1
|
Castiglioni L, Gelosa P, Muluhie M, Mercuriali B, Rzemieniec J, Gotti M, Fiordaliso F, Busca G, Sironi L. Fenofibrate reduces cardiac remodeling by mitochondrial dynamics preservation in a renovascular model of cardiac hypertrophy. Eur J Pharmacol 2024; 978:176767. [PMID: 38909934 DOI: 10.1016/j.ejphar.2024.176767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Fenofibrate, a PPAR-α agonist clinically used to lower serum lipid levels, reduces cardiac remodeling and improves cardiac function. However, its mechanism of action is not completely elucidated. In this study we examined the effect of fenofibrate on mitochondria in a rat model of renovascular hypertension, focusing on mediators controlling mitochondrial dynamics and autophagy. Rats with two-kidney one-clip (2K1C) hypertension were treated with fenofibrate 150 mg/kg/day (2K1C-FFB) or vehicle (2K1C-VEH) for 8 weeks. Systolic blood pressure and cardiac functional were in-vivo assessed, while cardiomyocyte size and protein expression of mediators of cardiac hypertrophy and mitochondrial dynamics were ex-vivo examined by histological and Western blot analyses. Fenofibrate treatment counteracted the development of hypertension and the increase of left ventricular mass, relative wall thickness and cross-sectional area of cardiomyocytes. Furthermore, fenofibrate re-balanced the expression Mfn2, Drp1 and Parkin, regulators of fusion, fission, mitophagy respectively. Regarding autophagy, the LC3-II/LC3-I ratio was increased in 2K1C-VEH and 2K1C-FFB, whereas the autophagy was increased only in 2K1C-FFB. In cultured H9C2 cardiomyoblasts, fenofibrate reversed the Ang II-induced mRNA up-regulation of hypertrophy markers Nppa and Myh7, accumulation of reactive oxygen species and depolarization of the mitochondrial membrane exerting protection mediated by up-regulation of the Uncoupling protein 2. Our results indicate that fenofibrate acts directly on cardiomyocytes and counteracts the pressure overload-induced cardiac maladaptive remodeling. This study reveals a so far hidden mechanism involving mitochondrial dynamics in the beneficial effects of fenofibrate, support its repurposing for the treatment of cardiac hypertrophy and provide new potential targets for its pharmacological function.
Collapse
Affiliation(s)
- Laura Castiglioni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Paolo Gelosa
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Majeda Muluhie
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Joanna Rzemieniec
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Marco Gotti
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Fabio Fiordaliso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giuseppe Busca
- Azienda "Polo Veterinario di Lodi", University of Milan, Milan, Italy
| | - Luigi Sironi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Lin YY, Liao AH, Li HT, Jiang PY, Lin YC, Chuang HC, Ma KH, Chen HK, Liu YT, Shih CP, Wang CH. Ultrasound-Mediated Lysozyme Microbubbles Targeting NOX4 Knockdown Alleviate Cisplatin-Exposed Cochlear Hair Cell Ototoxicity. Int J Mol Sci 2024; 25:7096. [PMID: 39000202 PMCID: PMC11241201 DOI: 10.3390/ijms25137096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) protein plays an essential role in the cisplatin (CDDP)-induced generation of reactive oxygen species (ROS). In this study, we evaluated the suitability of ultrasound-mediated lysozyme microbubble (USMB) cavitation to enhance NOX4 siRNA transfection in vitro and ex vivo. Lysozyme-shelled microbubbles (LyzMBs) were constructed and designed for siNOX4 loading as siNOX4/LyzMBs. We investigated different siNOX4-based cell transfection approaches, including naked siNOX4, LyzMB-mixed siNOX4, and siNOX4-loaded LyzMBs, and compared their silencing effects in CDDP-treated HEI-OC1 cells and mouse organ of Corti explants. Transfection efficiencies were evaluated by quantifying the cellular uptake of cyanine 3 (Cy3) fluorescein-labeled siRNA. In vitro experiments showed that the high transfection efficacy (48.18%) of siNOX4 to HEI-OC1 cells mediated by US and siNOX4-loaded LyzMBs significantly inhibited CDDP-induced ROS generation to almost the basal level. The ex vivo CDDP-treated organ of Corti explants of mice showed an even more robust silencing effect of the NOX4 gene in the siNOX4/LyzMB groups treated with US sonication than without US sonication, with a marked abolition of CDDP-induced ROS generation and cytotoxicity. Loading of siNOX4 on LyzMBs can stabilize siNOX4 and prevent its degradation, thereby enhancing the transfection and silencing effects when combined with US sonication. This USMB-derived therapy modality for alleviating CDDP-induced ototoxicity may be suitable for future clinical applications.
