we identify several gene networks and their constituent genes that are most significantly associated with chronic stress and drug resistance in ovarian cancer, including the glycolysis pathway and DNA damage. This study develops Niraparib and platinum-resistant in vivo models, reflecting the ability of OCCS mice to reproduce different aspects of human ovarian cancer molecular mechanism, and provides a new theoretical basis for overcoming the double drug resistance of ovarian cancer.
Collapse
Affiliation(s)
- Mu Liu
- Department of Gynecologic Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Xiaofang Zhou
- Department of Gynecologic Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Lijuan Sun
- Department of Gynecology and Obstetrics, Shaoyang Central Hospital, Shaoyang 422000, PR China
| | - Shanmei Tan
- Department of Gynecology and Obstetrics, The First People's Hospital of Huaihua, the Affiliated Huaihua Hospital of University of South China, Huaihua 418000, PR China
| | - Tingting Liu
- Department of Gynecology and Obstetrics, The First People's Hospital of Changde, Changde 415000, PR China
| | - Wangli Xiao
- Department of Gynecology and Obstetrics, The First People's Hospital of Yueyang, Yueyang, 414000, PR China
| | - Jie Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China; Hunan Gynecologic Cancer Research Center, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China.
| |
Collapse
|
12
|
Moghbeli M. MicroRNAs as the critical regulators of Cisplatin resistance in ovarian cancer cells. J Ovarian Res 2021; 14:127. [PMID: 34593006 PMCID: PMC8485521 DOI: 10.1186/s13048-021-00882-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the leading causes of cancer related deaths among women. Due to the asymptomatic tumor progression and lack of efficient screening methods, majority of OC patients are diagnosed in advanced tumor stages. A combination of surgical resection and platinum based-therapy is the common treatment option for advanced OC patients. However, tumor relapse is observed in about 70% of cases due to the treatment failure. Cisplatin is widely used as an efficient first-line treatment option for OC; however cisplatin resistance is observed in a noticeable ratio of cases. Regarding, the severe cisplatin side effects, it is required to clarify the molecular biology of cisplatin resistance to improve the clinical outcomes of OC patients. Cisplatin resistance in OC is associated with abnormal drug transportation, increased detoxification, abnormal apoptosis, and abnormal DNA repair ability. MicroRNAs (miRNAs) are critical factors involved in cell proliferation, apoptosis, and chemo resistance. MiRNAs as non-invasive and more stable factors compared with mRNAs, can be introduced as efficient markers of cisplatin response in OC patients. MAIN BODY In present review, we have summarized all of the miRNAs that have been associated with cisplatin resistance in OC. We also categorized the miRNAs based on their targets to clarify their probable molecular mechanisms during cisplatin resistance in ovarian tumor cells. CONCLUSIONS It was observed that miRNAs mainly exert their role in cisplatin response through regulation of apoptosis, signaling pathways, and transcription factors in OC cells. This review highlighted the miRNAs as important regulators of cisplatin response in ovarian tumor cells. Moreover, present review paves the way of suggesting a non-invasive panel of prediction markers for cisplatin response among OC patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Lan H, Yuan J, Zeng D, Liu C, Guo X, Yong J, Zeng X, Xiao S. The Emerging Role of Non-coding RNAs in Drug Resistance of Ovarian Cancer. Front Genet 2021; 12:693259. [PMID: 34512721 PMCID: PMC8430835 DOI: 10.3389/fgene.2021.693259] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer is one of the most common gynecological malignancies with highest mortality rate among all gynecological malignant tumors. Advanced ovarian cancer patients can obtain a survival benefit from chemotherapy, including platinum drugs and paclitaxel. In more recent years, the administration of poly-ADP ribose polymerase inhibitor to patients with BRCA mutations has significantly improved the progression-free survival of ovarian cancer patients. Nevertheless, primary drug resistance or the acquisition of drug resistance eventually leads to treatment failure and poor outcomes for ovarian cancer patients. The mechanism underlying drug resistance in ovarian cancer is complex and has not been fully elucidated. Interestingly, different non-coding RNAs (ncRNAs), such as circular RNAs, long non-coding RNAs and microRNAs, play a critical role in the development of ovarian cancer. Accumulating evidence has indicated that ncRNAs have important regulatory roles in ovarian cancer resistance to chemotherapy reagents and targeted therapy drugs. In this review, we systematically highlight the emerging roles and the regulatory mechanisms by which ncRNAs affect ovarian cancer chemoresistance. Additionally, we suggest that ncRNAs can be considered as potential diagnostic and prognostic biomarkers as well as novel therapeutic targets for ovarian cancer.
