1
|
Ziaka K, van der Spuy J. The Role of Hsp90 in Retinal Proteostasis and Disease. Biomolecules 2022; 12:biom12070978. [PMID: 35883534 PMCID: PMC9313453 DOI: 10.3390/biom12070978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Photoreceptors are sensitive neuronal cells with great metabolic demands, as they are responsible for carrying out visual phototransduction, a complex and multistep process that requires the exquisite coordination of a large number of signalling protein components. Therefore, the viability of photoreceptors relies on mechanisms that ensure a well-balanced and functional proteome that maintains the protein homeostasis, or proteostasis, of the cell. This review explores how the different isoforms of Hsp90, including the cytosolic Hsp90α/β, the mitochondrial TRAP1, and the ER-specific GRP94, are involved in the different proteostatic mechanisms of photoreceptors, and elaborates on Hsp90 function when retinal homeostasis is disturbed. In addition, several studies have shown that chemical manipulation of Hsp90 has significant consequences, both in healthy and degenerating retinae, and this can be partially attributed to the fact that Hsp90 interacts with important photoreceptor-associated client proteins. Here, the interaction of Hsp90 with the retina-specific client proteins PDE6 and GRK1 will be further discussed, providing additional insights for the role of Hsp90 in retinal disease.
Collapse
|
2
|
Kurop MK, Huyen CM, Kelly JH, Blagg BSJ. The heat shock response and small molecule regulators. Eur J Med Chem 2021; 226:113846. [PMID: 34563965 PMCID: PMC8608735 DOI: 10.1016/j.ejmech.2021.113846] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/09/2023]
Abstract
The heat shock response (HSR) is a highly conserved cellular pathway that is responsible for stress relief and the refolding of denatured proteins [1]. When a host cell is exposed to conditions such as heat shock, ischemia, or toxic substances, heat shock factor-1 (HSF-1), a transcription factor, activates the genes that encode for the heat shock proteins (Hsps), which are a family of proteins that work alongside other chaperones to relieve stress and refold proteins that have been denatured (Burdon, 1986) [2]. Along with the refolding of denatured proteins, Hsps facilitate the removal of misfolded proteins by escorting them to degradation pathways, thereby preventing the accumulation of misfolded proteins [3]. Research has indicated that many pathological conditions, such as diabetes, cancer, neuropathy, cardiovascular disease, and aging have a negative impact on HSR function and are commonly associated with misfolded protein aggregation [4,5]. Studies indicate an interplay between mitochondrial homeostasis and HSF-1 levels can impact stress resistance, proteostasis, and malignant cell growth, which further support the role of Hsps in pathological and metabolic functions [6]. On the other hand, Hsp activation by specific small molecules can induce the heat shock response, which can afford neuroprotection and other benefits [7]. This review will focus on the modulation of Hsps and the HSR as therapeutic options to treat these conditions.
Collapse
Affiliation(s)
- Margaret K Kurop
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Cormac M Huyen
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - John H Kelly
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brian S J Blagg
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
3
|
Zheng H, Hampson LV, Wandel S. A robust Bayesian meta-analytic approach to incorporate animal data into phase I oncology trials. Stat Methods Med Res 2020; 29:94-110. [PMID: 30648481 DOI: 10.1177/0962280218820040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Before a first-in-man trial is conducted, preclinical studies are performed in animals to help characterise the safety profile of the new medicine. We propose a robust Bayesian hierarchical model to synthesise animal and human toxicity data, using scaling factors to translate doses administered to different animal species onto an equivalent human scale. After scaling doses, the parameters of dose-toxicity models intrinsic to different animal species can be interpreted on a common scale. A prior distribution is specified for each translation factor to capture uncertainty about differences between toxicity of the drug in animals and humans. Information from animals can then be leveraged to learn about the relationship between dose and risk of toxicity in a new phase I trial in humans. The model allows human dose-toxicity parameters to be exchangeable with the study-specific parameters of animal species studied so far or non-exchangeable with any of them. This leads to robust inferences, enabling the model to give greatest weight to the animal data with parameters most consistent with human parameters or discount all animal data in the case of non-exchangeability. The proposed model is illustrated using a case study and simulations. Numerical results suggest that our proposal improves the precision of estimates of the toxicity rates when animal and human data are consistent, while it discounts animal data in cases of inconsistency.