Collapse
Affiliation(s)
- Yuan-Yung Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Road, Taipei 114201, Taiwan; (Y.-Y.L.); (H.-K.C.)
- Department of Otolaryngology—Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Taipei 11490, Taiwan;
| | - Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (A.-H.L.); (H.-T.L.); (P.-Y.J.); (Y.-T.L.)
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 114201, Taiwan
| | - Hsiang-Tzu Li
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (A.-H.L.); (H.-T.L.); (P.-Y.J.); (Y.-T.L.)
| | - Peng-Yi Jiang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (A.-H.L.); (H.-T.L.); (P.-Y.J.); (Y.-T.L.)
| | - Yi-Chun Lin
- Department of Otolaryngology—Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Taipei 11490, Taiwan;
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei 106344, Taiwan;
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114201, Taiwan;
| | - Hang-Kang Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Road, Taipei 114201, Taiwan; (Y.-Y.L.); (H.-K.C.)
- Division of Otolaryngology, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan 33052, Taiwan
| | - Yi-Tsen Liu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (A.-H.L.); (H.-T.L.); (P.-Y.J.); (Y.-T.L.)
| | - Cheng-Ping Shih
- Department of Otolaryngology—Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Taipei 11490, Taiwan;
| | - Chih-Hung Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Road, Taipei 114201, Taiwan; (Y.-Y.L.); (H.-K.C.)
- Department of Otolaryngology—Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Taipei 11490, Taiwan;
- Division of Otolaryngology, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan 33052, Taiwan
| |
Collapse
|
3
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
4
|
Kogami M, Abe S, Nakamura H, Aoshiba K. Fenofibrate attenuates the cytotoxic effect of cisplatin on lung cancer cells by enhancing the antioxidant defense system in vitro. Oncol Lett 2023; 26:313. [PMID: 37332337 PMCID: PMC10272955 DOI: 10.3892/ol.2023.13899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/11/2023] [Indexed: 06/20/2023] Open
Abstract
Fenofibrate (FF) is a peroxisome proliferator- activated receptor (PPAR)-α agonist that is widely used for the treatment of hyperlipidemia. It has been shown to have pleiotropic actions beyond its hypolipidemic effect. FF has been shown to exert a cytotoxic effect on some cancer cells when used at higher than clinically relevant concentrations; on the other hand, its cytoprotective effect on normal cells has also been reported. The present study assessed the effect of FF on cisplatin (CDDP) cytotoxicity to lung cancer cells in vitro. The results demonstrated that the effect of FF on lung cancer cells depends on its concentration. FF at ≤50 µM, which is a clinically achievable blood concentration, attenuated CDDP cytotoxicity to lung cancer cells, whereas FF at ≥100 µM, albeit clinically unachievable, had an anticancer effect. The mechanism of FF attenuation of CDDP cytotoxicity involved PPAR-α-dependent aryl hydrocarbon receptor (AhR) expression, which in turn stimulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and antioxidant production, resulting in lung cancer cell protection from CDDP-evoked oxidative damage. In conclusion, the present study revealed that FF, at clinically relevant concentrations, attenuated CDDP cytotoxicity to lung cancer cells by enhancing the antioxidant defense system through activation of a pathway that involves the PPAR-α-PPAR response element-AhR xenobiotic response element-Nrf2-antioxidant response element. These findings suggested that concomitant use of FF with CDDP may compromise the efficacy of chemotherapy. Although the anticancer property of FF has recently attracted much attention, concentrations that exceed clinically relevant concentrations are required.
