1
|
Salminen A. Aryl hydrocarbon receptor impairs circadian regulation in Alzheimer's disease: Potential impact on glymphatic system dysfunction. Eur J Neurosci 2024; 60:3901-3920. [PMID: 38924210 DOI: 10.1111/ejn.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Circadian clocks maintain diurnal rhythms of sleep-wake cycle of 24 h that regulate not only the metabolism of an organism but also many other periodical processes. There is substantial evidence that circadian regulation is impaired in Alzheimer's disease. Circadian clocks regulate many properties known to be disturbed in Alzheimer's patients, such as the integrity of the blood-brain barrier (BBB) as well as the diurnal glymphatic flow that controls waste clearance from the brain. Interestingly, an evolutionarily conserved transcription factor, that is, aryl hydrocarbon receptor (AhR), impairs the function of the core clock proteins and thus could disturb diurnal rhythmicity in the BBB. There is abundant evidence that the activation of AhR signalling inhibits the expression of the major core clock proteins, such as the brain and muscle arnt-like 1 (BMAL1), clock circadian regulator (CLOCK) and period circadian regulator 1 (PER1) in different experimental models. The expression of AhR is robustly increased in the brains of Alzheimer's patients, and protein level is enriched in astrocytes of the BBB. It seems that AhR signalling inhibits glymphatic flow since it is known that (i) activation of AhR impairs the function of the BBB, which is cooperatively interconnected with the glymphatic system in the brain, and (ii) neuroinflammation and dysbiosis of gut microbiota generate potent activators of AhR, which are able to impair glymphatic flow. I will examine current evidence indicating that activation of AhR signalling could disturb circadian functions of the BBB and impair glymphatic flow and thus be involved in the development of Alzheimer's pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
2
|
D'Addabbo P, Frezza D, Sulentic CE. Evolutive emergence and divergence of an Ig regulatory node: An environmental sensor getting cues from the aryl hydrocarbon receptor? Front Immunol 2023; 14:996119. [PMID: 36817426 PMCID: PMC9936319 DOI: 10.3389/fimmu.2023.996119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3' end of the IgH gene locus (3'RR). Animal models have demonstrated an essential role of the 3'RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3'RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3'RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3'RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3'RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Pietro D'Addabbo
- Department of Biology, University of Bari “Aldo Moro”, Bari, Italy
| | - Domenico Frezza
- Department of Biology E. Calef, University of Rome Tor Vergata, Rome, Italy
| | - Courtney E.W. Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
3
|
Zhou J, Blevins LK, Crawford RB, Kaminski NE. Role of Programmed Cell Death Protein-1 and Lymphocyte Specific Protein Tyrosine Kinase in the Aryl Hydrocarbon Receptor- Mediated Impairment of the IgM Response in Human CD5 + Innate-Like B Cells. Front Immunol 2022; 13:884203. [PMID: 35558082 PMCID: PMC9088000 DOI: 10.3389/fimmu.2022.884203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Innate-like B cells (ILBs) are a heterogeneous population B cells which participate in innate and adaptive immune responses. This diverse subset of B cells is characterized by the expression of CD5 and has been shown to secrete high levels of immunoglobulin M (IgM) in the absence of infection or vaccination. Further, CD5+ ILBs have been shown to express high basal levels of lymphocyte specific protein tyrosine kinase (LCK) and programmed cell death protein-1 (PD-1), which are particularly sensitive to stimulation by interferon gamma (IFNγ). Previous studies have demonstrated that activation of the aryl hydrocarbon receptor (AHR), a cytosolic ligand-activated transcription factor, results in suppressed IgM responses and is dependent on LCK. A recent study showed that CD5+ ILBs are particularly sensitive to AHR activation as evidenced by a significant suppression of the IgM response compared to CD5- B cells, which were refractory. Therefore, the objective of this study was to further investigate the role of LCK and PD-1 signaling in AHR-mediated suppression of CD5+ ILBs. In addition, studies were conducted to establish whether IFNγ alters the levels of LCK and PD-1 in CD5+ ILBs. We found that AHR activation led to a significant upregulation of total LCK and PD-1 proteins in CD5+ ILBs, which correlated with suppression of IgM. Interestingly, treatment with recombinant IFNγ reduced LCK protein levels and reversed AHR-mediated IgM suppression in CD5+ ILBs in a similar manner as LCK inhibitors. Collectively, these results support a critical role for LCK and PD-1 in AHR-mediated suppression of the IgM response in human CD5+ ILBs.
Collapse
Affiliation(s)
- Jiajun Zhou
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lance K. Blevins
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Robert B. Crawford
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Norbert E. Kaminski
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
- Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
4
|
Sabuz Vidal O, Deepika D, Schuhmacher M, Kumar V. EDC-induced mechanisms of immunotoxicity: a systematic review. Crit Rev Toxicol 2022; 51:634-652. [PMID: 35015608 DOI: 10.1080/10408444.2021.2009438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) refer to a group of chemicals that cause adverse effects in human health, impairing hormone production and regulation, resulting in alteration of homeostasis, reproductive, and developmental, and immune system impairments. The immunotoxicity of EDCs involves many mechanisms altering gene expression that depend on the activation of nuclear receptors such as the aryl hydrocarbon receptor (AHR), the estrogen receptor (ER), and the peroxisome proliferator-activated receptor (PPAR), which also results in skin and intestinal disorders, microbiota alterations and inflammatory diseases. This systematic review aims to review different mechanisms of immunotoxicity and immunomodulation of T cells, focusing on T regulatory (Treg) and Th17 subsets, B cells, and dendritic cells (DCs) caused by specific EDCs such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), bisphenols (BPs) and polyfluoroalkyl substances (PFASs). To achieve this objective, a systematic study was conducted searching various databases including PubMed and Scopus to find in-vitro, in-vivo, and biomonitoring studies that examine EDC-dependent mechanisms of immunotoxicity. While doing the systematic review, we found species- and cell-specific outcomes and a translational gap between in-vitro and in-vivo experiments. Finally, an adverse outcome pathway (AOP) framework is proposed, which explains mechanistically toxicity endpoints emerging from different EDCs having similar key events and can help to improve our understanding of EDCs mechanisms of immunotoxicity. In conclusion, this review provides insights into the mechanisms of immunotoxicity mediated by EDCs and will help to improve human health risk assessment.
