1
|
Perry CS, Verwiel AH, Covington TR, Proctor DM. PBPK modeling demonstrates that exposure time adjustment is unnecessary for setting an acute manganese inhalation exposure guideline. Regul Toxicol Pharmacol 2024; 153:105698. [PMID: 39251127 DOI: 10.1016/j.yrtph.2024.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/09/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Affiliation(s)
- Camarie S Perry
- ToxStrategies, 23501 Cinco Ranch Blvd, Suite H210, Katy, TX, 77494, USA.
| | - Ann H Verwiel
- ToxStrategies, 1010 B Street, Suite 208, San Rafael, CA, 94901, USA
| | | | - Deborah M Proctor
- ToxStrategies, 27001 La Paz Road, Suite 260, Mission Viejo, CA, 92691, USA
| |
Collapse
|
2
|
Kang DW, Kim JH, Choi GW, Cho SJ, Cho HY. PBPK model-based gender-specific risk assessment of N-nitrosodimethylamine (NDMA) using human biomonitoring data. Arch Toxicol 2024; 98:3269-3288. [PMID: 39096368 DOI: 10.1007/s00204-024-03828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Despite several screening levels for NDMA reported in water, soil, air, and drugs, the human risk assessment using biomonitoring concentrations has not been performed. In this study, gender-specific exposure guidance values were determined in humans, then biomonitoring measurements in healthy Korean subjects (32 men and 40 women) were compared to the exposure guidance values to evaluate the current exposure level to NDMA. For the human risk assessment of NDMA, the gender-specific physiologically based pharmacokinetic (PBPK) model was developed in humans using proper physiological parameters, partition coefficients, and biochemical parameters. Using the PBPK model, a Monte Carlo simulation was performed to describe the magnitudes of inter-individual variability and uncertainty on the single model predictions. The PBPK modeling and Monte Carlo simulation allowed the estimation of the relationship between external dose and blood concentration for the risk assessment. The procedure for the human risk assessment was summarized as follows: (1) estimating a steady-state blood concentration (Cavg) corresponding to the daily no observed adverse effect level (NOAEL) administration in rats; (2) applying uncertainty factors (UFs) for deriving the human Cavg; (3) determining the exposure guidance values as screening criteria; (4) interpreting the human biomonitoring measurements by forward and reverse dosimetry approaches. Using the biomonitoring concentrations, current daily exposures to NDMA were estimated to be 3.95 μg/day/kg for men and 10.60 μg/day/kg for women, respectively. The result of the study could be used as a basis for implementing further risk management and regulatory decision-making for NDMA.
Collapse
Affiliation(s)
- Dong Wook Kang
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Ju Hee Kim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Go-Wun Choi
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Seok-Jin Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
3
|
Mittal L, Perry CS, Blanchette AD, Proctor DM. Probabilistic risk assessment of residential exposure to electric arc furnace steel slag using Bayesian model of relative bioavailability and PBPK modeling of manganese. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024; 44:2169-2186. [PMID: 38622492 DOI: 10.1111/risa.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 04/17/2024]
Abstract
Electric arc furnace (EAF) slag is a coproduct of steel production used primarily for construction purposes. Some applications of EAF slag result in residential exposures by incidental ingestion and inhalation of airborne dust. To evaluate potential health risks, an EAF slag characterization program was conducted to measure concentrations of metals and leaching potential (including oral bioaccessibility) in 38 EAF slag samples. Arsenic, hexavalent chromium, iron, vanadium, and manganese (Mn) were identified as constituents of interest (COIs). Using a probabilistic risk assessment (PRA) approach, estimated distributions of dose for COIs were assessed, and increased cancer risks and noncancer hazard quotients (HQs) at the 50th and 95th percentiles were calculated. For the residents near slag-covered roads, cancer risk and noncancer HQs were <1E - 6 and 1, respectively. For residential driveway or landscape exposure, at the 95th percentile, cancer risks were 1E - 6 and 7E - 07 based on oral exposure to arsenic and hexavalent chromium, respectively. HQs ranged from 0.07 to 2 with the upper bound due to ingestion of Mn among children. To expand the analysis, a previously published physiologically based pharmacokinetic (PBPK) model was used to estimate Mn levels in the globus pallidus for both exposure scenarios and further evaluate the potential for Mn neurotoxicity. The PBPK model estimated slightly increased Mn in the globus pallidus at the 95th percentile of exposure, but concentrations did not exceed no-observed-adverse-effect levels for neurological effects. Overall, the assessment found that the application of EAF slag in residential areas is unlikely to pose a health hazard or increased cancer risk.