Collapse
Affiliation(s)
- Mariko Kogami
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki 300-0395, Japan
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shinji Abe
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki 300-0395, Japan
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki 300-0395, Japan
| |
Collapse
|
5
|
Guan X, Wu P, Cao B, Liu X, Chen X, Zhang W, Zhang Y, Guan Z, Wang Y. PGC-1α-siRNA suppresses inflammation in substantia nigra of PD mice by inhibiting microglia. Int J Neurosci 2023; 133:269-277. [PMID: 33784949 DOI: 10.1080/00207454.2021.1910257] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background and purpose: Parkinson's disease is a common degenerative disease of the central nervous system with complex pathogenesis. More and more studies have found that inflammatory response promotes the occurrence and development of the disease, in which the activation of microglia plays an important role. PGC-1α (peroxisome proliferator activated receptor-γ coactivator-1α) is the main factor in mitochondrial biogenetic, and is closely related to the inflammatory response. Our immunofluorescence test results showed that PGC-1α and microglia (Iba1) have double-labeled phenomenon. The expression of microglia in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) group increased, and PGC-1α/Iba1 double label increased. To test whether lowering the expression of PGC-1α can reduce the activation of microglia and protect the substantia nigra dopaminergic neurons, we constructed PGC-1α interference lentivirus.Methods: Immunofluorescence, western blot, and ELISA were used to detect microglial phenotype.Results: The results showed that PGC-1α interfering with lentivirus can transfect microglial cells in substantia nigra, and the PGC-1α protein level decreased in substantia nigra accordingly; TH protein expression had no statistical difference compared with MPTP group; PGC-1α interfering lentivirus reduced microglia number and activation, and at the same time the expression of iNOS and Arg1 significantly reduced compared with MPTP group. The IL-6 expression in blood detected using ELISA was significantly reduced compared with MPTP group.Conclusion: PGC-1α downregulation inhibited microglia activity, and both M1 and M2 microglial activities are reduced.
Collapse
Affiliation(s)
- Xin Guan
- Department of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, PR China
| | - Pengyue Wu
- Department of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, PR China
| | - Bing Cao
- Department of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, PR China
| | - Xiaoting Liu
- Department of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, PR China
| | - Xi Chen
- Department of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, PR China
| | - Wenpei Zhang
- Department of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, PR China
| | - Yanqiu Zhang
- Department of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, PR China
| | - Zhenlong Guan
- Department of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, PR China
| | - Yanqin Wang
- Department of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, PR China
| |
Collapse
|
6
|
Cisplatin-induced changes in calcitonin gene-related peptide or TNF-α release in rat dorsal root ganglia in vitro model of neurotoxicity are not reverted by rosiglitazone. Neurotoxicology 2022; 93:211-221. [DOI: 10.1016/j.neuro.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
7
|
Approaches to Mitigate Mitochondrial Dysfunction in Sensorineural Hearing Loss. Ann Biomed Eng 2022; 50:1762-1770. [PMID: 36369597 DOI: 10.1007/s10439-022-03103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022]
Abstract
Mitochondria are highly dynamic multifaceted organelles with various functions including cellular energy metabolism, reactive oxygen species (ROS) generation, calcium homeostasis, and apoptosis. Because of these diverse functions, mitochondria are key regulators of cell survival and death, and their dysfunction is implicated in numerous diseases, particularly neurodegenerative disorders such as Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. One of the most common neurodegenerative disorders is sensorineural hearing loss (SNHL). SNHL primarily originates from the degenerative changes in the cochlea, which is the auditory portion of the inner ear. Many cochlear cells contain an abundance of mitochondria and are metabolically highly active, rendering them susceptible to mitochondrial dysfunction. Indeed, the causal role of mitochondrial dysfunction in SNHL progression is well established, and therefore, targeted for treatment. In this review, we aim to compile the emerging findings in the literature indicating the role of mitochondrial dysfunction in the progression of sensorineural hearing loss and highlight potential therapeutics targeting mitochondrial dysfunction for hearing loss treatment.
Collapse
|
8
|
Xu B, Li J, Chen X, Kou M. Puerarin attenuates cisplatin-induced apoptosis of hair cells through the mitochondrial apoptotic pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119208. [PMID: 35032475 DOI: 10.1016/j.bbamcr.2021.119208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Puerarin, one of the main components of Pueraria lobata, has been reported to possess a wide range of pharmacological activities, including anti-inflammatory, antioxidative and anti-apoptotic effects. However, the role of puerarin in ototoxic drug-induced hair cell injury has not been well characterized. This study explored whether puerarin protects against cisplatin-induced hair cell damage and its potential mechanisms. The viability of puerarin-treated HEI-OC1 cells was assessed by CCK8 assay. Reactive oxygen species (ROS) was estimated with flow cytometric analysis using Cellrox Green fluorescent probe. Apoptosis-related protein levels were detected by western blot analysis. Immunostaining of the organ of Corti was performed to determine mice cochlear hair cell survival. Our results showed that puerarin improved cell viability and suppressed apoptosis in the cisplatin-damaged HEI-OC1 cells and cochlear hair cells. Mechanistic studies revealed that puerarin attenuated mitochondrial apoptosis pathway by regulating apoptotic related proteins, such as Bax and cleaved caspase-3, and attenuated ROS accumulation after cisplatin damage. Moreover, puerarin was involved in regulating the Akt pathway in HEI-OC1 cells in response to cisplatin. Our results demonstrated that puerarin administration decreased the sensitivity to apoptosis dependent on the mitochondrial apoptotic pathway by reducing ROS generation, which could be used as a new protective agent against cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Bingqiang Xu
- Department of Radiology, Shaanxi Provincial People's Hospital, No.256, You Yi West Street, Xi'an 710068, PR China
| | - Juedan Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an 710004, PR China; Department of General Dentistry and Emergency Room, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an 710004, PR China
| | - Xiaolong Chen
- Department of Radiology, Shaanxi Provincial People's Hospital, No.256, You Yi West Street, Xi'an 710068, PR China
| | - Mingqing Kou
- Department of Radiology, Shaanxi Provincial People's Hospital, No.256, You Yi West Street, Xi'an 710068, PR China.
