Cruz-Hurtado M, López-González MDL, Mondragón V, Sierra-Santoyo A. In vitro phase I metabolism of vinclozolin by human liver microsomes.
Xenobiotica 2018;
49:895-904. [PMID:
30215542 DOI:
10.1080/00498254.2018.1523485]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
1. Vinclozolin (Vin) is a fungicide used in agricultural settings and is classified as an endocrine disruptor. Vin is non-enzymatically hydrolyzed to 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (M1) and 3',5'-dichloro-2-hydroxy-2-methylbut-3-enanilide (M2) metabolites. There is no information about Vin biotransformation in humans, therefore, the aim of this study was to characterize its in vitro metabolism using human liver microsomes. 2. Vin was metabolized to the [3-(3,5-dichlorophenyl)-5-methyl-5-(1,2-dihydroxyethyl)-1,3-oxazolidine-2,4-dione] (M4) and N-(2,3,4-trihydroxy-2-methyl-1-oxo)-3,5-dichlorophenyl-1-carbamic acid (M7) metabolites, which are unstable and gradually converted to 3',5'-dichloro-2,3,4-trihydroxy-2-methylbutyranilide (DTMBA, formerly denoted as M5). M4 and DTMBA metabolites co-eluted in the same HPLC peak; this co-elute peak exhibited a Michaelis-Menten kinetic, whereas M7 showed a substrate inhibition kinetics. The KM app for co-eluted M4/DTMBA and M7 was 24.2 ± 5.6 and 116.0 ± 52.6 μM, the VMax app was 0.280 ± 0.015 and 0.180 ± 0.060 nmoles/min/mg protein, and the CLint app was 11.5 and 1.5 mL/min/g protein, respectively. The Ki for M7 was 133.2 ± 63.9 μM. Cytochrome P450 (CYP) chemical inhibitors furafylline (CYP1A2), ketoconazole (CYP3A4), pilocarpine (CYP2A6) and sulfaphenazole (CYP2C9) inhibited M4/DTMBA and M7 formation, suggesting that Vin is metabolized in humans by CYP. 3. DTMBA is a stable metabolite and specific of Vin, therefore, it could be used as a biomarker of Vin exposure in humans to perform epidemiological studies.
Collapse