Collapse
Affiliation(s)
- Hua Lan
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing Yuan
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Da Zeng
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Chu Liu
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaohui Guo
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiahui Yong
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiangyang Zeng
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Songshu Xiao
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
14
|
Diao B, Yang P. Comprehensive Analysis of the Expression and Prognosis for Laminin Genes in Ovarian Cancer. Pathol Oncol Res 2021; 27:1609855. [PMID: 34512203 PMCID: PMC8423899 DOI: 10.3389/pore.2021.1609855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Survival is low in ovarian cancer (OC). Most OC patients demonstrate advanced metastases, and recurrence is common. Dysregulation of laminin interactions is associated with cancer development. However, it is unknown whether laminin subunits can be considered as biomarkers for OC diagnosis, prognosis, and treatment. We used cBioPortal, GEO, ONCOMINE, GEPIA, Human Protein Atlas, Kaplan-Meier Plotter, TIMER, and Metascape to determine the associations among laminin expression, prognosis, and immune cell infiltration in OC. LAMA5, LAMB3, and LAMC2 mRNAs and LAMA3, LAMB1/B2/B3, and LAMC1/C2 proteins were overexpressed in OC tissues compared with normal ovaries. LAMA4, LAMB1, and LAMC1 mRNA upregulation was positively correlated with worse overall survival (OS) and progression-free survival (PFS) in OC. Elevated LAMA2 and LAMC2 mRNA expression levels were related to better PFS or OS, respectively. The results speculated that LAMA5 could potentially be a good prognostic factor in OC. Its expression proves valuable for predicting OS in patients diagnosed with stage Ⅳ and grade 3 OC and PFS in patients diagnosed with all OC stages or grades. LAMB3 and LAMC2 expression was correlated with platinum resistance development. ROC analysis of laminins in OC sets revealed that LAMA2/A4/A5, LAMB1/B2/B3, and LAMC2 could be used to differentiate between malignant tumors and non-neoplastic tissues. LAMA1/A5 and LAMC1 were significantly and negatively correlated with various tumor immune infiltrates (TILs), especially with dendritic cells, CD8+ T cells or neutrophil. LAMA4 and LAMB1 might be associated with tumor purity in OC. Overall, LAMA5 and LAMC1 could help predict OC survival and diagnosis and might be deemed important OC oncogenes.
Collapse
Affiliation(s)
- Bowen Diao
- Department of Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ping Yang
- Department of Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
15
|
Bioinformatics analysis of mRNA and miRNA microarray to identify the key miRNA-mRNA pairs in cisplatin-resistant ovarian cancer. BMC Cancer 2021; 21:452. [PMID: 33892654 PMCID: PMC8063430 DOI: 10.1186/s12885-021-08166-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Background Ovarian cancer (OC) is a gynecological malignancy with the highest mortality rate. Cisplatin (DDP) based chemotherapy is a standard strategy for ovarian cancer. Despite good response rates for initial chemotherapy, almost 80% of the patients treated with DDP based chemotherapy will experience recurrence due to drug-resistant, which will ultimately result in fatality. The aim of the present study was to examine the pathogenesis and potential molecular markers of cisplatin-resistant OC by studying the differential expression of mRNAs and miRNAs between cisplatin resistant OC cell lines and normal cell lines. Methods Two mRNA datasets (GSE58470 and GSE45553) and two miRNA sequence datasets (GSE58469 and GSE148251) were downloaded from the Gene expression omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were screened by the NetworkAnalyst. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to analyze the biological functions of DEGs. The protein-protein interaction network was constructed using STRING and Cytoscape software to identify the molecular mechanisms of key signaling pathways and cellular activities. FunRich and MiRNATip databases were used to identify the target genes of the DEMs. Results A total of 380 DEGs, and 5 DEMs were identified. Protein–protein interaction (PPI) network of DEGs containing 379 nodes and 1049 edges was constructed, and 4 key modules and 24 hub genes related to cisplatin-resistant OC were screened. Two hundred ninety-nine target genes of the 5 DEMs were found out. Subsequently, one of these 299 target genes (UBB) belonging to the hub genes of GSE58470 and GSE45553 was identified by MCODE and CytoHubba,which was regulated by one miRNA (mir-454). Conclusions One miRNA–mRNA regulatory pairs (mir-454-UBB) was established. Taken together, our study provided evidence concerning the alteration genes involved in cisplatin-resistant OC, which will help to unravel the mechanisms underlying drug resistant.
Collapse
|
16
|
Zhou X, Liu M, Deng G, Chen L, Sun L, Zhang Y, Luo C, Tang J. lncRNA LOC102724169 plus cisplatin exhibit the synergistic anti-tumor effect in ovarian cancer with chronic stress. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:294-309. [PMID: 33850634 PMCID: PMC8010577 DOI: 10.1016/j.omtn.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/02/2021] [Indexed: 12/27/2022]
Abstract
Chronic stress has been proven to accelerate the development and progression of ovarian cancer, but the underlying molecular mechanisms have not been fully elucidated. In a combination survey of ovarian cancer with chronic stress (OCCS) mouse models and high-throughput sequencing, a key lncRNA named LOC102724169 on chromosome 6q27 has been identified, which functions as a dominant tumor suppressor in OCCS. Transcriptionally regulated by CCAAT enhancer binding protein (CEBP) beta (CEBPB), LOC102724169 shows low expression and correlates with poor progression-free survival (PFS) in OCCS patients. LOC102724169 is an instructive molecular inhibitor of malignancy of ovarian cancer cells, which is necessary to improve the curative effect of cisplatin therapy on ovarian cancer. This function stems from the inactivation of molecules in phosphatidylinositol 3-kinase (PI3K)/AKT signaling, repressing MYB expression and retaining the responsiveness of cancer cells to cisplatin. These findings provide a mechanistic understanding of the synergistic anti-tumor purpose of LOC102724169 as a bona fide tumor suppressor, enhancing the therapeutic effect of cisplatin. The new regulatory model of “lncRNA-MYB” provides new perspectives for LOC102724169 as a chronic stress-related molecule and also provides mechanistic insight into exploring the cancer-promoting mechanism of MYB in OCCS, which may be a promising therapeutic strategy for ovarian cancer.