| |
Collapse
|
9
|
Huang Y, Liu C, Song X, An M, Liu M, Yao L, Famurewa AC, Olatunji OJ. Antioxidant and Anti-inflammatory Properties Mediate the Neuroprotective Effects of Hydro-ethanolic Extract of Tiliacora triandra Against Cisplatin-induced Neurotoxicity. J Inflamm Res 2021; 14:6735-6748. [PMID: 34916822 PMCID: PMC8668253 DOI: 10.2147/jir.s340176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022] Open
Abstract
Background Cisplatin (CDDP) is an efficacious anticancer agent used widely in chemotherapy despite its severe side effect related to neurotoxicity. Redox imbalance and inflammatory mechanism have been implicated in the pathophysiology of CDDP-induced neurotoxicity. Herein, we investigated whether Tiliacora triandra (TT) extract could inhibit CDDP-induced redox-mediated neurotoxicity and behavioural deficit in rats. Materials and Methods CDDP-induced redox-mediated neurotoxicity and behavioral deficit in rats. Rats were administered TT for five consecutive weeks (250 and 500 mg/kg bw), while weekly i.p. injection of CDDP commenced on the second week (2.5 mg/kg bw) of the TT administration. Results CCDDP caused significant body weight reduction and cognitive diminution as revealed by Morris water maze and Y maze tests. In the CDDP-induced cognitive impairment (CICI) rats, there were remarkable increases in the brain levels of TNF-α, IL-6 and IL-1β and malondialdehyde (MDA), whereas catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities considerably decreased compared to normal control. The brain acetylcholinesterase (AChE) activity in CDDP control rats was significantly increased compared to the normal control. The expression of caspase-3 and p53 proteins was upregulated by CDDP injection, whereas Bcl2 was downregulated coupled with histopathological alterations in the rat brain. Interestingly, treatment with TT significantly abated neurobehavioral deficits, MDA and cytokine levels and restored CAT, GPx, GSH, SOD, and AChE activities compared to the CDDP control rats. Caspase-3 level as well as Bcl2 and p53 expressions were modulated with alleviated changes in histopathology. Conclusion The findings highlight neuroprotective and cognitive function improvement efficacy of TT against CICI via redox-inflammatory balance and antiapoptotic mechanism in rats.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Chunhong Liu
- Second Peoples Hospital of Wuhu City, Wuhu, 241001, Anhui, People's Republic of China
| | - Xianbing Song
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Mei An
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Meimei Liu
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Lei Yao
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu Alike Ikwo, Ebonyi State, Nigeria
| | - Opeyemi Joshua Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| |
Collapse
|
10
|
Qiao X, Gao YY, Zheng LX, Ding XJ, Xu LW, Hu JJ, Gao WZ, Xu JY. Targeting ROS-AMPK pathway by multiaction Platinum(IV) prodrugs containing hypolipidemic drug bezafibrate. Eur J Med Chem 2021; 223:113730. [PMID: 34388483 DOI: 10.1016/j.ejmech.2021.113730] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022]
Abstract
Alterations in lipid metabolism, commonly disregarded in the past, have been accepted as a hallmark for cancer. Exploring cancer therapeutics that interrupt the lipid metabolic pathways by monotherapy or combination with conventional chemotherapy or immunotherapy is of great importance. Here we modified cisplatin with an FDA-approved hypolipidemic drug, bezafibrate (BEZ), via the well-established Pt(IV) strategy, affording two multi-functional Pt(IV) anticancer agents cis,cis,trans-[Pt(NH3)2Cl2(BEZ)(OH)] (CB) and cis,cis,trans-[Pt(NH3)2Cl2(BEZ)2] (CP) (BEZ = bezafibrate). The Pt(IV) prodrug CB exhibited an enhanced anticancer activity up to 187-fold greater than the clinical anticancer drug cisplatin. Both CB and CP had less toxicity to normal cells, showing higher efficacies and superior therapeutic indexes than cisplatin. Mechanism studies revealed that the bezafibrate-conjugated Pt(IV) complex CB, as a representative, could massively accumulate in A549 cells and genomic DNA, induce DNA damage, elevate intracellular ROS levels, perturb mitochondrial transmembrane potentials, activate the cellular metabolic sensor AMPK, and result in profound proliferation inhibition and apoptosis. Further cellular data also provided evidence that phosphorylation of AMPK, as a metabolic sensor, could suppress the downstream HMGB1, NF-κB, and VEGFA, which may contribute to the inhibition of angiogenesis and metastasis. Our study suggests that the antitumor action of CB and CP mechanistically distinct from the conventional platinum drugs and that functionalizing platinum-based agents with lipid-modulating agents may represent a novel practical strategy for cancer treatment.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yu-Yang Gao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Li-Xia Zheng
