1
|
Wu X, Jeong CB, Huang W, Ip JCH, Guo J, Lai KP, Liu W, Mo J. Environmental occurrence, biological effects, and health implications of zinc pyrithione: A review. MARINE POLLUTION BULLETIN 2024; 203:116466. [PMID: 38713926 DOI: 10.1016/j.marpolbul.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Due to the detrimental effects on aquatic organisms and ecosystem, tributyltin as a antifouling agent have been banned worldwide since 1990s. As a replacement for tributyltin, zinc pyrithione (ZnPT) has emerged as a new environmentally friendly antifouling agent. However, the widespread use of ZnPT unavoidably leads to the occurrence and accumulation in aquatic environments, especially in waters with limited sunlight. Despite empirical evidence demonstrating the ecotoxicity and health risks of ZnPT to different organisms, there has been no attempt to compile and interpret this data. The present review revealed that over the past 50 years, numerous studies have documented the toxicity of ZnPT in various organisms, both in vitro and in vivo. However, long-term effects and underlying mechanisms of ZnPT on biota, particularly at environmentally realistic exposure levels, remain largely unexplored. In-depth studies are thus necessary to generate detailed ecotoxicological information of ZnPT for environmental risk assessment and management.
Collapse
Affiliation(s)
- Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Chang-Bum Jeong
- Department of Marine Science, Incheon National University, Incheon 22012, South Korea
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | | | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin 541004, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.
| |
Collapse
|
2
|
Panga MJ, Zhao Y. Male Reproductive Toxicity of Antifouling Chemicals: Insights into Oxidative Stress-Induced Infertility and Molecular Mechanisms of Zinc Pyrithione (ZPT). Antioxidants (Basel) 2024; 13:173. [PMID: 38397771 PMCID: PMC10886347 DOI: 10.3390/antiox13020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Zinc pyrithione (ZPT), a widely utilized industrial chemical, is recognized for its versatile properties, including antimicrobial, antibacterial, antifungal, and antifouling activities. Despite its widespread use, recent research has shed light on its toxicity, particularly towards the male reproductive system. While investigations into ZPT's impact on male reproduction have been conducted, most of the attention has been directed towards marine organisms. Notably, ZPT has been identified as a catalyst for oxidative stress, contributing to various indicators of male infertility, such as a reduced sperm count, impaired sperm motility, diminished testosterone levels, apoptosis, and degenerative changes in the testicular tissue. Furthermore, discussions surrounding ZPT's effects on DNA and cellular structures have emerged. Despite the abundance of information regarding reproductive toxicity, the molecular mechanisms underlying ZPT's detrimental effects on the male reproductive system remain poorly understood. This review focuses specifically on ZPT, delving into its reported toxicity on male reproduction, while also addressing the broader context by discussing other antifouling chemicals, and emphasizing the need for further exploration into its molecular mechanisms.
Collapse
Affiliation(s)
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Oh HN, Kim WK. Copper pyrithione and zinc pyrithione induce cytotoxicity and neurotoxicity in neuronal/astrocytic co-cultured cells via oxidative stress. Sci Rep 2023; 13:23060. [PMID: 38155222 PMCID: PMC10754844 DOI: 10.1038/s41598-023-49740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023] Open
Abstract
Previous studies on copper pyrithione (CPT) and zinc pyrithione (ZPT) as antifouling agents have mainly focused on marine organisms. Even though CPT and ZPT pose a risk of human exposure, their neurotoxic effects remain to be elucidated. Therefore, in this study, the cytotoxicity and neurotoxicity of CPT and ZPT were evaluated after the exposure of human SH-SY5Y/astrocytic co-cultured cells to them. The results showed that, in a co-culture model, CPT and ZPT induced cytotoxicity in a dose-dependent manner (~ 400 nM). Exposure to CPT and ZPT suppressed all parameters in the neurite outgrowth assays, including neurite length. In particular, exposure led to neurotoxicity at concentrations with low or no cytotoxicity (~ 200 nM). It also downregulated the expression of genes involved in neurodevelopment and maturation and upregulated astrocyte markers. Moreover, CPT and ZPT induced mitochondrial dysfunction and promoted the generation of reactive oxygen species. Notably, N-acetylcysteine treatment showed neuroprotective effects against CPT- and ZPT-mediated toxicity. We concluded that oxidative stress was the major mechanism underlying CPT- and ZPT-induced toxicity in the co-cultured cells.