Collapse
|
4
|
Perry CS, Blanchette AD, Vivanco SN, Verwiel AH, Proctor DM. Use of physiologically based pharmacokinetic modeling to support development of an acute (24-hour) health-based inhalation guideline for manganese. Regul Toxicol Pharmacol 2023; 145:105518. [PMID: 37863417 DOI: 10.1016/j.yrtph.2023.105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
The toxicokinetics of manganese (Mn) are controlled through homeostasis because Mn is an essential element. However, at elevated doses, Mn is also neurotoxic and has been associated with respiratory, reproductive, and developmental effects. While health-based criteria have been developed for chronic inhalation exposure to ambient Mn, guidelines for short-term (24-h) environmental exposure are also needed. We reviewed US state, federal, and international health-based inhalation toxicity criteria, and conducted a literature search of recent publications. The studies deemed most appropriate to derive a 24-h guideline have a LOAEL of 1500 μg/m3 for inflammatory airway changes and biochemical measures of oxidative stress in the brain following 90 total hours of exposure in monkeys. We applied a cumulative uncertainty factor of 300 to this point of departure, resulting in a 24-h guideline of 5 μg/m3. To address uncertainty regarding potential neurotoxicity, we used a previously published physiologically based pharmacokinetic model for Mn to predict levels of Mn in the brain target tissue (i.e., globus pallidus) for exposure at 5 μg/m3 for two short-term human exposure scenarios. The PBPK model predictions support a short-term guideline of 5 μg/m3 as protective of both respiratory effects and neurotoxicity, including exposures of infants and children.
Collapse
Affiliation(s)
- Camarie S Perry
- ToxStrategies, 9390 Research Blvd, Bldg. II, Suite 100, Austin, TX, 78759, USA.
| | | | | | - Ann H Verwiel
- ToxStrategies, 1010 B Street, Suite 208, San Rafael, CA, 94901, USA.
| | - Deborah M Proctor
- ToxStrategies, 27001 La Paz Road, Suite 260, Mission Viejo, CA, 92691, USA.
| |
Collapse
|
5
|
Yao W, Gallagher DL, Dietrich AM. Risks to children from inhalation of aerosolized aqueous manganese emitted from ultrasonic humidifiers can be greater than for corresponding ingestion. WATER RESEARCH 2021; 207:117760. [PMID: 34800908 DOI: 10.1016/j.watres.2021.117760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/22/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED The essential trace element manganese (Mn) can cause neurotoxicity with inhalation acknowledged as a more severe health and cognition threat than ingestion. METHODS Over a range of aqueous Mn concentrations present in tap water, this research characterizes exposures and risks for adults and 0.25, 1, 2.5, and 6 yr old children who ingest the water and inhale respirable particles produced by a room-sized ultrasonic humidifier filled with the same water. Aqueous Mn concentrations evaluated included 50 µg/L USEPA esthetic guideline, 80 µg/L WHO infant guideline, and 120 µg/L Canadian regulatory level. Airborne-particle-bound Mn concentrations were generated for water filling an ultrasonic humidifier under four realistic room conditions (33 m3 small or 72 m3 large) with varying ventilation rates from 0.2/h -1.5/h. Average daily doses (ADD) and reference intake doses were calculated for ingestion and 8-h inhalation of humidified air. Hazard quotients (HQ) compared the intake doses and reference doses. Multi-path particle dosimetry (MPPD) model quantified the particle deposition and deposited dose in children's and adults' respiratory tracts. RESULTS At only 11 µg/L Mn, the resulting humidified air Mn exceeds USEPA's reference concentration of 0.05 µg/m3 Mn in small room with low, energy-efficient ventilation. Inhalation ADD are 2 magnitudes lower than ingestion ADD for identical water Mn concentrations and daily exposure frequency. Even so, ingestion HQs are approximately 0.2 but inhalation risk is significant (HQ>1) for children and adults when breathing Mn-humidified air under most small room conditions at 50, 80 or 120 µg/L Mn. MPPD model indicates inhaled Mn deposits in head and pulmonary regions, with greater Mn dose deposits in children than adults. CONCLUSION Inhalation of Mn-particles produced from ultrasonic humidifiers can pose greater risks than ingestion at the same water concentration, especially for children. Aqueous Mn concentration and room size influence risks. Limiting manganese exposures and setting regulations requires consideration of both ingestion and inhalation of water.