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xiao-Jing Ding
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Ling-Wen Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Juan-Juan Hu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Wei-Zhen Gao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China; Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
11
|
Liu Y, Wu H, Zhang F, Yang J, He J. Resveratrol upregulates miR-455-5p to antagonize cisplatin ototoxicity via modulating the PTEN-PI3K-AKT axis. Biochem Cell Biol 2021; 99:385-395. [PMID: 34077275 DOI: 10.1139/bcb-2020-0459] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Resveratrol is a non-flavonoid polyphenol compound that exists in many plants, and is considered an antitoxin. This study explores the effects from the regulation of miR-455-5p by resveratrol on cisplatin-induced ototoxicity via the PTEN-PI3K-AKT signaling pathway. For this, House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were transfected with miR-455-5p inhibitor and treated with cisplatin and resveratrol, then cell proliferation, apoptosis, and oxidative stress were evaluated. A mouse model of hearing loss was established, and these mice were treated with cisplatin, resveratrol, or cisplatin combined with resveratrol, by intraperitoneal injection. The auditory brainstem response (ABR) threshold was measured, and hair cells were examined using immunofluorescence staining. The expression levels of miR-455-5p, PTEN, and PI3K/Akt proteins were examined. The results from our in-vitro experiments indicate that resveratrol promoted viability and reduced apoptosis and oxidative stress in cisplatin-induced HEI-OC1 cells. Resveratrol upregulated miR-455-5p, downregulated PTEN, and activated the PI3K-Akt axis. These effects of resveratrol were reversed by knock-down of miR-455-5p. The results from our in-vivo experiments indicate that resveratrol protected hearing and inhibited the hair-cell injury caused by cisplatin ototoxicity. Resveratrol also upregulated miR-455-5p, downregulated PTEN, and activated the PTEN-PI3K-Akt axis in cochlear tissues from cisplatin-treated mice. These results indicate that resveratrol upregulates miR-455-5p to target PTEN and activate the PI3K-Akt signaling pathway to counteract cisplatin ototoxicity.
Collapse
Affiliation(s)
- Yupeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200000, P.R. China
| | - Hui Wu
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200000, P.R. China
| | - Fan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200000, P.R. China
| | - Jun Yang
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200000, P.R. China
| | - Jingchun He
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200000, P.R. China
| |
Collapse
|
12
|
CAILLAUD M, PATEL NH, WHITE A, WOOD M, Contreras KM, TOMA W, Alkhlaif Y, ROBERTS JL, Tran TH, JACKSON AB, POKLIS J, GEWIRTZ DA, DAMAJ MI. Targeting Peroxisome Proliferator-Activated Receptor-α (PPAR- α) to reduce paclitaxel-induced peripheral neuropathy. Brain Behav Immun 2021; 93:172-185. [PMID: 33434562 PMCID: PMC8226373 DOI: 10.1016/j.bbi.2021.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND PURPOSE Paclitaxel, a widely used anti-cancer drug, is frequently associated with prolonged and severe peripheral neuropathies (PIPN), associated with neuroinflammation. Currently, PIPN effective treatments are lacking. Peroxisome Proliferator-Activated Receptor-α (PPAR-⍺) can modulate inflammatory responses. Thus, the use of PPAR-⍺ agonists, such as fibrates (fenofibrate and choline-fenofibrate), currently used in dyslipidemia treatment, could represent an interesting therapeutic approach in PIPN. EXPERIMENTAL APPROACH Our studies tested the efficacy of fenofibrate (150 mg/kg, daily, i.p.) and choline fenofibrate (60 mg/kg daily, p.o.) in reversing and preventing the development of PIPN (paclitaxel: 8 mg/kg, i.p., every other day for 4 days) in male and female C57BL/6J mice. Mechanical and cold hypersensitivity, conditioned place preference, sensory nerve action potential (SNAP), as well as the expression of PPAR-⍺, TNF-⍺, IL-1β and IL-6 mRNA were evaluated. KEY RESULTS While fenofibrate treatment partially reversed and prevented the development of mechanical hypersensitivity, this was completely reversed and prevented by choline-fenofibrate. Both fibrates were able to completely reverse and prevent cold hypersensitivity induced by paclitaxel. The reduction of SNAP amplitude induced by paclitaxel was also reversed by both fenofibrate and choline-fenofibrate. Our results indicate that suppression of paclitaxel-induced hypersensitivity by fibrates involves the regulation of PPAR-⍺ expression and decrease neuroinflammation in DRG. Finally, the co-treatment of Paclitaxel and fenofibric acid (fibrates active metabolite) was tested on different cancer cell lines, no decrease in the antitumoral effect of paclitaxel was observed. CONCLUSIONS AND IMPLICATIONS Taken together, our results show for the first time the therapeutic potential (prevention and reversal) of fibrates in PIPN and opens to a potential pharmacological repurposing of these drugs.