Collapse
Affiliation(s)
- Ha-Na Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Woo-Keun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Mangion SE, Mackenzie L, Roberts MS, Holmes AM. Seborrheic dermatitis: topical therapeutics and formulation design. Eur J Pharm Biopharm 2023; 185:148-164. [PMID: 36842718 DOI: 10.1016/j.ejpb.2023.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/27/2022] [Accepted: 01/27/2023] [Indexed: 02/28/2023]
Abstract
Seborrheic dermatitis (SD) is a common dermatological disorder with symptoms that include skin flaking, erythema and pruritus. This review discusses the topical products available for treating SD, which target several aspects of disease pathobiology, including cutaneous microbial dysbiosis (driven by Malassezia yeast), inflammation, sebum production and skin barrier disruption. Among the various treatments available, zinc pyrithione (ZnPT) based products that exhibit anti-fungal action are the market leaders. A skin compartment approach is presented here for combining ZnPT exposure information with threshold levels for anti-fungal efficacy and toxicity, overall providing a comprehensive picture of ZnPT therapeutics and safety. While Malassezia yeast on the surface are effectively targeted, yeast residing beyond the superficial follicle may not receive adequate ZnPT for anti-fungal effect forming the basis for skin re-colonisation. Levels entering systemic circulation from topical delivery are well below toxic thresholds, however the elevated zinc levels within the viable epidermis warrants further investigation. Strategies to improve formulation design can be broadly classified as influencing 1) topical delivery, 2) therapeutic bioactivity, 3) skin mildness, and 4) sensory attributes. Successful SD treatment ultimately requires formulations that can balance efficacy, safety, and consumer appeal.
Collapse
Affiliation(s)
- Sean E Mangion
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia; Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South 5011, South Australia, Australia; Sydney Medical School, University of Sydney, Camperdown 2050, New South Wales, Australia
| | - Lorraine Mackenzie
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia; Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South 5011, South Australia, Australia
| | - Michael S Roberts
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia; Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South 5011, South Australia, Australia; Therapeutics Research Centre, Frazer Institute, University of Queensland, Woolloongabba 4102, Queensland, Australia
| | - Amy M Holmes
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia; Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South 5011, South Australia, Australia.
| |
Collapse
|
5
|
Mangion SE, Sandiford L, Mohammed Y, Roberts MS, Holmes AM. Multi-Modal Imaging to Assess the Follicular Delivery of Zinc Pyrithione. Pharmaceutics 2022; 14:pharmaceutics14051076. [PMID: 35631659 PMCID: PMC9145647 DOI: 10.3390/pharmaceutics14051076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
Zinc pyrithione (ZnPT) is a widely used antifungal, usually applied as a microparticle suspension to facilitate delivery into the hair follicles. It then dissociates into a soluble monomeric form that is bioactive against yeast and other microorganisms. In this study, we use multiphoton microscopy (MPM) and fluorescence lifetime imaging microscopy (FLIM) to characterise ZnPT formulations and map the delivery of particles into follicles within human skin. To simulate real-world conditions, it was applied using a massage or no-massage technique, while simultaneously assessing the dissolution using Zinpyr-1, a zinc labile fluorescent probe. ZnPT particles can be detected in a range of shampoo formulations using both MPM and FLIM, though FLIM is optimal for detection as it allows spectral and lifetime discrimination leading to increased selectivity and sensitivity. In aqueous suspensions, the ZnPT 7.2 µm particles could be detected up to 500 µm in the follicle. The ZnPT particles in formulations were finer (1.0–3.3 µm), resulting in rapid dissolution on the skin surface and within follicles, evidenced by a reduced particle signal at 24 h but enhanced Zinpyr-1 intensity in the follicular and surface epithelium. This study shows how MPM-FLIM multimodal imaging can be used as a useful tool to assess ZnPT delivery to skin and its subsequent dissolution.