Collapse
Affiliation(s)
- Wenchuo Yao
- Department of Civil and Environmental Engineering, Virginia Tech, 413 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Daniel L Gallagher
- Department of Civil and Environmental Engineering, Virginia Tech, 413 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Andrea M Dietrich
- Department of Civil and Environmental Engineering, Virginia Tech, 413 Durham Hall, Blacksburg, Virginia 24061, United States.
| |
Collapse
|
6
|
Bailey LA, Boomhower SR. Potential implications of new information concerning manganese Ohio community health effects studies. Regul Toxicol Pharmacol 2021; 127:105069. [PMID: 34718075 DOI: 10.1016/j.yrtph.2021.105069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
Several epidemiology studies have been conducted in Ohio communities where industrial facilities with manganese emissions are located. New information not addressed in the published papers for this research has been disclosed by U.S. federal agencies pursuant to the Freedom of Information Act. This paper describes the newly available information, presents statistical analyses of the new summary data, and explores how this information potentially impacts the conclusions of the published research. Based on a statistical analysis of the newly available data, we found very few, and no consistent, statistical differences for various illnesses, self-reported symptoms, and neuropsychological/neuromotor test results between one community with a manganese emission source and a control town that were part of the initial research. Further, we determined that the distribution of total suspended particulate manganese air concentrations did not correlate with the distribution of the more biologically relevant respirable manganese concentrations when data from two communities with potential manganese emissions were combined. These results are important, particularly in determining whether the studies should influence regulatory reference values related to manganese. We recommend that the full health effects data set associated with the published research be made available and re-evaluated to address the issues identified in this paper.
Collapse
Affiliation(s)
- Lisa A Bailey
- Gradient, One Beacon Street, Boston, MA, 02108, USA.