Collapse
Affiliation(s)
- Martial CAILLAUD
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA.,Corresponding authors:,
| | - Nipa H. PATEL
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Alyssa WHITE
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Mackinsey WOOD
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Katherine M. Contreras
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Wisam TOMA
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Jane L. ROBERTS
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Tammy H. Tran
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Asti B. JACKSON
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Justin POKLIS
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - David A. GEWIRTZ
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - M. Imad DAMAJ
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA.,Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA.,Corresponding authors:,
| |
Collapse
|
13
|
Caillaud M, Patel NH, Toma W, White A, Thompson D, Mann J, Tran TH, Roberts JL, Poklis JL, Bigbee JW, Fang X, Gewirtz DA, Damaj MI. A Fenofibrate Diet Prevents Paclitaxel-Induced Peripheral Neuropathy in Mice. Cancers (Basel) 2020; 13:cancers13010069. [PMID: 33383736 PMCID: PMC7795224 DOI: 10.3390/cancers13010069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Paclitaxel, a drug used in the treatment of malignancies such as lung, ovarian and breast cancer, often produces severe side effects, among which is peripheral neuropathy. This neuropathy involves diffuse or localized pain, notably burning pain, cold and mechanical hyperexcitability. Recently, fenofibrate, a Food and Drug Administration (FDA)-approved drug for the treatment of dyslipidemia, has been shown to reduce the severity of symptoms in other forms of peripheral neuropathy. In the current work, we tested whether fenofibrate could reverse mechanical and cold hypersensitivity and improve motivation and the reduction in nerve conduction in a mouse model of paclitaxel-induced neuropathy. Our behavioral, histological and molecular assessments indicate that fenofibrate prevents the development of paclitaxel-induced neuropathy. Taken together, our studies support the therapeutic potential of fenofibrate in the prevention of paclitaxel-induced neuropathy and suggest the possible repurposing of this drug for this purpose in the clinic. Abstract Background: Paclitaxel-induced peripheral neuropathy (PIPN) is a major adverse effect of this chemotherapeutic agent that is used in the treatment of a number of solid malignancies. PIPN leads notably to burning pain, cold and mechanical allodynia. PIPN is thought to be a consequence of alterations of mitochondrial function, hyperexcitability of neurons, nerve fiber loss, oxidative stress and neuroinflammation in dorsal root ganglia (DRG) and spinal cord (SC). Therefore, reducing neuroinflammation could potentially attenuate neuropathy symptoms. Peroxisome proliferator-activated receptor-α (PPAR-α) nuclear receptors that modulate inflammatory responses can be targeted by non-selective agonists, such as fenofibrate, which is used in the treatment of dyslipidemia. Methods: Our studies tested the efficacy of a fenofibrate diet (0.2% and 0.4%) in preventing the development of PIPN. Paclitaxel (8 mg/kg) was administered via 4 intraperitoneal (i.p.) injections in C57BL/6J mice (both male and female). Mechanical and cold hypersensitivity, wheel running activity, sensory nerve action potential (SNAP), sciatic nerve histology, intra-epidermal fibers, as well as the expression of PPAR-α and neuroinflammation were evaluated in DRG and SC. Results: Fenofibrate in the diet partially prevented the development of mechanical hypersensitivity but completely prevented cold hypersensitivity and the decrease in wheel running activity induced by paclitaxel. The reduction in SNAP amplitude induced by paclitaxel was also prevented by fenofibrate. Our results indicate that suppression of paclitaxel-induced pain by fenofibrate involves the regulation of PPAR-α expression through reduction in neuroinflammation. Finally, co-administration of paclitaxel and the active metabolite of fenofibrate (fenofibric acid) did not interfere with the suppression of tumor cell growth or clonogenicity by paclitaxel in ovarian and breast cancer cell lines. Conclusions: Taken together, our results show the therapeutic potential of fenofibrate in the prevention of PIPN development.