Collapse
Affiliation(s)
- Sean E. Mangion
- Therapeutics Research Centre, UniSA—Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.E.M.); (L.S.); (M.S.R.)
- Basil Hetzel Institute for Translational Health Research, Woodville South, SA 5011, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW 2006, Australia
| | - Lydia Sandiford
- Therapeutics Research Centre, UniSA—Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.E.M.); (L.S.); (M.S.R.)
- Basil Hetzel Institute for Translational Health Research, Woodville South, SA 5011, Australia
| | - Yousuf Mohammed
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia;
| | - Michael S. Roberts
- Therapeutics Research Centre, UniSA—Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.E.M.); (L.S.); (M.S.R.)
- Basil Hetzel Institute for Translational Health Research, Woodville South, SA 5011, Australia
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia;
| | - Amy M. Holmes
- Therapeutics Research Centre, UniSA—Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.E.M.); (L.S.); (M.S.R.)
- Basil Hetzel Institute for Translational Health Research, Woodville South, SA 5011, Australia
- Correspondence: ; Tel.: +61-449-020-795
| |
Collapse
|
6
|
Wang YS, Yang SJ, Ahmad MJ, Ding ZM, Duan ZQ, Chen YW, Liu M, Liang AX, Hua GH, Huo LJ. Zinc pyrithione exposure compromises oocyte maturation through involving in spindle assembly and zinc accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113393. [PMID: 35278989 DOI: 10.1016/j.ecoenv.2022.113393] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Zinc Pyrithione (ZPT), a Food and Drug Administration (FDA) approved chemical, is widely used for topical antimicrobials and cosmetic consumer products, including anti-dandruff shampoos. ZPT and its degraded byproducts have detected in large quantities in the environment, and identified to pose healthy risks on aquatic organisms and human. However, so far, knowledge about ZPT effects on female reproduction, particularly oocyte maturation and quality, is limited. Herein, we investigated the adverse impact of ZPT on mouse oocyte maturation and quality in vitro and found exposure to ZPT significantly compromises oocyte maturation. The results revealed that ZPT disturbed the meiotic cell cycle by impairing cytoskeletal dynamics, kinetochore-microtubule attachment (K-MT), and causing spindle assembly checkpoints (SAC) continuous activation. Further, we observed the microtubule-organizing centers (MTOCs) associated proteins p-MAPK and Aurora-A were disrupted in ZPT-treated oocytes, signified by decreased expression and abnormal localization, responsible for the severe cytoskeletal defects. In addition, ZPT exposure induced a significant increase in the levels of H3K9me2, H3K9me3, H3K27me1, and H3K27me3, suggesting the alterations of epigenetic modifications. Moreover, the accumulation of zinc ions (Zn2+) was observed in ZPT-treated oocytes, which was detrimental because overmuch intracellular Zn2+ disrupted oocyte meiosis. Finally, these above alterations impaired spindle organization and chromosome alignment in metaphase-II (MII) oocytes, indicative of damaged oocytes quality. In conclusion, ZPT exposure influenced oocyte maturation and quality via involvement in MTOCs-associated proteins mediated spindle defects, altered epigenetic modifications and zinc accumulation.
