1
|
Du S, Yang F, Wu L, Hu D, Zhang Y, Gong M, Yang Y, Yang X, Zeng Q. Assessing the potential molecular mechanism of arsenite-induced skin cell senescence. Toxicol Res (Camb) 2023; 12:843-852. [PMID: 37915474 PMCID: PMC10615813 DOI: 10.1093/toxres/tfad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/05/2023] [Accepted: 08/24/2023] [Indexed: 11/03/2023] Open
Abstract
Arsenic exposure is a public health concern worldwide. Skin damage, as a typical lesion of arsenic exposure, the mechanism is still unknown. Studies have found that cellular senescence plays a key role in arsenic-induced skin damage, and the previous research found that the ERK/CEBPB signaling pathway may be an important molecular event of arsenic-induced skin cell senescence, but its specific mechanism is unknown. In this study, genetic engineering technology was used to construct stable HaCaT cell lines, and the role and mechanism of ERK/CEBPB signaling pathway in arsenic-induced HaCaT cell senescence were verified by knockdown and overexpression of ERK and CEBPB in both forward and backward. It was found that knockdown of CEBPB or ERK can downregulate the ERK/CEBPB signaling pathway and reduce arsenic-induced skin cell senescence. In contrast to knockdown, overexpression of CEBPB or ERK can upregulate the ERK/CEBPB signaling pathway and aggravate the senescence of skin cells caused by arsenic. These findings suggest that sodium arsenite can further promote SASP secretion and the expression of p53, p21 and p16 INK4a by activating the ERK/CEBPB signaling pathway, induce cell cycle arrest and trigger cellular senescence.
Collapse
Affiliation(s)
- Sufei Du
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| | - Fan Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| | - Liping Wu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| | - Dexiu Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| | - Yuhong Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| | - Maoyuan Gong
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| | - Yang Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| | - Xingcan Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| | - Qibing Zeng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| |
Collapse
|
2
|
Khanam T, Liang S, Xu S, Musstjab Akber Shah Eqani SA, Shafqat MN, Rasheed H, Bibi N, Shen H, Zhang J. Arsenic exposure induces urinary metabolome disruption in Pakistani male population. CHEMOSPHERE 2023; 312:137228. [PMID: 36372340 DOI: 10.1016/j.chemosphere.2022.137228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Millions of people are at risk of consuming arsenic (As) contaminated drinking water in Pakistan. The current study aimed to investigate urinary arsenic species [iAsIII, iAsV, dimethylarsinic acid (DMA), methylarsonic acid (MMA)] and their potential toxicity biomarkers (based on urinary metabolome) in order to characterize the health effects in general adult male participants (n = 588) exposed to various levels of arsenic in different floodplain areas of Pakistan. The total urinary arsenic concentration (mean; 161 μg/L) of studied participants was lower and/or comparable than those values reported from other highly contaminated regions, but exceeded the Agency for Toxic Substances and Disease Registry (ATSDR) limits. For all the participants, the most excreted species was DMA accounting for 65% of the total arsenic, followed by MMA (20%) and iAs (16%). The percentage of MMA detected in this study was higher than those of previously reported data from other countries. These results suggested that studied population might have high risk of developing arsenic exposure related adverse health outcomes. Furthermore, random forest machine learning algorithm, partial correlation and binary logistic regression analysis were performed to screen the arsenic species-related urinary metabolites. A total of thirty-eight metabolites were extracted from 2776 metabolic features and identified as the potential arsenic toxicity biomarkers. The metabolites were mainly classified into xanthines, purines, and amino acids, which provided the clues linking the arsenic exposure with oxidative stress, one-carbon metabolism, purine metabolism, caffeine metabolism and hormone metabolism. These results would be helpful to develop early health warning system in context of arsenic exposure among the general populations of Pakistan.