Collapse
Affiliation(s)
- Xiaofang Zhou
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P.R. China
| | - Mu Liu
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P.R. China
| | - Guanming Deng
- Department of Gynecology and Obstetrics, Zhuhai Center for Maternal and Child Health Care, Zhuhai 519001, P.R. China
| | - Le Chen
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Lijuan Sun
- Department of Gynecology and Obstetrics, Shaoyang Central Hospital, Shaoyang 422000, P.R. China
| | - Yun Zhang
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P.R. China
| | - Chenhui Luo
- Department of the Animal Lab, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P.R. China
| | - Jie Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P.R. China.,Hunan Gynecologic Cancer Research Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P.R. China
| |
Collapse
|
17
|
Liu N, Wei S, Zhao R. Integrated miRNA-mRNA Analysis Reveals Potential Biomarkers of Chemoresistance in Ovarian Cancer. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The current study aimed to determine potential biomarkers related to chemoresistance in ovarian cancer and the involved signaling pathways through bioinformatics analysis. This was followed by an exploration of the related indices on the occurrence and development of chemoresistance
in ovarian cancer (OC). Five miRNA/mRNA expression datasets on chemoresistance OC were obtained from the Geodatabase. The significantly different expressed miRNAs (DEMs) and differently expressed genes (DEGs) between chemoresistant OC tissues and control tissues were screened using the GEO2R
online tool. Afterwards, pathway analysis was utilized to analyze the DEGs and Cytoscape with STRING 11.0 was used to visualize the protein-protein interaction (PPI) network of DEGs. Afterwards, TFmiR webserver was performed to predict the TF-miRNA-mRNA network. Finally, KM-Plotter was utilized
to determine the effects of hub genes and key miRNAs on survival time. A total of 24 DEMs and 548 DEGs were screened from four different datasets on chemoresistance in OC. Seven mRNA-miRNA pairs were found. Survival analysis based on the Kaplan-Meier plotter revealed that 11 biomarkers, including
hsa-miR-363, hsa-miR-125b, CDKN1N, JUN, KFL4, IGFBP3, TGFBR2, CCR5, SPP1, LOX, and MMP1, which were associated with TF-miRNA-mRNA network, were closely associated with overall survival (OS) in patients with OC (P< 0.05). The integrated genomic analysis method was successful in screening
novel and important genes for the occurrence and progression of chemoresistance in OC. Moreover, this method provided valuable information for investigating chemoresistance in OC and also forms the basis for further functional research.
Collapse
Affiliation(s)
- Niping Liu
- Department of Gynecology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Shiyang Wei
- Department of Gynecology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Renfeng Zhao
- Department of Gynecology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| |
Collapse
|
18
|
Chen Y, Li J, Xiao JK, Xiao L, Xu BW, Li C. The lncRNA NEAT1 promotes the epithelial-mesenchymal transition and metastasis of osteosarcoma cells by sponging miR-483 to upregulate STAT3 expression. Cancer Cell Int 2021; 21:90. [PMID: 33546665 PMCID: PMC7866772 DOI: 10.1186/s12935-021-01780-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background Osteosarcoma is one of the most prevalent primary bone tumours in adolescents. Accumulating evidence shows that aberrant expression of the long non-coding RNA (lncRNA) NEAT1 and microRNA-483 (miR-483) contribute to the epithelial-mesenchymal transition (EMT), invasion and metastasis of tumour cells. However, the potential regulatory effects of NEAT1 and miR-483 on the EMT of osteosarcoma remain elusive. Methods The expression of the NEAT1, miR-483, signal transducer and activator of transcription-1 (STAT1), STAT3, and EMT-associated markers was measured using qRT-PCR or western blotting. NEAT1 overexpression or knockdown was induced by lentivirus-mediated transfection. A luciferase reporter assay was employed to confirm the association between NEAT1/miR-483 and miR-483/STAT3. RNA immunoprecipitation (RIP) was also performed to verify the NEAT1 and miR-483 interaction. Wound healing and transwell assays were implemented to assess the migration and invasion of U2OS cells. Unilateral subcutaneous injection of U2OS into nude mice was performed to investigate tumour metastasis in vivo. Results The expression of miR-483 was downregulated in both osteosarcoma cell lines and osteosarcoma tissues. The overexpression of miR-483 suppressed the migration, invasion, and expression of EMT-associated proteins in U2OS cells, while simultaneous overexpression of STAT3 partially relieved this suppression. Mechanistically, miR-483 specifically targeted the 3′ untranslated region (3′UTR) of STAT3 and repressed its expression. However, NEAT1 sponged miR-438, increased STAT3 expression, and repressed STAT1 expression, subsequently increasing the EMT of osteosarcoma cells. The knockdown of NEAT1 in transplanted U2OS cells impaired the liver and lung metastases of osteosarcoma in nude mice. Moreover, NEAT1 silencing inhibited the mesenchymal- epithelial transition (MET) of osteosarcoma at metastasis sites. Conclusions The lncRNA NEAT1/miR-483/STAT3 axis plays a crucial role in regulating the metastasis of osteosarcoma and potentially represents one appealing therapeutic target for osteosarcoma treatment in the future.