Collapse
Affiliation(s)
- Martial Caillaud
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23284, USA; (W.T.); (A.W.); (D.T.); (J.M.); (J.L.R.); (J.L.P.)
- Correspondence: (M.C.); (M.I.D.)
| | - Nipa H. Patel
- Departments of Pharmacology and Toxicology and Medicine and Massey Cancer Center, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA 23284, USA; (N.H.P.); (T.H.T.); (D.A.G.)
| | - Wisam Toma
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23284, USA; (W.T.); (A.W.); (D.T.); (J.M.); (J.L.R.); (J.L.P.)
| | - Alyssa White
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23284, USA; (W.T.); (A.W.); (D.T.); (J.M.); (J.L.R.); (J.L.P.)
| | - Danielle Thompson
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23284, USA; (W.T.); (A.W.); (D.T.); (J.M.); (J.L.R.); (J.L.P.)
| | - Jared Mann
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23284, USA; (W.T.); (A.W.); (D.T.); (J.M.); (J.L.R.); (J.L.P.)
| | - Tammy H. Tran
- Departments of Pharmacology and Toxicology and Medicine and Massey Cancer Center, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA 23284, USA; (N.H.P.); (T.H.T.); (D.A.G.)
| | - Jane L. Roberts
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23284, USA; (W.T.); (A.W.); (D.T.); (J.M.); (J.L.R.); (J.L.P.)
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23284, USA; (W.T.); (A.W.); (D.T.); (J.M.); (J.L.R.); (J.L.P.)
| | - John W. Bigbee
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Xianjun Fang
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - David A. Gewirtz
- Departments of Pharmacology and Toxicology and Medicine and Massey Cancer Center, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA 23284, USA; (N.H.P.); (T.H.T.); (D.A.G.)
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23284, USA; (W.T.); (A.W.); (D.T.); (J.M.); (J.L.R.); (J.L.P.)
- Correspondence: (M.C.); (M.I.D.)
| |
Collapse
|
14
|
Di Y, Xu T, Tian Y, Ma T, Qu D, Wang Y, Lin Y, Bao D, Yu L, Liu S, Wang A. Ursolic acid protects against cisplatin‑induced ototoxicity by inhibiting oxidative stress and TRPV1‑mediated Ca2+‑signaling. Int J Mol Med 2020; 46:806-816. [PMID: 32626955 PMCID: PMC7307815 DOI: 10.3892/ijmm.2020.4633] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin (CDDP) is widely used in clinical settings for the treatment of various cancers. However, ototoxicity is a major side effect of CDDP, and there is an associated risk of irreversible hearing loss. We previously demonstrated that CDDP could induce ototoxicity via activation of the transient receptor potential vanilloid receptor 1 (TRPV1) pathway and subsequent induction of oxidative stress. The present study investigated whether ursolic acid (UA) treatment could protect against CDDP‑induced ototoxicity. UA is a triterpenoid with strong antioxidant activity widely used in China for the treatment of liver diseases. This traditional Chinese medicine is mainly isolated from bearberry, a Chinese herb. The present results showed that CDDP increased auditory brainstem response threshold shifts in frequencies associated with observed damage to the outer hair cells. Moreover, CDDP increased the expression of TRPV1, calpain 2 and caspase‑3 in the cochlea, and the levels of Ca2+ and 4‑hydroxynonenal. UA co‑treatment significantly attenuated CDDP‑induced hearing loss and inhibited TRPV1 pathway activation. In addition, UA enhanced CDDP‑induced growth inhibition in the human ovarian cancer cell line SKOV3, suggesting that UA synergizes with CDDP in vitro. Collectively, the present data suggested that UA could effectively attenuate CDDP‑induced hearing loss by inhibiting the TRPV1/Ca²+/calpain‑oxidative stress pathway without impairing the antitumor effects of CDDP.