Collapse
Affiliation(s)
- Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yang-Wu Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ai-Xin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Guo-Hua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
7
|
Roberts MS, Cheruvu HS, Mangion SE, Alinaghi A, Benson HA, Mohammed Y, Holmes A, van der Hoek J, Pastore M, Grice JE. Topical drug delivery: History, percutaneous absorption, and product development. Adv Drug Deliv Rev 2021; 177:113929. [PMID: 34403750 DOI: 10.1016/j.addr.2021.113929] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Topical products, widely used to manage skin conditions, have evolved from simple potions to sophisticated delivery systems. Their development has been facilitated by advances in percutaneous absorption and product design based on an increasingly mechanistic understanding of drug-product-skin interactions, associated experiments, and a quality-by-design framework. Topical drug delivery involves drug transport from a product on the skin to a local target site and then clearance by diffusion, metabolism, and the dermal circulation to the rest of the body and deeper tissues. Insights have been provided by Quantitative Structure Permeability Relationships (QSPR), molecular dynamics simulations, and dermal Physiologically Based PharmacoKinetics (PBPK). Currently, generic product equivalents of reference-listed products dominate the topical delivery market. There is an increasing regulatory interest in understanding topical product delivery behavior under 'in use' conditions and predicting in vivo response for population variations in skin barrier function and response using in silico and in vitro findings.
Collapse
|
8
|
Francischini DS, Arruda MA. When a picture is worth a thousand words: Molecular and elemental imaging applied to environmental analysis – A review. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Mangion SE, Holmes AM, Roberts MS. Targeted Delivery of Zinc Pyrithione to Skin Epithelia. Int J Mol Sci 2021; 22:9730. [PMID: 34575891 PMCID: PMC8465279 DOI: 10.3390/ijms22189730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Zinc pyrithione (ZnPT) is an anti-fungal drug delivered as a microparticle to skin epithelia. It is one of the most widely used ingredients worldwide in medicated shampoo for treating dandruff and seborrheic dermatitis (SD), a disorder with symptoms that include skin flaking, erythema and pruritus. SD is a multi-factorial disease driven by microbiol dysbiosis, primarily involving Malassezia yeast. Anti-fungal activity of ZnPT depends on the cutaneous availability of bioactive monomeric molecular species, occurring upon particle dissolution. The success of ZnPT as a topical therapeutic is underscored by the way it balances treatment efficacy with formulation safety. This review demonstrates how ZnPT achieves this balance, by integrating the current understanding of SD pathogenesis with an up-to-date analysis of ZnPT pharmacology, therapeutics and toxicology. ZnPT has anti-fungal activity with an average in vitro minimum inhibitory concentration of 10-15 ppm against the most abundant scalp skin Malassezia species (Malassezia globosa and Malassezia restrica). Efficacy is dependent on the targeted delivery of ZnPT to the skin sites where these yeasts reside, including the scalp surface and hair follicle infundibulum. Imaging and quantitative analysis tools have been fundamental for critically evaluating the therapeutic performance and safety of topical ZnPT formulations. Toxicologic investigations have focused on understanding the risk of local and systemic adverse effects following exposure from percutaneous penetration. Future research is expected to yield further advances in ZnPT formulations for SD and also include re-purposing towards a range of other dermatologic applications, which is likely to have significant clinical impact.
Collapse
Affiliation(s)
- Sean E. Mangion
- Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; (S.E.M.); (A.M.H.)
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia
| | - Amy M. Holmes
- Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; (S.E.M.); (A.M.H.)
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Michael S. Roberts
- Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; (S.E.M.); (A.M.H.)
- Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia
- Therapeutics Research Centre, Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
10
|
Limbu SL, Purba TS, Harries M, Wikramanayake TC, Miteva M, Bhogal RK, O'Neill CA, Paus R. A folliculocentric perspective of dandruff pathogenesis: Could a troublesome condition be caused by changes to a natural secretory mechanism? Bioessays 2021; 43:e2100005. [PMID: 34486144 DOI: 10.1002/bies.202100005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 01/19/2023]
Abstract
Dandruff is a common scalp condition, which frequently causes psychological distress in those affected. Dandruff is considered to be caused by an interplay of several factors. However, the pathogenesis of dandruff remains under-investigated, especially with respect to the contribution of the hair follicle. As the hair follicle exhibits unique immune-modulatory properties, including the creation of an immunoinhibitory, immune-privileged milieu, we propose a novel hypothesis taking into account the role of the hair follicle. We hypothesize that the changes and imbalance of yeast and bacterial species, along with increasing proinflammatory sebum by-products, leads to the activation of immune response and inflammation. Hair follicle keratinocytes may then detect these changes in scalp microbiota resulting in the recruitment of leukocytes to the inflammation site. These changes in the scalp skin immune-microenvironment may impact hair follicle immune privilege status, which opens new avenues into exploring the role of the hair follicle in dandruff pathogenesis. Also see the video abstract here: https://youtu.be/mEZEznCYtNs.