Collapse
Affiliation(s)
- Yan Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jun Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jia-Kun Xiao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lei Xiao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Bin-Wu Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Chen Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
19
|
Tyagi K, Roy A. Evaluating the current status of protein kinase C (PKC)-protein kinase D (PKD) signalling axis as a novel therapeutic target in ovarian cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188496. [PMID: 33383102 DOI: 10.1016/j.bbcan.2020.188496] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/19/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Ovarian cancer, especially high grade serous ovarian cancer is one of the most lethal gynaecological malignancies with high relapse rate and patient death. Notwithstanding development of several targeted treatment and immunotherapeutic approaches, researchers fail to turn ovarian cancer into a manageable disease. Protein kinase C (PKC) and protein kinase D (PKD) are families of evolutionarily conserved serine/threonine kinases that can be activated by a plethora of extracellular stimuli such as hormones, growth factors and G-protein coupled receptor agonists. Recent literature suggests that a signalling cascade initiated by these two protein kinases regulates a battery of cellular and physiological processes involved in tumorigenesis including cell proliferation, migration, invasion and angiogenesis. In an urgent need to discover novel therapeutic interventions against a deadly pathology like ovarian cancer, we have discussed the status quo of PKC/PKD signalling axis in context of this disease. Additionally, apart from discussing the structural properties and activation mechanisms of PKC/PKD, we have provided a comprehensive review of the recent reports on tumor promoting functions of PKC isoforms and discussed the potential of PKC/PKD signalling axis as a novel target in this lethal pathology. Furthermore, in this review, we have discussed the significance of several recent clinical trials and development of small molecule inhibitors that target PKC/PKD signalling axis in ovarian cancer.
Collapse
Affiliation(s)
- Komal Tyagi
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh 201303, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
20
|
Guo C, Song C, Zhang J, Gao Y, Qi Y, Zhao Z, Yuan C. Revisiting chemoresistance in ovarian cancer: Mechanism, biomarkers, and precision medicine. Genes Dis 2020; 9:668-681. [PMID: 35782973 PMCID: PMC9243319 DOI: 10.1016/j.gendis.2020.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Among the gynecological cancers, ovarian cancer is the most lethal. Its therapeutic options include a combination of chemotherapy with platinum-based compounds and cytoreductive surgery. Most ovarian cancer patients exhibit an initial response to platinum-based therapy, however, platinum resistance has led to up to 80% of this responsive cohort becoming refractory. Ovarian cancer recurrence and drug resistance to current chemotherapeutic options is a global challenge. Chemo-resistance is a complex phenomenon that involves multiple genes and signal transduction pathways. Therefore, it is important to elucidate on the underlying molecular mechanisms involved in chemo-resistance. This inform decisions regarding therapeutic management and help in the identification of novel and effective drug targets. Studies have documented the individual biomarkers of platinum-resistance in ovarian cancer that are potential therapeutic targets. This review summarizes the molecular mechanisms of platinum resistance in ovarian cancer, novel drug targets, and clinical outcomes.
Collapse
Affiliation(s)
- Chong Guo
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chaoying Song
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Jiali Zhang
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yisong Gao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yuying Qi
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Zongyao Zhao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, PR China
- Corresponding author. College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China.
| |
Collapse
|
21
|
Niu YC, Tong J, Shi XF, Zhang T. MicroRNA-654-3p enhances cisplatin sensitivity by targeting QPRT and inhibiting the PI3K/AKT signaling pathway in ovarian cancer cells. Exp Ther Med 2020; 20:1467-1479. [PMID: 32742380 PMCID: PMC7388328 DOI: 10.3892/etm.2020.8878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 10/28/2019] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of microRNAs serves a crucial role in the chemosensitivity to cisplatin (DDP) in ovarian cancer (OVC). The abnormal expression of microRNA (miR)-654-3p has been reported in several types of human cancer. However, the association between miR-654-3p and cisplatin resistance in human OVC remains unclear. The present study aimed to investigate the role and mechanism of miR-654-3p in DDP resistance in OVC. The results demonstrated that miR-654-3p was significantly downregulated in ovarian cancer tissues and cells, as well as DDP-resistant IGROV-1/DDP cells, compared with adjacent non-tumoral tissue and IOSE386 cells. Overexpression of miR-654-3p significantly suppressed the proliferation and migration of ovarian cancer cells and increased the sensitivity of IGROV-1/DDP cells to DDP. Luciferase reporter assay demonstrated that quinolinate phosphoribosyl transferase (QPRT) was a target of miR-654-3p; overexpression of miR-654-3p inhibited QPRT expression by binding to the 3'-untranslated region of QPRT. In addition, inhibition of miR-654-3p reversed the suppressive effects of QPRT-targeting short interfering RNA on the proliferation and chemoresistance of ovarian cancer cells. Therefore, the results of the present study revealed a previously unrecognized regulatory mechanism that miR-654-3p enhances DDP sensitivity of OVC cells by downregulating QPRT expression; in addition, the present study highlighted the therapeutic implications of miR-654-3p upregulation in OVC.