| | - Steven R Boomhower
- Gradient, One Beacon Street, Boston, MA, 02108, USA; Harvard Division of Continuing Education, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
7
|
Ruiz-Azcona L, Fernández-Olmo I, Expósito A, Markiv B, Paz-Zulueta M, Parás-Bravo P, Sarabia-Cobo C, Santibáñez M. Impact of Environmental Airborne Manganese Exposure on Cognitive and Motor Functions in Adults: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084075. [PMID: 33924318 PMCID: PMC8068914 DOI: 10.3390/ijerph18084075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022]
Abstract
Background/Objective: Whether environmental exposure to Manganese (Mn) in adults is associated with poorer results in cognitive and motor function is unclear. We aimed to determine these associations through a meta-analysis of published studies. Methods: A systematic review was conducted to identify epidemiological studies on a population ≥18 years old exposed to environmental airborne Mn, and in which results on specific tests to evaluate cognitive or motor functions were reported. We consulted Medline through PubMed, Web of Science and SCOPUS databases. We also performed a manual search within the list of bibliographic references of the retrieved studies and systematic reviews. To weight Mn effects, a random effects versus fixed effect model was chosen after studying the heterogeneity of each outcome. Results. Eighteen studies met the inclusion criteria. Among them, eleven studies reported data susceptible for meta-analysis through a pooled correlation or a standardized means difference (SMD) approach between exposed and non-exposed groups. Regarding cognitive function, the results of the studies showed heterogeneity among them (I2 = 76.49%, p < 0.001). The overall effect was a statistically significant negative correlation in the random effects model (pooled r = −0.165; 95%CI: −0.214 to −0.116; p < 0.001). For SMD, the results showed a lower heterogeneity with a negative SMD that did not reach statistical significance under the fixed effects model (SMD = −0.052; 95%CI −0.108 to 0.004; p = 0.068). Regarding motor function, heterogeneity (I2 = 75%) was also observed in the correlation approach with a pooled r (random effect model) = −0.150; 95%CI: −0.219 to −0.079; p < 0.001. Moderate heterogeneity was observed according to the SMD approach (I2 = 52.28%), with a pooled SMD = −0.136; 95%CI: −0.188 to−0.084; p < 0.001, indicating worse motor function in those exposed. Conclusions: Correlation approach results support a negative effect on cognitive and motor functions (the higher the Mn levels, the poorer the scores). Regarding the SMD approach, results also support a worse cognitive and motor functions in those exposed, although only for motor function statistical significance was obtained.
Collapse
Affiliation(s)
- Laura Ruiz-Azcona
- Global Health Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla s/n, 39008 Santander, Cantabria, Spain;
| | - Ignacio Fernández-Olmo
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain; (I.F.-O.); (A.E.); (B.M.)
| | - Andrea Expósito
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain; (I.F.-O.); (A.E.); (B.M.)
| | - Bohdana Markiv
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain; (I.F.-O.); (A.E.); (B.M.)
| | - María Paz-Zulueta
- Economía de la Salud y Gestión de Servicios Sanitarios Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla s/n, 39008 Santander, Cantabria, Spain; (M.P.-Z.); (P.P.-B.)
- Research Health and Bioethics Law Group, GRIDES, IDIVAL, Calle Cardenal Herrera Oria s/n, 39011 Santander, Cantabria, Spain
| | - Paula Parás-Bravo
- Economía de la Salud y Gestión de Servicios Sanitarios Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla s/n, 39008 Santander, Cantabria, Spain; (M.P.-Z.); (P.P.-B.)
- Cuidados Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla s/n, 39008 Santander, Cantabria, Spain;
| | - Carmen Sarabia-Cobo
- Cuidados Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla s/n, 39008 Santander, Cantabria, Spain;
- Research Nursing Group, IDIVAL, Calle Cardenal Herrera Oria s/n, 39011 Santander, Cantabria, Spain
| | - Miguel Santibáñez
- Global Health Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla s/n, 39008 Santander, Cantabria, Spain;
- Research Nursing Group, IDIVAL, Calle Cardenal Herrera Oria s/n, 39011 Santander, Cantabria, Spain
- Correspondence:
| |
Collapse
|
8
|
Fernández-Olmo I, Mantecón P, Markiv B, Ruiz-Azcona L, Santibáñez M. A Review on the Environmental Exposure to Airborne Manganese, Biomonitoring, and Neurological/Neuropsychological Outcomes. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 254:85-130. [PMID: 32474705 DOI: 10.1007/398_2020_46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The occupational exposure to airborne manganese (Mn) has been linked for decades with neurological effects. With respect to its environmental exposure, the first reviews on this matter stated that the risk posed to human health by this kind of exposure was still unknown. Later, many studies have been developed to analyze the association between environmental Mn exposure and health effects, most of them including the measure of Mn in selected human biomarkers. This review aims at collecting and organizing the literature dealing with the environmental airborne Mn exposure (other routes of exposure were intentionally removed from this review), the biomonitoring of