Collapse
Affiliation(s)
- Oscar Sabuz Vidal
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Deepika Deepika
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain.,IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain
| |
Collapse
|
5
|
Blevins LK, Zhou J, Crawford R, Kaminski NE. TCDD-mediated suppression of naïve human B cell IgM secretion involves aryl hydrocarbon receptor-mediated reduction in STAT3 serine 727 phosphorylation and is restored by interferon-γ. Cell Signal 2019; 65:109447. [PMID: 31678681 DOI: 10.1016/j.cellsig.2019.109447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant formed as a byproduct in organic synthesis and burning of organic materials. TCDD has potent immunotoxic effects in B lymphocytes resulting in decreased cellular activation and suppressed IgM secretion following activation with CD40 ligand. Previous work from our lab demonstrated that TCDD treatment of naïve human B cells resulted in significant increases in the levels of the tyrosine phosphatase SHP-1, which corresponded with suppression of IgM secretion. STAT3 is a critical B cell transcription factor for B cell activation and secretion of immunoglobulins (Ig). STAT3 dimerizes and translocates to the nucleus following phosphorylation as a result of cytokine receptor signaling. We hypothesized that TCDD-mediated increases in SHP-1 could result in decreased STAT3 tyrosine phosphorylation. Interestingly, only modest changes in the levels of STAT3 tyrosine phosphorylation were observed. By contrast, TCDD significantly reduced levels of STAT3 serine phosphorylation as early as 12h post B cell activation. These results corresponded with decreased inhibitory phosphorylation of the serine specific phosphatase PP2a, which is regulated by SHP-1. Further, studies revealed that interferon gamma (IFNγ), which signals through the type II interferon receptor, can non-canonically induce STAT3 activation via Src kinase activity. Indeed, treatment of human B cells with IFNγ resulted in increased STAT3 serine phosphorylation and reversed TCDD-mediated suppression of the IgM response. Together, these data putatively identify a key event in the mechanism by which TCDD induces suppression of Ig secretion and demonstrate the potential of IFNγ as a means to reverse this effect in primary human B lymphocytes.
Collapse
Affiliation(s)
- Lance K Blevins
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jiajun Zhou
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Robert Crawford
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Norbert E Kaminski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States; Department of Toxicology & Pharmacology, Michigan State University, East Lansing, MI, United States; Center for Research on Ingredient Safety, MIchigan State University, East Lansing, MI, United States.
| |
Collapse
|
6
|
Filippov SV, Yarushkin AA, Kalinina TS, Ovchinnikov VY, Knyazev RA, Gulyaeva LF. Effect of Benzo(a)pyrene on the Expression of miR-483-3p in Hepatocyte Primary Culture and Rat Liver. BIOCHEMISTRY (MOSCOW) 2019; 84:1197-1203. [DOI: 10.1134/s0006297919100080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Cervantes-Barragan L, Colonna M. AHR signaling in the development and function of intestinal immune cells and beyond. Semin Immunopathol 2018; 40:371-377. [PMID: 29951906 DOI: 10.1007/s00281-018-0694-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
The intestinal immune system is challenged daily with the task of recognizing and eliminating pathogens while simultaneously tolerating dietary and commensal antigens. All components must effectively coordinate to differentiate a continual barrage of environmental cues and mount appropriate responses dependent on the nature of the stimuli encountered. Playing a pivotal role, the aryl hydrocarbon receptor (AHR) is a chemical sensor that detects both dietary and microbial cues and is important for development, maintenance, and function of several types of intestinal immune cells, particularly innate lymphoid cells (ILCs) and T cells. In this review, we will highlight recent advances in our knowledge of the role of AHR signaling in ILCs, T cells, B cells, and dendritic cells.
Collapse
Affiliation(s)
- Luisa Cervantes-Barragan
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO, 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Chemical sensing in development and function of intestinal lymphocytes. Curr Opin Immunol 2018; 50:112-116. [PMID: 29452963 DOI: 10.1016/j.coi.2018.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
Abstract
The immune system of the intestinal tract has the challenging task of recognizing and eliminating intestinal pathogens while maintaining tolerance to dietary and commensal antigens; therefore, it must be able to sense environmental cues within the intestine and mount suitable responses dictated by their pathogenic or nonpathogenic nature. The aryl hydrocarbon receptor (AHR) was originally characterized as a chemical sensor of the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [12]. More recently, AHR has emerged as a major chemical sensor expressed in many intestinal immune cells that enables them to distinguish nutritional and microbial cues and is, therefore, important for development, maintenance and function of the intestinal immune system. In this review, we will highlight recent advances in our knowledge of the role of AHR signaling in intestinal innate lymphoid cells (ILC), T cells and B cells.
Collapse
|