Collapse
Affiliation(s)
- Yi-Chao Niu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Jing Tong
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Xiao-Fei Shi
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200126, P.R. China
| | - Ting Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| |
Collapse
|
22
|
Qi X, Yu C, Wang Y, Lin Y, Shen B. Network vulnerability-based and knowledge-guided identification of microRNA biomarkers indicating platinum resistance in high-grade serous ovarian cancer. Clin Transl Med 2019; 8:28. [PMID: 31664600 PMCID: PMC6820656 DOI: 10.1186/s40169-019-0245-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/19/2019] [Indexed: 02/07/2023] Open
Abstract
Background High-grade serous ovarian cancer (HGSC), the most common ovarian carcinoma type, is associated with the highest mortality rate among all gynecological malignancies. As chemoresistance has been demonstrated as the major challenge in improving the prognosis of HGSC patients, we here aimed to identify microRNA (miRNA) biomarkers for predicting platinum resistance and further explore their functions in HGSC. Results We developed and applied our network vulnerability-based and knowledge-guided bioinformatics model first time for the study of drug-resistance in cancer. Four miRNA biomarkers (miR-454-3p, miR-98-5p, miR-183-5p and miR-22-3p) were identified with potential in stratifying platinum-sensitive and platinum-resistant HGSC patients and predicting prognostic outcome. Among them, miR-454-3p and miR-183-5p were newly discovered to be closely implicated in platinum resistance in HGSC. Functional analyses highlighted crucial roles of the four miRNA biomarkers in platinum resistance through mediating transcriptional regulation, cell proliferation and apoptosis. Moreover, expression patterns of the miRNA biomarkers were validated in both platinum-sensitive and platinum-resistant ovarian cancer cells. Conclusions With bioinformatics modeling and analysis, we identified and confirmed four novel putative miRNA biomarkers, miR-454-3p, miR-98-5p, miR-183-5p and miR-22-3p that could serve as indicators of resistance to platinum-based chemotherapy, thereby contributing to the improvement of chemotherapeutic efficiency and optimization of personalized treatments in HGSC.
Collapse
Affiliation(s)
- Xin Qi
- Center for Systems Biology, Soochow University, Suzhou, 215006, China
| | - Chunjiang Yu
- Center for Systems Biology, Soochow University, Suzhou, 215006, China.,School of Nanotechnology, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215006, China
| | - Yi Wang
- Center for Systems Biology, Soochow University, Suzhou, 215006, China
| | - Yuxin Lin
- Center for Systems Biology, Soochow University, Suzhou, 215006, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
23
|
Exosomal microRNAs from Longitudinal Liquid Biopsies for the Prediction of Response to Induction Chemotherapy in High-Risk Neuroblastoma Patients: A Proof of Concept SIOPEN Study. Cancers (Basel) 2019; 11:cancers11101476. [PMID: 31575060 PMCID: PMC6826693 DOI: 10.3390/cancers11101476] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/10/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Despite intensive treatment, 50% of children with high-risk neuroblastoma (HR-NB) succumb to their disease. Progression through current trials evaluating the efficacy of new treatments for children with HR disease usually depends on an inadequate response to induction chemotherapy, assessed using imaging modalities. In this study, we sought to identify circulating biomarkers that might be detected in a simple blood sample to predict patient response to induction chemotherapy. Since exosomes released by tumor cells can drive tumor growth and chemoresistance, we tested the hypothesis that exosomal microRNA (exo-miRNAs) in blood might predict response to induction chemotherapy. The exo-miRNAs expression profile in plasma samples collected from children treated in HR-NBL-1/SIOPEN before and after induction chemotherapy was compared to identify a three exo-miRs signature that could discriminate between poor and good responders. Exo-miRNAs expression also provided a chemoresistance index predicting the good or poor prognosis of HR-NB patients.
Collapse
|
24
|
Liang H, Xu Y, Zhang Q, Yang Y, Mou Y, Gao Y, Chen R, Chen C, Dai P. MiR-483-3p regulates oxaliplatin resistance by targeting FAM171B in human colorectal cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:725-736. [PMID: 30861353 DOI: 10.1080/21691401.2019.1569530] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxaliplatin resistance limits the efficiency of treatment for colorectal cancer (CRC). Studies have shown that abnormal expression of microRNAs (miRNAs) were associated with tumorigenesis, cancer development and chemoresistance. The purpose of this study was to identify potential miRNAs related to oxaliplatin resistance in CRC cells. In this work, using small RNA sequencing (small RNA-Seq) and transcriptome sequencing (RNA-Seq), we found that down-regulated miR-483-3p was concurrent with up-regulated FAM171B in oxaliplatin-resistant colorectal cancer cell line HCT116/L as compared with its parental cell line HCT116. Transient transfection of miR-483-3p mimics markedly decreased the levels of FAM171B and restored oxaliplatin responsiveness of HCT116/L cells, and this alteration enhanced cell apoptosis and weakened cell migration. Whereas miR-483-3p inhibitor dramatically promoted the expression of FAM171B and enhanced oxaliplatin resistance of HCT116 cells by repressing cell apoptosis. Furthermore, knockdown of FAM171B in HCT116/L cells could also sensitize its reaction of the treatment with oxaliplatin, which was verified by the reduced cell migration. These findings demonstrate that FAM171B is a functional target of miR-483-3p in the regulation of oxaliplatin resistance in human CRC cells.