Collapse
Affiliation(s)
- Tasawar Khanam
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Shijia Liang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Song Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102, Xiamen, China
| | | | | | - Hifza Rasheed
- National Laboratory for the Water Quality, Pakistan Council Research Water Resources, Islamabad, Pakistan
| | - Nazia Bibi
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102, Xiamen, China.
| |
Collapse
|
3
|
Jiang R, Zhang Q, Ji D, Jiang T, Hu Y, He S, Tao L, Shen J, Zhang W, Song Y, Ma Y, Tong S, Tao F, Yao Y, Liang C. Influence of combined exposure levels of total arsenic and inorganic arsenic on arsenic methylation capacity among university students: findings from Bayesian kernel machine regression analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28714-28724. [PMID: 34988804 DOI: 10.1007/s11356-021-17906-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The arsenic (As) methylation capacity is an important determinant of susceptibility to As-related diseases. Total As (TAs) or inorganic As (iAs) was reported to associated with As methylation capacity. We measured urinary concentrations of iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) by using HPLC-HG-AFS and calculated the primary methylation capacity index (PMI) and secondary methylation capacity index (SMI) in 209 university students in Hefei, China, a non-As endemic area. Volunteers were given a standardized questionnaire asking about their sociodemographic characteristics. Bayesian kernel machine regression (BKMR) analysis was used to estimate the association of lnTAs and lniAs levels with methylation indices (ln%MMA, ln%DMA, lnPMI, lnSMI). The median concentrations of iAs, MMA, and DMA were 1.22, 0.92, and 12.17 μg/L, respectively; the proportions of iAs, MMA, and DMA were 8.76%, 6.13%, and 84.84%, respectively. Females had higher %DMA and lower %MMA than males. The combined levels of lnTAs and lniAs showed a decrease in the changes in ln%DMA and lnSMI. With regard to the single exposure level, the lnTAs showed positive correlations with ln%DMA, lnPMI, and lnSMI when lniAs was set at a specific level, while lniAs showed negative correlations with ln%DMA, lnPMI, and lnSMI when lnTAs was set at a specific level; all the dose-response relationships were nonlinear. Our results suggested that combined levels of TAs and iAs play an important role in reducing As methylation capacity, especially iAs, and the reduction only occurs when TAs and iAs are present up to a certain combined level.
Collapse
Affiliation(s)
- Rui Jiang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qing Zhang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Dongmei Ji
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tingting Jiang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuan Hu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shitao He
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Long Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Shen
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wei Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuxiang Song
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yicheng Ma
- The Second Clinical Medical College, Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Shilu Tong
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Public Health and Social Work and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yuyou Yao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Wang M, Tan J, Jiang C, Li S, Wu X, Ni G, He Y. Inorganic arsenic influences cell apoptosis by regulating the expression of MEG3 gene. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:475-484. [PMID: 33033900 DOI: 10.1007/s10653-020-00740-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Arsenic is a wildly distributed carcinogen in the environment. Arsenic-induced apoptosis has been extensively studied in therapeutics and toxicology. LncRNA MEG3 has been extensively studied as apoptosis regulatory gene in recent years. However, it stays unclear regarding how the mechanism of MEG3 regulates arsenic-induced apoptosis. Our focus was to explore the effects of MEG3 on arsenic-induced apoptosis. MTS assay was used to test cell viability, and qRT-PCR was for the examination of gene expressions. The effect of the apoptosis and necrosis after knockdown MEG3 was detected with double staining. Our results demonstrated that MEG3 expression was positively correlated with the concentration of three arsenic species (inorganic arsenic (iAs), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)) (p < 0.05). The ability of iAs to induce MEG3 expression was much higher compared with that induced by MMA and DMA. In addition, our experiments confirmed that MEG3 knockdown increased cell viability and arsenic-induced apoptosis, but cell viability decreased after iAs treatment. Moreover, LncRNA MEG3 regulated apoptosis via down-regulate API5 while up-regulate CASP7, CCND3 and APAF1. It is further proved that arsenic-induced apoptosis increased after the knockdown of MEG3, which regulates these genes. These findings provide experimental evidence and possible mechanisms for subsequent research on the effects of arsenic on health.
Collapse
Affiliation(s)
- Mengjie Wang
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Jingwen Tan
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Chenglan Jiang
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Shuting Li
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Xinan Wu
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Guanghui Ni
- College of Pharmaceutic Science, Yunnan University of Chinese Medicine, No.1076 Yuhua Road Chenggong District, Kunming, Yunnan Province, China.
| | - Yuefeng He
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China.