this metal in different body matrices (e.g., blood, urine, nails, hair), and the association between exposure and several adverse health effects, such as, e.g., neurocognitive, neurodevelopmental, or neurobehavioral outcomes. From the different exposure routes, inhalation was the only one considered in this review, to take into account the areas influenced by industrial activities closely related to the Mn industry (ferromanganese and silicomanganese plants, Mn ore mines, and their processing plants) and by traffic in countries where a fuel additive, methylcyclopentadienyl manganese tricarbonyl (MMT), has been used for years. In these areas, high air Mn levels have been reported in comparison with the annual Reference Concentration (RfC) given by the US EPA for Mn, 50 ng/m3. This review was performed using Scopus and MEDLINE databases with a keyword search strategy that took into account that each valid reference should include at least participants that were exposed to environmental airborne Mn and that were subjected to analysis of Mn in biomarkers or subjected to neurological/neuropsychological tests or both. Overall, 47 references matching these criteria were included in the discussion. Most of them report the measure of Mn in selected biomarkers (N = 43) and the assessment of different neurological outcomes (N = 31). A negative association is usually obtained between Mn levels in hair and some neurological outcomes, such as cognitive, motor, olfactory, and emotional functions, but not always significant. However, other biomarkers, such as blood and urine, do not seem to reflect the chronic environmental exposure to low/moderate levels of airborne Mn. Further studies combining the determination of the Mn exposure through environmental airborne sources and biomarkers of exposure and the evaluation of at least cognitive and motor functions are needed to better understand the effects of chronic non-occupational exposure to airborne Mn.
Collapse
Affiliation(s)
- Ignacio Fernández-Olmo
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Cantabria, Spain.
| | - Paula Mantecón
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Bohdana Markiv
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Laura Ruiz-Azcona
- Global Health Research Group, Dpto. Enfermería, Universidad de Cantabria-IDIVAL, Santander, Cantabria, Spain
| | - Miguel Santibáñez
- Global Health Research Group, Dpto. Enfermería, Universidad de Cantabria-IDIVAL, Santander, Cantabria, Spain
| |
Collapse
|
9
|
Chaves C, Marto J, Santos M, Duarte‐Ramos F, Alcobia A, Antunes L, Bronze MR, Ribeiro H. Development of a Portuguese smell test: A novel hospital compounding formulation to improve diagnosis of olfactory dysfunction. J SENS STUD 2020. [DOI: 10.1111/joss.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carolina Chaves
- Research Institute for Medicine and Pharmaceutical Science (iMed.ULisboa), Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - Joana Marto
- Research Institute for Medicine and Pharmaceutical Science (iMed.ULisboa), Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - Mário Santos
- Hospital Garcia de Orta, EPE ‐ Otorhinolaryngology Department Almada Portugal
| | - Filipa Duarte‐Ramos
- Research Institute for Medicine and Pharmaceutical Science (iMed.ULisboa), Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - Armando Alcobia
- Hospital Garcia de Orta, EPE ‐ Hospital Pharmacy Almada Portugal
| | - Luís Antunes
- Hospital Garcia de Orta, EPE ‐ Otorhinolaryngology Department Almada Portugal
| | - M. Rosário Bronze
- Research Institute for Medicine and Pharmaceutical Science (iMed.ULisboa), Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
- iBET Oeiras Portugal
| | - Helena Ribeiro
- Research Institute for Medicine and Pharmaceutical Science (iMed.ULisboa), Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| |
Collapse
|
10
|
Tan YM, Chan M, Chukwudebe A, Domoradzki J, Fisher J, Hack CE, Hinderliter P, Hirasawa K, Leonard J, Lumen A, Paini A, Qian H, Ruiz P, Wambaugh J, Zhang F, Embry M. PBPK model reporting template for chemical risk assessment applications. Regul Toxicol Pharmacol 2020; 115:104691. [PMID: 32502513 PMCID: PMC8188465 DOI: 10.1016/j.yrtph.2020.104691] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/04/2022]
Abstract
Physiologically-based pharmacokinetic (PBPK) modeling analysis does not stand on its own for regulatory purposes but is a robust tool to support drug/chemical safety assessment. While the development of PBPK models have grown steadily since their emergence, only a handful of models have been accepted to support regulatory purposes due to obstacles such as the lack of a standardized template for reporting PBPK analysis. Here, we expand the existing guidances designed for pharmaceutical applications by recommending additional elements that are relevant to environmental chemicals. This harmonized reporting template can be adopted and customized by public health agencies receiving PBPK model submission, and it can also serve as general guidance for submitting PBPK-related studies for publication in journals or other modeling sharing purposes. The current effort represents one of several ongoing collaborations among the PBPK modeling and risk assessment communities to promote, when appropriate, incorporating PBPK modeling to characterize the influence of pharmacokinetics on safety decisions made by regulatory agencies.