Collapse
Affiliation(s)
- Hui Liang
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Yisong Xu
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Qiang Zhang
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Yu Yang
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Yueyang Mou
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Yingchun Gao
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Rui Chen
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Chao Chen
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Penggao Dai
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| |
Collapse
|
25
|
Huang Y, Huang Y, Zhang L, Chang A, Zhao P, Chai X, Wang J. Identification of crucial genes and prediction of small molecules for multidrug resistance of Hodgkin's lymphomas. Cancer Biomark 2019; 23:495-503. [PMID: 30347596 DOI: 10.3233/cbm-181496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Multidrug resistance of Hodgkin's lymphoma (HL) often results in recurrence. Thus, we aimed to explore the underlying molecular mechanisms of multidrug resistance using bioinformatics strategies. METHODS The gene expression profile was obtained from GEO database. Then, the differentially expressed genes were screened out, and their functional annotations were carried out. Then, gene-signal interaction network was constructed and Connectivity Map (CMAP) analysis was performed. RESULTS A total of 1425 dysregulated genes were screened out, which were mainly enriched in biological items, such as small molecule metabolic, signal transduction, and cell apoptosis. Some survival-related pathways, such as MAPK pathways, apoptosis, and P53 pathway, and several hub genes, such as PRKCA, ACTN1, PIP5K1B, PRKACB, and JAK2, might play key roles in the development of multidrug resistance. Interestingly, felodipine was predicted to be a potential agent overcoming the multidrug resistance. CONCLUSIONS The present study offered new insights into the molecular mechanisms of multidrug resistance and identified a series of important hub genes and small agents that might be critical for treatment of multidrug-resistant HL.
Collapse
Affiliation(s)
- Yi Huang
- Department of Internal Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,Department of Internal Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu Huang
- Department of Invasive Technology, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,Department of Internal Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Liang Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Aoshuang Chang
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Peng Zhao
- Department of Internal Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiao Chai
- Department of Internal Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jishi Wang
- Department of Internal Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
26
|
Gasparri ML, Besharat ZM, Farooqi AA, Khalid S, Taghavi K, Besharat RA, Sabato C, Papadia A, Panici PB, Mueller MD, Ferretti E. MiRNAs and their interplay with PI3K/AKT/mTOR pathway in ovarian cancer cells: a potential role in platinum resistance. J Cancer Res Clin Oncol 2018; 144:2313-2318. [PMID: 30109500 DOI: 10.1007/s00432-018-2737-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/09/2018] [Indexed: 01/08/2023]
Abstract
Ovarian cancer is a leading cause of death among gynecologic malignancies. This disappointing prognosis is closely related to intrinsic or acquired resistance to conventional platinum-based chemotherapy, which can affect a third of patients. As such, investigating relevant molecular targets is crucial in the fight against this disease. So far, many mutations involved in ovarian cancer pathogenesis have been identified. Among them, a few pathways were implicated. One such pathway is the P13K/AKT/mTOR with abnormalities found in many cases. This pathway is considered to have an instrumental role in proliferation, migration, invasion and, more recently, in chemotherapy resistance. Many miRNAs have been found to influence P13K/AKT/mTOR pathway with different potential role in tumor genesis and ovarian cancer behaviour. In particular, their biological function was recently investigated as regards chemoresistance, therefore, leading to the identification of potential specific indirect biomarker of platinum sensitivity in ovarian cancer.
Collapse
Affiliation(s)
- Maria Luisa Gasparri
- Department of Gynecology Obstetrics and Urology, Sapienza University of Rome, Rome, Italy. .,Department of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Bern, Switzerland. .,Surgical and Medical Department of Translational Medicine, Sapienza University of Rome, Rome, Italy.
| | | | | | - Sumbul Khalid
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Katayoun Taghavi
- Department of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Raad Aris Besharat
- Department of Gynecology Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Claudia Sabato
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Andrea Papadia
- Department of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Bern, Switzerland
| | | | - Michael David Mueller
- Department of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
27
|
Huang X, Lyu J. Tumor suppressor function of miR-483-3p on breast cancer via targeting of the cyclin E1 gene. Exp Ther Med 2018; 16:2615-2620. [PMID: 30186493 DOI: 10.3892/etm.2018.6504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/03/2017] [Indexed: 12/21/2022] Open
Abstract
microRNA (miR)-483-3p has previously been demonstrated to be a tumor suppressor in many types of cancer cells, however it is unknown whether miR-483-3p is involved in the regulation of breast cancer. Therefore, the aim of the present study was to investigate the effects of miR-483-3p on breast cancer. The results demonstrated that the expression of miR-483-3p was decreased, especially in MCF-7 cells. The results of CCK-8 assay and cell cycle analysis demonstrated that miR-483-3p significantly reduced cell proliferation and inhibited MCF-7 cells in the G1 phase from entering the S phase (P<0.01). It was also demonstrated that Cyclin E1 (CCNE1) is a target gene of miR-483-3p using bioinformatics and a dual luciferase reporter assay. miR-483-3p inhibited the expression of CCNE1, cyclin-dependent kinase 2, nuclear protein ataxia-telangiectasia (NPAT) and phosphorylated NPAT. Therefore, the results indicated that miR-483-3p functions as a tumor suppression in breast cancer and CCNE1 is its target gene. Downstream genes of CCNE1 were also repressed by miR-483-3p. Therefore, these findings suggest that miR-483-3p is a key factor in breast cancer.