Collapse
Affiliation(s)
- Haiyan Zheng
- Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | - Lisa V Hampson
- Statistical Methodology and Consulting, Novartis Pharma AG, Basel, Switzerland
| | - Simon Wandel
- Statistical Methodology and Consulting, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
4
|
Shimomura A, Yamamoto N, Kondo S, Fujiwara Y, Suzuki S, Yanagitani N, Horiike A, Kitazono S, Ohyanagi F, Doi T, Kuboki Y, Kawazoe A, Shitara K, Ohno I, Banerji U, Sundar R, Ohkubo S, Calleja EM, Nishio M. First-in-Human Phase I Study of an Oral HSP90 Inhibitor, TAS-116, in Patients with Advanced Solid Tumors. Mol Cancer Ther 2019; 18:531-540. [PMID: 30679388 DOI: 10.1158/1535-7163.mct-18-0831] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/24/2018] [Accepted: 01/11/2019] [Indexed: 11/16/2022]
Abstract
HSP90 is involved in stability and function of cancer-related proteins. This study was conducted to define the MTD, safety, pharmacokinetics, pharmacodynamics, and preliminary antitumor efficacy of TAS-116, a novel class, orally available, highly selective inhibitor of HSP90. Patients with advanced solid tumors received TAS-116 orally once daily (QD, step 1) or every other day (QOD, step 2) in 21-day cycles. Each step comprised a dose escalation phase to determine MTD and an expansion phase at the MTD. In the dose escalation phase, an accelerated dose-titration design and a "3+3" design were used. Sixty-one patients were enrolled in Japan and the United Kingdom. MTD was determined to be 107.5 mg/m2/day for QD, and 210.7 mg/m2/day for QOD. In the expansion phase of step 1, TAS-116 was administered 5 days on/2 days off per week (QD × 5). The most common treatment-related adverse events included gastrointestinal disorders, creatinine increases, AST increases, ALT increases, and eye disorders. Eye disorders have been reported with HSP90 inhibitors; however, those observed with TAS-116 in the expansion phases were limited to grade 1. The systemic exposure of TAS-116 increased dose-proportionally with QD and QOD regimens. Two patients with non-small cell lung cancer and one patient with gastrointestinal stromal tumor (GIST) achieved a confirmed partial response. TAS-116 had an acceptable safety profile with some antitumor activity, supporting further development of this HSP90 inhibitor.This is a result from a first-in-human study, in which the HSP90 inhibitor TAS-116 demonstrated preliminary antitumor efficacy in patients with advanced solid tumors, including those with heavily pretreated GIST.
Collapse
Affiliation(s)
- Akihiko Shimomura
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan.
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shunsuke Kondo
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Yutaka Fujiwara
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shigenobu Suzuki
- Department of Ophthalmic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Noriko Yanagitani
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Atsushi Horiike
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoru Kitazono
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Fumiyoshi Ohyanagi
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toshihiko Doi
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Chiba, Japan
| | - Yasutoshi Kuboki
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Akihito Kawazoe
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Izumi Ohno
- Department of Hepatobiliary Pancreatic Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Udai Banerji
- Clinical Pharmacology and Trials, The Institute of Cancer Research and The Royal Marsden, London, United Kingdom
| | - Raghav Sundar
- Department of Haematology-Oncology, The Institute of Cancer Research and The Royal Marsden, London, United Kingdom
- National University Health System, Singapore
| | - Shuichi Ohkubo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
5
|
Hendriks LEL, Dingemans AMC. Heat shock protein antagonists in early stage clinical trials for NSCLC. Expert Opin Investig Drugs 2017; 26:541-550. [PMID: 28274158 DOI: 10.1080/13543784.2017.1302428] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Cancer cells have a higher need of chaperones than normal cells to prevent the toxic effects of intracellular protein misfolding and aggregation. Heat shock proteins (Hsps) belong to these chaperones; they are classified into families according to molecular size. Hsps are upregulated in many cancers and inhibition can inhibit tumor growth by destabilizing proteins necessary for tumor survival. In non-small cell lung cancer (NSCLC), there are three different Hsp antagonist classes that are in (early) clinical trials: Hsp90, Hsp70 and Hsp27 inhibitors. Areas covered: The rationale to use Hsp inhibitors in NSCLC will be summarized and phase I-III trials will be reviewed. Expert opinion: Several Hsp90 inhibitors have been tested in phase I-III trials, until now none was positive in unselected NSCLC; therefore development of AUY922, ganetespib and retaspimycin was halted. Results seem more promising in molecularly selected patients, especially in ALK-rearranged NSCLC. Hsp27 is overexpressed in squamous NSCLC and is a mechanism of chemotherapy resistance. The Hsp27 inhibitor apatorsen is now tested in squamous NSCLC. No phase II/III data are known for Hsp70 inhibitors. Combination of Hsp inhibitors with heat shock transcription factor 1 inhibitors or focal adhesion kinase inhibitors might be of interest for future trials.
Collapse
Affiliation(s)
- Lizza E L Hendriks
- a Department of Pulmonary Diseases, GROW - School for oncology and developmental biology , Maastricht University Medical Center+ , Maastricht , The Netherlands
| | - Anne-Marie C Dingemans
- a Department of Pulmonary Diseases, GROW - School for oncology and developmental biology , Maastricht University Medical Center+ , Maastricht , The Netherlands
| |
Collapse
|