Collapse
Affiliation(s)
- Susan L Limbu
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Talveen S Purba
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Matthew Harries
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK.,Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Tongyu C Wikramanayake
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mariya Miteva
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ranjit K Bhogal
- Unilever R&D Colworth, Colworth Science Park, Sharnbrook, UK
| | - Catherine A O'Neill
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK.,Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany
| |
Collapse
|
11
|
Diamond GL, Skoulis NP, Jeffcoat AR, Nash JF. A Physiological-Based Pharmacokinetic Model For The Broad Spectrum Antimicrobial Zinc Pyrithione: II. Dermal Absorption And Dosimetry In The Rat. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:609-631. [PMID: 33886436 DOI: 10.1080/15287394.2021.1912678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The broad spectrum antimicrobial/antifungal zinc pyrithione (ZnPT) is used in products ranging from antifouling paint to antidandruff shampoo. The hazard profile of ZnPT was established based upon comprehensive toxicological testing, and products containing this biocide have been safely used for years. The purpose of this study was to create a dermal physiologically based pharmacokinetic (PBPK) model for ZnPT in the rat for improving dose-response analysis of ZnPT-induced toxicity where reversible hindlimb weakness was the endpoint used as the basis for ZnPT risk assessments. Previously, we developed a PBPK model which simulated the kinetics of pyrithione (PT) and its major metabolites 2-(methylsulfonyl)pyridine and S-glucuronide conjugates in blood and tissues of rats following oral ZnPT administration. The dermal model was optimized utilizing in vitro dermal penetration investigations conducted with rat skin and with historical data from a dermal repeat dose study using rats. The model replicated the observed temporal patterns and elimination kinetics of [14C]PT equivalents in blood and urine during and following repeated dermal dosing and replicated the observed dose-dependencies of absorption, blood [14C]PT equivalents and plasma PT concentrations. The model provided internal dosimetry predictions for a benchmark dose analysis of hindlimb weakness in rats that combined dermal, gavage and dietary studies into a single internal dose-response model with area-under-the-curve (AUC) for plasma PT, the toxic moiety in the rat, as the internal dose metric. This PBPK model has predictive validity for calculating internal doses of PT and/or [14C]PT equivalents from different routes of exposure in the rat.