| |
Collapse
|
5
|
Arsenic metabolism differs between child and adult patients during acute arsenic poisoning. Toxicol Appl Pharmacol 2020; 410:115352. [PMID: 33264645 DOI: 10.1016/j.taap.2020.115352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022]
Abstract
Epidemiological studies on chronic arsenic poisoning have clarified the relationship between various adverse effects and methylation efficiency or methylation capacity. However, no study has similarly investigated such effects on patients with acute arsenic poisoning. In the present work, we studied 61 patients with acute oral arsenic poisoning occurring after consumption of an arsenic trioxide-laced meal (curry soup). The cohort included children (defined as under 15 year old [y/o], n = 22) and adults (over 16 y/o, n = 39) whose urinary arsenic profiles were analyzed. None of these patients had received treatment with chelating agents. The estimated median (IQR) arsenic intake was 64.5 mg (48.3-80.5 mg) in children and 76.0 mg (56.0-91.0 mg) in adults, and these values were not significantly different. Symptoms of poisoning in children improved approximately 1 week after hospitalization. However, the symptoms in most adults deteriorated with severe signs of arsenic poisoning. Urinary arsenic profiles of all the patients were analyzed to obtain the following information: % monomethylarsonic acid (MMA), % dimethylarsinic acid (DMA), second methylation ratio (DMA/MMA), and secondary methylation index (SMI, DMA/MMA + DMA). The levels of these parameters may help identify patients at risk for worsening symptoms. %MMA, an indicator of incomplete methylation, increased more in adults, who experienced more severe symptom progression, compared with children. In contrast, %DMA, which indicates more complete and efficient methylation, increased particularly in children with mild symptoms. Overall the present results indicate that children possess an excellent capacity for methylation (second methylation ratio) of arsenic to DMA and therefore, experience relatively less severe progression of symptomology during acute arsenic poisoning.
Collapse
|
6
|
Sanyal T, Bhattacharjee P, Paul S, Bhattacharjee P. Recent Advances in Arsenic Research: Significance of Differential Susceptibility and Sustainable Strategies for Mitigation. Front Public Health 2020; 8:464. [PMID: 33134234 PMCID: PMC7578365 DOI: 10.3389/fpubh.2020.00464] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Arsenic contamination in drinking water and associated adverse outcomes are one of the major health issues in more than 50 countries worldwide. The scenario is getting even more detrimental with increasing number of affected people and newer sites reported from all over the world. Apart from drinking water, the presence of arsenic has been found in various other dietary sources. Chronic arsenic toxicity affects multiple physiological systems and may cause malignancies leading to death. Exposed individuals, residing in the same area, developed differential dermatological lesion phenotypes and varied susceptibility toward various other arsenic-induced disease risk, even after consuming equivalent amount of arsenic from the similar source, over the same duration of time. Researches so far indicate that differential susceptibility plays an important role in arsenic-induced disease manifestation. In this comprehensive review, we have identified major population-based studies of the last 20 years, indicating possible causes of differential susceptibility emphasizing arsenic methylation capacity, variation in host genome (single nucleotide polymorphism), and individual epigenetic pattern (DNA methylation, histone modification, and miRNA expression). Holistic multidisciplinary strategies need to be implemented with few sustainable yet cost-effective solutions like alternative water source, treatment of arsenic-contaminated water, new adaptations in irrigation system, simple modifications in cooking strategy, and dietary supplementations to combat this menace. Our review focuses on the present perspectives of arsenic research with special emphasis on the probable causes of differential susceptibility toward chronic arsenic toxicity and sustainable remediation strategies.
Collapse
Affiliation(s)
- Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata, India.,Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata, India.,Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, U.T. MD Anderson Cancer Center, Smithville, TX, United States
| | | |
Collapse
|
7
|
Khanam T, Eqani SAMAS, Zhang J, Wang H, Zhang Y, Yang J, Sadiq M, Rasheed H, Shen H. Urinary profiles of selected metals and arsenic and their exposure pathway analysis in four large floodplains of Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139586. [PMID: 32526565 DOI: 10.1016/j.scitotenv.2020.139586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
In context of fragile geological conditions and rapid urbanization, element exposure via dietary (food, water) and non-dietary (dust, soil) routes into human population at different land use settings is a major concern in the Indus floodplains (FPs) of Pakistan. In current study, several important trace elements including arsenic (As), chromium (Cr), manganese (Mn), cobalt (Co), cadmium (Cd), nickel (Ni), copper (Cu) and lead (Pb) were analyzed in the paired human urine, food, water and dust samples collected from main FPs of Pakistan. Daily intake estimation and regression analysis were used to evaluate the relationships between internal exposure, exposure routes of studied trace elements and different land use settings. High concentrations of urinary As, Cr, Cu, Mn, and Cd were detected in the general male population of the studied floodplains (FPs). Moreover, the levels (μg/L) of urinary As increased gradually from FP1 (12.8), FP2 (18), FP3 (61) to FP4 (71). Regression analysis showed that As contaminated water was correlated with elevated urinary As concentrations in FP3 and FP4, and water Cr and Mn was significantly associated with urinary Cr and Mn concentrations in FP2. Moreover, the associations of food Mn and urinary Mn were found in FP1. Over all, cumulative estimated daily intake (EDI) values from water, dust and food from all the flood plains showed that Mn had the highest values (6.6, 9.2, 14.4 μg/kg/day) followed by water As (1.98 μg/kg/day), dust Cu (1.5 μg/kg/day) and Pb (1.7 μg/kg/day). Studied floodplains were moderately to highly polluted in terms of studied trace elements (As, Cr, Cu, Mn, and Cd) contamination especially in FP3 and FP4. The results will contribute to improve the knowledge and information on current exposure of Pakistani male adults to the different contaminants.