Collapse
Affiliation(s)
- Yu-Mei Tan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Health Effects Division, 109 TW Alexander Dr, Research Triangle Park, NC, 27709, USA.
| | - Melissa Chan
- Corteva Agriscience, Haskell R&D Center, 1090 Elkton Road, Newark, DE, 19714, USA.
| | - Amechi Chukwudebe
- BASF Corporation, 26 Davis Drive, Research Triangle Park, NC, 27709, USA.
| | - Jeanne Domoradzki
- Corteva Agriscience, Haskell R&D Center, 1090 Elkton Road, Newark, DE, 19714, USA
| | - Jeffrey Fisher
- National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| | - C Eric Hack
- ScitoVation, 100 Capitola Drive, Durham, NC, 27713, USA.
| | - Paul Hinderliter
- Syngenta Crop Protection, LLC, 410 Swing Rd, Greensboro, NC, 27409, USA.
| | - Kota Hirasawa
- Sumitomo Chemical Co, Ltd, 1-98, Kasugadenaka 3-chome, Konohana-ku, Osaka, 554-8558, Japan.
| | - Jeremy Leonard
- Oak Ridge Institute for Science and Education, 100 ORAU Way, Oak Ridge, TN, 37830, USA.
| | - Annie Lumen
- National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| | - Alicia Paini
- European Commission Joint Research Centre, Via E. Fermi 2749, Ispra I, 21027, Italy.
| | - Hua Qian
- ExxonMobil Biomedical Sciences, Inc, 1545 US Hwy 22 East, Annandale, NJ, 08801, USA.
| | - Patricia Ruiz
- CDC-ATSDR, 4770 Buford Hwy, Mailstop S102-1, Chamblee, GA, 3034, USA.
| | - John Wambaugh
- US Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr, Research Triangle Park, NC, 27711, USA.
| | - Fagen Zhang
- The Dow Chemical Company, 1803 Building, Midland, MI, 48674, USA.
| | - Michelle Embry
- Health and Environmental Sciences Institute, 740 15th Street, NW, Suite 600, Washington, DC, 20005, USA.
| |
Collapse
|
11
|
Yoon M, Ring C, Van Landingham CB, Suh M, Song G, Antonijevic T, Gentry PR, Taylor MD, Keene AM, Andersen ME, Clewell HJ. Assessing children's exposure to manganese in drinking water using a PBPK model. Toxicol Appl Pharmacol 2019; 380:114695. [PMID: 31394159 DOI: 10.1016/j.taap.2019.114695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/20/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022]
Abstract
A previously published human PBPK model for manganese (Mn) in infants and children has been updated with Mn in drinking water as an additional exposure source. Built upon the ability to capture differences in Mn source-specific regulation of intestinal uptake in nursing infants who are breast-fed and formula-fed, the updated model now describes the bioavailability of Mn from drinking water in children of ages 0-18. The age-related features, including the recommended age-specific Mn dietary intake, age-specific water consumption rates, and age-specific homeostasis of Mn, are based on the available human data and knowledge of the biology of essential-metal homeostasis. Model simulations suggest that the impact of adding drinking-water exposure to daily Mn exposure via dietary intake and ambient air inhalation in children is not greater than the impacts in adults, even at a drinking-water concentration that is 2 times higher than the USEPA's lifetime health advisory value. This conclusion was also valid for formula-fed infants who are considered at the highest potential exposure to Mn from drinking water compared to all other age groups. Our multi-route, multi-source Mn PBPK model for infants and children provides insights about the potential for Mn-related health effects on growing children and will thereby improve the level of confidence in properly interpreting Mn exposure-health effects relationships in children in human epidemiological studies.