Collapse
Affiliation(s)
- Xiaoxi Huang
- Department of Breast, Fujian Provincial Maternity and Children Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jin Lyu
- Department of Surgical Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
28
|
The Glucose-Regulated MiR-483-3p Influences Key Signaling Pathways in Cancer. Cancers (Basel) 2018; 10:cancers10060181. [PMID: 29867024 PMCID: PMC6025222 DOI: 10.3390/cancers10060181] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023] Open
Abstract
The hsa-mir-483 gene, located within the IGF2 locus, transcribes for two mature microRNAs, miR-483-5p and miR-483-3p. This gene, whose regulation is mediated by the the CTNNB1/USF1 complex, shows an independent expression from its host gene IGF2. The miR-483-3p affects the Wnt/β-catenin, the TGF-β, and the TP53 signaling pathways by targeting several genes as CTNNB1, SMAD4, IGF1, and BBC3. Accordingly, miR-483-3p is associated with various tissues specific physiological properties as insulin and melanin production, as well as with cellular physiological functions such as wounding, differentiation, proliferation, and survival. Deregulation of miR-483-3p is observed in different types of cancer, and its overexpression can inhibit the pro-apoptotic pathway induced by the TP53 target effectors. As a result, the oncogenic characteristics of miR-483-3p are linked to the effect of some of the most relevant cancer-related genes, TP53 and CTNNB1, as well as to one of the most important cancer hallmark: the aberrant glucose metabolism of tumor cells. In this review, we summarize the recent findings regarding the miR-483-3p, to elucidate its functional role in physiological and pathological contexts, focusing overall on its involvement in cancer and in the TP53 pathway.
Collapse
|
29
|
Paziewska A, Mikula M, Dabrowska M, Kulecka M, Goryca K, Antoniewicz A, Dobruch J, Borowka A, Rutkowski P, Ostrowski J. Candidate diagnostic miRNAs that can detect cancer in prostate biopsy. Prostate 2018; 78:178-185. [PMID: 29226351 DOI: 10.1002/pros.23427] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/30/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND While histopathological evaluation remains the gold standard for diagnosis of prostate cancer (PCa), sampling errors remain a frequent problem; therefore, use of tissue biomarkers that can distinguish between benign and malignant prostate disease is a potentially beneficial diagnostic strategy. METHODS Deep sequencing of the miRNA transcriptome of 14 benign prostatic hyperplasia (BPH) and 60 cancerous and non-cancerous prostate samples extracted from 34 cancer-bearing prostates removed by prostatectomy was performed; of the latter 60 samples, 16, 21, and 23 samples contained <10%, >30%, and no dysplastic cells, respectively. The predictive value of selected miRNAs was then tested by quantitative reverse-transcribed PCR (qRT-PCR), using two separate chemistries, Exiqon and Taqman, to evaluate the tissue samples obtained by prostatectomy. Validation experiments were also performed for a subset of miRNAs by qRT-PCR of 87 prostate core biopsies. RESULTS We identified 123 miRNAs significantly dysregulated in PCa (adjusted P-values <0.05); 110 and 13 miRNAs were dysregulated only in cancerous samples and non-cancerous samples extracted from cancer-bearing prostates, respectively, while 31 were dysregulated regardless of the dysplastic cell content of the studied specimens. The clinical utility of eight selected miRNAs was analyzed using the same sample set with two qRT-PCR chemistries. Measurable qRT-PCR signals were obtained for seven and six miRNAs using the Exiqon and Taqman chemistries, respectively, and expression levels of six and four of these miRNAs differed significantly between BPH and PCa samples, regardless of dysplastic cell content. Validation experiments on core biopsies using qRT-PCR confirmed differential expression between BPH and PCa of four miRNAs (miR-187-3p, miR-183-5p, miR-32-5p, and miR-141-5p) using the Exiqon and one miRNA (miR-187-3p) with the Taqman chemistry. CONCLUSIONS Our sequencing analyses identified several candidate diagnostic miRNAs and confirmed some which have previously been reported as diagnostic in prostate malignancy. The results of this study suggest also that some of selected miRNAs can differentiate between non-malignant and malignant prostates even when neoplastic cells are missing from the studied specimen.