Collapse
Affiliation(s)
- Tasawar Khanam
- Ecohealth and Toxicology Lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | | | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102 Xiamen, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, China
| | - Yongli Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, China
| | - Jianbo Yang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, China
| | - Muhammad Sadiq
- Ecohealth and Toxicology Lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Hifza Rasheed
- National Water Quality Laboratory, Pakistan Council of Research in Water Resources, Islamabad, Pakistan
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102 Xiamen, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
8
|
Kong C, Yang L, Yu J, Li H, Wei B, Guo Z, Xia Y, Wu K. Changes in urinary arsenic species and methylation capacity in original arsenic exposure cohort after water quality improvement. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2841-2851. [PMID: 32034620 DOI: 10.1007/s10653-020-00523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Water quality improvement is the most efficient way to prevent arsenic exposure. After the cessation of arsenic ingestion, arsenic methylation capacity of the exposed population can change significantly. The factors associated with these changes remain poorly understood. Therefore, arsenic methylation capacity in a study cohort was estimated before and after water quality improvement in the present study. Results indicated that urinary content of the arsenic species in the study cohort significantly decreased after water quality improvement. In addition, the proportions of inorganic arsenic (%iAs) and monomethyl arsenic acid (%MMA) were significantly decreased, while proportions of dimethyl arsenic (%DMA) increased. The primary methylation index (PMI) and secondary methylation index (SMI) increased from 0.85 to 0.92 and 0.82 to 0.84, respectively. Arsenic species urinary content and arsenic methylation index varied slightly between the study cohort after water quality improvement and the control cohort. The rate of increase in PMI was higher than that in SMI. The study group aged 31-50 years had the highest increase in PMI. Logistic regression revealed that %DMA before water quality improvement was negatively associated with the increase in PMI, while %iAs were positively related, and %MMA were positively associated with the increase in SMI. It is concluded that urinary arsenic species content and arsenic methylation capacity increased to the levels of the control cohort after water quality improvement. An increase in primary arsenic methylation capacity may be a burden on the secondary arsenic methylation capacity. The main role of arsenic methylation capacity recovery may be the cessation of arsenic exposure.
Collapse
Affiliation(s)
- Chang Kong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Huairou, People's Republic of China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Huairou, People's Republic of China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Huairou, People's Republic of China
| | - Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China.