Collapse
Affiliation(s)
- M Yoon
- ToxStrategies, Inc., RTP, NC, USA.
| | - C Ring
- ToxStrategies, Inc., Austin, TX, USA
| | | | - M Suh
- ToxStrategies, Inc., Orange County, CA, USA
| | - G Song
- ToxStrategies, Inc., Orange County, CA, USA
| | | | | | | | - A M Keene
- Afton Chemical Corporation, Richmond, VA, USA
| | | | | |
Collapse
|
12
|
Leonhard MJ, Chang ET, Loccisano AE, Garry MR. A systematic literature review of epidemiologic studies of developmental manganese exposure and neurodevelopmental outcomes. Toxicology 2019; 420:46-65. [PMID: 30928475 DOI: 10.1016/j.tox.2019.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Neurotoxic effects of high-level occupational exposure to manganese (Mn) are well established; however, whether lower-level environmental exposure to Mn in early life causes neurodevelopmental toxicity in children is unclear. METHODS A systematic literature review was conducted to identify and evaluate epidemiologic studies of specific Mn biomarkers assessed during gestation, childhood, or adolescence in association with neurodevelopmental outcomes, focusing on quantitative exposure-response estimates with specific endpoints that were assessed in multiple independent study populations. Study quality was evaluated using the revised RTI item bank and the Cochrane Risk of Bias tool, and the overall weight of epidemiologic evidence for causality was evaluated according to the Bradford Hill considerations. RESULTS Twenty-two epidemiologic studies were identified that estimated associations between early-life Mn biomarkers and neurodevelopmental outcomes. Seven of these studies provided adjusted estimates for the association with child intelligence assessed using versions of the Wechsler Intelligence Scales for Children; no other specific neurodevelopmental endpoints were assessed in more than three independent study populations each. Among the studies of child intelligence, five studies in four independent populations measured blood Mn, three studies measured hair Mn, and one measured dentin Mn. Overall, cross-sectional associations between Mn biomarkers and measures of child intelligence were mostly statistically nonsignificant but in a negative direction; however, the lone prospective cohort study found mostly null results, with some positive (favorable) associations between dentin Mn and child intelligence. Studies were methodologically limited by their cross-sectional design and potential for confounding and selection bias, as well as unaddressed questions on exposure assessment validity and biological plausibility. CONCLUSIONS The statistical associations reported in the few studies of specific Mn biomarkers and specific neurodevelopmental endpoints do not establish causal effects based on the Bradford Hill considerations. Additional prospective cohort studies of Mn biomarkers and validated neurodevelopmental outcomes, and a better understanding of the etiologic relevance of Mn biomarkers, are needed to shed light on whether environmental exposure to Mn causes adverse neurodevelopmental effects in children.
Collapse
Affiliation(s)
- Megan J Leonhard
- Exponent, Inc., Center for Health Sciences, 15375 SE 30th Place, Suite 250, Bellevue, WA 98007, United States.
| | - Ellen T Chang
- Exponent, Inc., Center for Health Sciences, 149 Commonwealth Drive, Menlo Park, CA 94025, United States.
| | - Anne E Loccisano
- Exponent, Inc., Center for Health Sciences, 1800 Diagonal Road, Suite 500, Alexandria, VA 22314, United States.
| | - Michael R Garry
- Exponent, Inc., Center for Health Sciences, 15375 SE 30th Place, Suite 250, Bellevue, WA 98007, United States.