Collapse
Affiliation(s)
- Agnieszka Paziewska
- Departmentof Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Michalina Dabrowska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Departmentof Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Artur Antoniewicz
- Department of Urology, Multidisciplinary Hospital Warsaw-Miedzylesie, Warsaw, Poland
| | - Jakub Dobruch
- Clinical Department of Urology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Andrzej Borowka
- Clinical Department of Urology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Departmentof Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| |
Collapse
|
30
|
Corno C, Stucchi S, De Cesare M, Carenini N, Stamatakos S, Ciusani E, Minoli L, Scanziani E, Argueta C, Landesman Y, Zaffaroni N, Gatti L, Perego P. FoxO-1 contributes to the efficacy of the combination of the XPO1 inhibitor selinexor and cisplatin in ovarian carcinoma preclinical models. Biochem Pharmacol 2018; 147:93-103. [PMID: 29155058 DOI: 10.1016/j.bcp.2017.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Abstract
The XPO1/CRM1 inhibitor selinexor (KPT-330), is currently being evaluated in multiple clinical trials as an anticancer agent. XPO1 participates in the nuclear export of FoxO-1, which we previously found to be decreased in platinum-resistant ovarian carcinoma. The aim of this study was to determine whether enriching FoxO-1 nuclear localization using selinexor would increase ovarian cancer cell sensitivity to cisplatin. Selinexor, as a single agent, displayed a striking antiproliferative effect in different ovarian carcinoma cell lines. A schedule-dependent synergistic effect of selinexor in combination with cisplatin was found in cisplatin-sensitive IGROV-1, the combination efficacy being more evident in sensitive than in the resistant cells. In IGROV-1 cells, the combination was more effective when selinexor followed cisplatin exposure. A modulation of proteins involved in apoptosis (p53, Bax) and in cell cycle progression (p21WAF1) was found by Western blotting. Selinexor-treated cells exhibited enriched FoxO-1 nuclear staining. Knock-down experiments with RNA interference indicated that FOXO1-silenced cells displayed a reduced sensitivity to selinexor. FOXO1 silencing also tended to reduce the efficacy of the drug combination at selected cisplatin concentrations. Selinexor significantly inhibited tumor growth, induced FoxO-1 nuclear localization and improved the efficacy of cisplatin in IGROV-1 xenografts. Taken together, our results support FoxO-1 as one of the key factors promoting sensitivity towards selinexor and the synergistic interaction between cisplatin and selinexor in ovarian carcinoma cells with selected molecular backgrounds, highlighting the need for treatment regimens tailored to the molecular tumor features.
Collapse
Affiliation(s)
- Cristina Corno
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Simone Stucchi
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Michelandrea De Cesare
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Nives Carenini
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Serena Stamatakos
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Medical Genetics, Fondazione IRCCS Istituto Neurologico C. Besta, via Celoria 11, 20133 Milan, Italy
| | - Lucia Minoli
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; Mouse and Animal Pathology Laboratory, Fondazione Filarete, viale Ortles 22/4, 20139 Milan, Italy
| | - Eugenio Scanziani
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; Mouse and Animal Pathology Laboratory, Fondazione Filarete, viale Ortles 22/4, 20139 Milan, Italy
| | | | - Yosef Landesman
- Karyopharm Therapeutics, 85 Wells Ave., Newton, MA 02459, USA
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Laura Gatti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|
31
|
Current updates on microRNAs as regulators of chemoresistance. Biomed Pharmacother 2017; 95:1000-1012. [DOI: 10.1016/j.biopha.2017.08.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 12/28/2022] Open
|
32
|
Corno C, Gatti L, Arrighetti N, Carenini N, Zaffaroni N, Lanzi C, Perego P. Axl molecular targeting counteracts aggressiveness but not platinum-resistance of ovarian carcinoma cells. Biochem Pharmacol 2017; 136:40-50. [PMID: 28404378 DOI: 10.1016/j.bcp.2017.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
Abstract
Ovarian carcinoma, the most common gynaecological cancer, is characterized by high lethality mainly due to late diagnosis and treatment failure. The efficacy of platinum drug-based therapy in the disease is limited by the occurrence of drug resistance, a phenomenon often associated with increased metastatic potential. Because the Tyr-kinase receptor Axl can be deregulated in ovarian carcinoma and plays a pro-metastatic/anti-apoptotic role, the aim of this study was to examine if Axl inhibition modulates drug resistance and aggressive features of ovarian carcinoma cells, using various pairs of cisplatin-sensitive and -resistant cell lines. We found that mRNA and protein levels of Axl were increased in the platinum-resistant IGROV-1/Pt1 and IGROV-1/OHP cell lines compared to the parental IGROV-1 cells. IGROV-1/Pt1 cells displayed increased migratory and invasive capabilities. When Axl was silenced, these cells exhibited reduced growth and invasive/migratory capabilities compared to control siRNA-transfected cells, associated with decreased p38 and STAT3 phosphorylation. In keeping with this evidence, pharmacological inhibition of p38 and STAT3 decreased IGROV-1/Pt1 invasive capability. Molecular inhibition of Axl did not sensitize IGROV-1/Pt1 cells to cisplatin, but enhanced ErbB3 activation in IGROV-1/Pt1 cells and suppressed the clonogenic capability of various ovarian carcinoma cell lines. The combination of cisplatin and AZD8931, a small molecule which inhibits ErbB3, produced a synergistic effect in IGROV-1/Pt1 cells. Thus, Axl targeting per se reduces invasive capability of drug-resistant cells, but sensitization to cisplatin requires the concomitant inhibition of additional survival pathways.
Collapse
Affiliation(s)
- Cristina Corno
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, via Venezian1/via Amadeo 42, 20133 Milan, Italy
| | - Laura Gatti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, via Venezian1/via Amadeo 42, 20133 Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, via Venezian1/via Amadeo 42, 20133 Milan, Italy
| | - Nives Carenini
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, via Venezian1/via Amadeo 42, 20133 Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, via Venezian1/via Amadeo 42, 20133 Milan, Italy
| | - Cinzia Lanzi
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, via Venezian1/via Amadeo 42, 20133 Milan, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, via Venezian1/via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|