| | - Zhiwei Guo
- Inner Mongolia Comprehensive Center for Disease Control and Prevention, Hohhot, Inner Mongolia, People's Republic of China
| | - Yajuan Xia
- Inner Mongolia Comprehensive Center for Disease Control and Prevention, Hohhot, Inner Mongolia, People's Republic of China
| | - Kegong Wu
- Inner Mongolia Comprehensive Center for Disease Control and Prevention, Hohhot, Inner Mongolia, People's Republic of China
| |
Collapse
|
9
|
Sanyal T, Bhattacharjee P, Paul S, Bhattacharjee P. Recent Advances in Arsenic Research: Significance of Differential Susceptibility and Sustainable Strategies for Mitigation. Front Public Health 2020. [PMID: 33134234 DOI: 10.3389/fpubh/2020.00464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Arsenic contamination in drinking water and associated adverse outcomes are one of the major health issues in more than 50 countries worldwide. The scenario is getting even more detrimental with increasing number of affected people and newer sites reported from all over the world. Apart from drinking water, the presence of arsenic has been found in various other dietary sources. Chronic arsenic toxicity affects multiple physiological systems and may cause malignancies leading to death. Exposed individuals, residing in the same area, developed differential dermatological lesion phenotypes and varied susceptibility toward various other arsenic-induced disease risk, even after consuming equivalent amount of arsenic from the similar source, over the same duration of time. Researches so far indicate that differential susceptibility plays an important role in arsenic-induced disease manifestation. In this comprehensive review, we have identified major population-based studies of the last 20 years, indicating possible causes of differential susceptibility emphasizing arsenic methylation capacity, variation in host genome (single nucleotide polymorphism), and individual epigenetic pattern (DNA methylation, histone modification, and miRNA expression). Holistic multidisciplinary strategies need to be implemented with few sustainable yet cost-effective solutions like alternative water source, treatment of arsenic-contaminated water, new adaptations in irrigation system, simple modifications in cooking strategy, and dietary supplementations to combat this menace. Our review focuses on the present perspectives of arsenic research with special emphasis on the probable causes of differential susceptibility toward chronic arsenic toxicity and sustainable remediation strategies.
Collapse
Affiliation(s)
- Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata, India
- Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata, India
- Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, U.T. MD Anderson Cancer Center, Smithville, TX, United States
| | | |
Collapse
|
10
|
He Y, Zhang R, Chen J, Tan J, Wang M, Wu X. The ability of arsenic metabolism affected the expression of lncRNA PANDAR, DNA damage, or DNA methylation in peripheral blood lymphocytes of laborers. Hum Exp Toxicol 2019; 39:605-613. [DOI: 10.1177/0960327119897101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arsenic has been associated with significant effects on human health. Exposure to inorganic arsenic has been associated with the changes in gene expression. Promoter of CDKN1A antisense DNA damage activated RNA (PANDAR) expression is induced by p53 protein and DNA damage response. Here, we investigated whether the ability of arsenic metabolism in individuals affected the expression of PANDAR, DNA damage, and DNA methylation. Levels of gene expression and DNA damage were examined by the quantitative polymerase chain reaction and DNA methylation was measured by the methylation-sensitive high-resolution melting curve. In our study, we demonstrated that arsenic exposure increased PANDAR expression and DNA damage among arsenic smelting plant laborers. The PANDAR expression and DNA damage were positively linked to monomethylarsonic acid % ( R = 0.25, p < 0.05 and R = 0.32, p < 0.01) and negatively linked to dimethylarsinic acid % ( R = −0.21, p < 0.05 and R = −0.31, p < 0.01). Subjects with low primary methylation index had increased levels of DNA damage (51.62 ± 2.96 vs. 60.93 ± 3.10, p < 0.05) and methylation (17.14 (15.88–18.51) vs. 15.83 (14.82–18.00), p < 0.05). Subjects with low secondary methylation index had increased levels of PANDAR expression (4.88 ± 0.29 vs. 4.07 ± 0.23, p < 0.01) and DNA damage (17.38 (15.88–19.29) vs. 15.83 (14.82–17.26), p < 0.01). DNA methylation of PANDAR gene was linked to the regulation of its expression in peripheral blood lymphocytes among laborers ( Y = −2.08 × X + 5.64, p < 0.05). These findings suggested arsenic metabolism ability and exposure affected the expression of PANDAR, DNA damage, and DNA methylation.
Collapse
Affiliation(s)
- Y He
- School of Public Health, Kunming Medical University, Kunming, China
| | - R Zhang
- School of Public Health, Kunming Medical University, Kunming, China
| | - J Chen
- School of Public Health, Kunming Medical University, Kunming, China
| | - J Tan
- School of Public Health, Kunming Medical University, Kunming, China
| | - M Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - X Wu
- School of Public Health, Kunming Medical University, Kunming, China
| |
Collapse
|
11
|
Tsuji JS, Chang ET, Gentry PR, Clewell HJ, Boffetta P, Cohen SM. Dose-response for assessing the cancer risk of inorganic arsenic in drinking water: the scientific basis for use of a threshold approach. Crit Rev Toxicol 2019; 49:36-84. [DOI: 10.1080/10408444.2019.1573804] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Ellen T. Chang
- Exponent, Inc., Menlo Park, CA and Stanford Cancer Institute, Stanford, CA, USA
| | | | | | - Paolo Boffetta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel M. Cohen
- Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|