| |
Collapse
|
13
|
Tan YM, Worley RR, Leonard JA, Fisher JW. Challenges Associated With Applying Physiologically Based Pharmacokinetic Modeling for Public Health Decision-Making. Toxicol Sci 2019; 162:341-348. [PMID: 29385573 DOI: 10.1093/toxsci/kfy010] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The development and application of physiologically based pharmacokinetic (PBPK) models in chemical toxicology have grown steadily since their emergence in the 1980s. However, critical evaluation of PBPK models to support public health decision-making across federal agencies has thus far occurred for only a few environmental chemicals. In order to encourage decision-makers to embrace the critical role of PBPK modeling in risk assessment, several important challenges require immediate attention from the modeling community. The objective of this contemporary review is to highlight 3 of these challenges, including: (1) difficulties in recruiting peer reviewers with appropriate modeling expertise and experience; (2) lack of confidence in PBPK models for which no tissue/plasma concentration data exist for model evaluation; and (3) lack of transferability across modeling platforms. Several recommendations for addressing these 3 issues are provided to initiate dialog among members of the PBPK modeling community, as these issues must be overcome for the field of PBPK modeling to advance and for PBPK models to be more routinely applied in support of public health decision-making.
Collapse
Affiliation(s)
- Yu-Mei Tan
- National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Rachel R Worley
- Agency for Toxic Substances and Disease Registry, Atlanta, Georgia 30341
| | - Jeremy A Leonard
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830
| | - Jeffrey W Fisher
- National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arizona 72079
| |
Collapse
|
14
|
Physiologically-based pharmacokinetic modeling suggests similar bioavailability of Mn from diet and drinking water. Toxicol Appl Pharmacol 2018; 359:70-81. [DOI: 10.1016/j.taap.2018.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/29/2022]
|
15
|
Smith D, Woodall GM, Jarabek AM, Boyes WK. Manganese testing under a clean air act test rule and the application of resultant data in risk assessments. Neurotoxicology 2018; 64:177-184. [PMID: 28676206 PMCID: PMC6664450 DOI: 10.1016/j.neuro.2017.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/27/2017] [Indexed: 01/19/2023]
Abstract
In the 1990's, the proposed use of methylcyclopentadienyl manganese tricarbonyl (MMT) as an octane-enhancing gasoline fuel additive led to concerns for potential public health consequences from exposure to manganese (Mn) combustion products in automotive exhaust. After a series of regulatory/legal actions and negotiations, the U.S. Environmental Protection Agency (EPA) issued under Clean Air Act (CAA) section 211(b) an Alternative Tier 2 Test Rule that required development of scientific information intended to help resolve uncertainties in exposure or health risk estimates associated with MMT use. Among the uncertainties identified were: the chemical forms of Mn emitted in automotive exhaust; the relative toxicity of different Mn species; the potential for exposure among sensitive subpopulations including females, the young and elderly; differences in sensitivity between test species and humans; differences between inhalation and oral exposures; and the influence of dose rate and exposure duration on tissue accumulation of Mn. It was anticipated that development of specific sets of pharmacokinetic (PK) information and models regarding Mn could help resolve many of the identified uncertainties and serve as the best foundation for available data integration. The results of the test program included development of several unique Mn datasets, and a series of increasingly sophisticated Mn physiologically-based pharmacokinetic (PBPK) models. These data and models have helped address each of the uncertainties originally identified in the Test Rule. The output from these PBPK models were used by the Agency for Toxic Substances and Disease Registry (ATSDR) in 2012 to inform the selection of uncertainty factors for deriving the manganese Minimum Risk Level (MRL) for chronic exposure durations. The EPA used the MRL in the Agency's 2015 evaluation of potential residual risks of airborne manganese released from ferroalloys production plants. This resultant set of scientific data and models likely would not exist without the CAA section 211(b) test rule regulatory procedure.
Collapse
Affiliation(s)
- Darcie Smith
- Office of Air Quality Planning and Standards, Office of Air and Radiation, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - George M Woodall
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Annie M Jarabek
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - William K Boyes
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|