Collapse
Affiliation(s)
| | - Nicholas P Skoulis
- SFA Toxicology & Risk Management Services., Glastonbury, Connecticut, USA
| | | | - J Frank Nash
- The Procter & Gamble Company, Global Product Stewardship, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Holmes AM, Kempson I, Turnbull T, Paterson D, Roberts MS. Penetration of Zinc into Human Skin after Topical Application of Nano Zinc Oxide Used in Commercial Sunscreen Formulations. ACS APPLIED BIO MATERIALS 2020; 3:3640-3647. [DOI: 10.1021/acsabm.0c00280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Amy M. Holmes
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide 5001, Australia
| | - Ivan Kempson
- Future Industries Institute, The University of South Australia, Mawson Lakes 5095, Australia
| | - Tyron Turnbull
- Future Industries Institute, The University of South Australia, Mawson Lakes 5095, Australia
| | | | - Michael S. Roberts
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide 5001, Australia
- Therapeutics Research Centre, The University of Queensland, Brisbane 4102, Australia
| |
Collapse
|
13
|
Terzano R, Denecke MA, Falkenberg G, Miller B, Paterson D, Janssens K. Recent advances in analysis of trace elements in environmental samples by X-ray based techniques (IUPAC Technical Report). PURE APPL CHEM 2019; 91:1029-1063. [PMID: 32831407 PMCID: PMC7433040 DOI: 10.1515/pac-2018-0605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trace elements analysis is a fundamental challenge in environmental sciences. Scientists measure trace elements in environmental media in order to assess the quality and safety of ecosystems and to quantify the burden of anthropogenic pollution. Among the available analytical techniques, X-ray based methods are particularly powerful, as they can quantify trace elements in situ. Chemical extraction is not required, as is the case for many other analytical techniques. In the last few years, the potential for X-ray techniques to be applied in the environmental sciences has dramatically increased due to developments in laboratory instruments and synchrotron radiation facilities with improved sensitivity and spatial resolution. In this report, we summarize the principles of the X-ray based analytical techniques most frequently employed to study trace elements in environmental samples. We report on the most recent developments in laboratory and synchrotron techniques, as well as advances in instrumentation, with a special attention on X-ray sources, detectors, and optics. Lastly, we inform readers on recent applications of X-ray based analysis to different environmental matrices, such as soil, sediments, waters, wastes, living organisms, geological samples, and atmospheric particulate, and we report examples of sample preparation.
Collapse
Affiliation(s)
- Roberto Terzano
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Melissa A. Denecke
- The University of Manchester, Dalton Nuclear Institute, Oxford Road, Manchester M14 9PL, UK
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Photon Science, Notkestr. 85, 22603 Hamburg, Germany
| | - Bradley Miller
- United States Environmental Protection Agency, National Enforcement Investigations Center, Lakewood, Denver, CO 80225, USA
| | - David Paterson
- Australian Synchrotron, ANSTO Clayton Campus, Clayton, Victoria 3168, Australia
| | - Koen Janssens
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
14
|
Mo J, Lin D, Wang J, Li P, Liu W. Apoptosis in HepG2 cells induced by zinc pyrithione via mitochondrial dysfunction pathway: Involvement of zinc accumulation and oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:515-525. [PMID: 29913420 DOI: 10.1016/j.ecoenv.2018.06.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/02/2018] [Accepted: 06/09/2018] [Indexed: 06/08/2023]
Abstract
Zinc pyrithione (ZPT) is widely used as a substitute booster biocide for tributyltin and is also an additive to antidandruff shampoos and medical cosmetic products. ZPT and pyrithione have been detected in different environmental matrices and biota, suggesting that it may pose health threats to aquatic organisms and even humans. The present study used HepG2 cells, a human hepatoma cell line, to study the hepatotoxicity of ZPT (0.1-5.0 μM). ZPT treatment caused marked viability reduction and induced apoptosis depending on its dose used. ZPT-induced apoptosis involved an increased Bax/Bcl-2 ratio, loss of mitochondrial membrane potential, cytochrome c release, and enhanced caspase-9/-3 activity. In addition, a significant elevation in the amount of zinc ions and oxidative stress was evident. The involvement of these in ZPT-induced apoptosis was confirmed by toxicity comparison with analogs of ZPT and the observation that pretreatment with antioxidants afforded protection. Overall, these results suggest that ZPT induces zinc accumulation, oxidative stress, and subsequent apoptosis by causing mitochondrial dysfunction. Importantly, ROS was an initial and prolonged signal in ZPT-induced apoptosis in HepG2 cells.
Collapse
Affiliation(s)
- Jiezhang Mo
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China; Guangdong Provincial Key Lab of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, PR China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, HKSAR
| | - Derun Lin
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China; Guangdong Provincial Key Lab of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Jingzhen Wang
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China; College of Marine Sciences, Qinzhou University, Qinzhou, Guangxi 535000, PR China
| | - Ping Li
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China; Guangdong Provincial Key Lab of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Wenhua Liu
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China; Guangdong Provincial Key Lab of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|