Collapse
Affiliation(s)
| | - Tao Xu
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yu D, Gu J, Chen Y, Kang W, Wang X, Wu H. Current Strategies to Combat Cisplatin-Induced Ototoxicity. Front Pharmacol 2020; 11:999. [PMID: 32719605 PMCID: PMC7350523 DOI: 10.3389/fphar.2020.00999] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is widely used for the treatment of a number of solid malignant tumors. However, ototoxicity induced by cisplatin is an obstacle to effective treatment of tumors. The basis for this toxicity has not been fully elucidated. It is generally accepted that hearing loss is due to excessive production of reactive oxygen species by cells of the cochlea. In addition, recent data suggest that inflammation may trigger inner ear cell death through endoplasmic reticulum stress, autophagy, and necroptosis, which induce apoptosis. Strategies have been extensively explored by which to prevent, alleviate, and treat cisplatin-induced ototoxicity, which minimize interference with antitumor activity. Of these strategies, none have been approved by the Federal Drug Administration, although several preclinical studies have been promising. This review highlights recent strategies that reduce cisplatin-induced ototoxicity. The focus of this review is to identify candidate agents as novel molecular targets, drug administration routes, delivery systems, and dosage schedules. Animal models of cisplatin ototoxicity are described that have been used to evaluate drug efficacy and side effect prevention. Finally, clinical reports of otoprotection in patients treated with cisplatin are highlighted. For the future, high-quality studies are required to provide reliable data regarding the safety and effectiveness of pharmacological interventions that reduce cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Yuming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Wen Kang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| |
Collapse
|
16
|
Lee CH, Lee DH, Lee SM, Kim SY. Otoprotective Effects of Zingerone on Cisplatin-Induced Ototoxicity. Int J Mol Sci 2020; 21:ijms21103503. [PMID: 32429117 PMCID: PMC7278998 DOI: 10.3390/ijms21103503] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
Previous studies have described the effects of zingerone (ZO) on cisplatin (CXP)-induced injury to the kidneys, liver, and other organs but not to the cochlea. This study aimed to investigate the effects of ZO on CXP-induced ototoxicity. Eight-week-old Sprague-Dawley rats were used and divided into a control group, a CXP group, and a CXP + ZO group. Rats in the CXP group received 5 mg/kg/day CXP intraperitoneally for five days. Rats in the CXP + ZO group received 5 mg/kg/day CXP intraperitoneally for five days and 50 mg/kg/day ZO intraperitoneally for seven days. Auditory brainstem response thresholds (ABRTs) were measured before (day 0) and after (day 10) drug administration. Cochlear histology was examined using hematoxylin and eosin (H&E) staining and cochlear whole mounts. The expression levels of cytochrome P450 (CYP)1A1, CYP1B1, inducible nitric oxide synthase (iNOS), nuclear factor kappa B (NFκB), tumor necrosis factor alpha (TNFα), and interleukin 6 (IL6) were estimated using quantitative reverse transcription-polymerase chain reaction. The expression levels of heme oxygenase 1 (HO1) and caspase 3 were analyzed via Western blotting. The auditory thresholds at 4, 8, and 16 kHz were attenuated in the CXP + ZO group compared with the CXP group. The mRNA expression levels of CYP1A1, CYP1B1, iNOS, NFκB, TNFα, and IL6 were lower in the CXP + ZO group than in the CXP group. The protein expression levels of HO1 and caspase 3 were lower in the CXP + ZO group than in the CXP group. Cotreatment with ZO exerted otoprotective effects against CXP-induced cochlear injury via antioxidative and anti-inflammatory activities involving CYPs, iNOS, NFκB, and TNFα.
Collapse
Affiliation(s)
| | | | | | - So Young Kim
- Correspondence: ; Tel.: +82-31-870-5340; Fax: +82-31-870-5346
| |
Collapse
|
17
|
Cortada M, Wei E, Jain N, Levano S, Bodmer D. Telmisartan Protects Auditory Hair Cells from Gentamicin-Induced Toxicity in vitro. Audiol Neurootol 2020; 25:297-308. [PMID: 32369826 DOI: 10.1159/000506796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 02/13/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Telmisartan is an angiotensin II receptor blocker that has pleiotropic effects and protective properties in different cell types. Moreover, telmisartan has also shown partial agonism on the peroxisome proliferator-activated receptor γ (PPAR-γ). Auditory hair cells (HCs) express PPAR-γ, and the protective role of PPAR-γ agonists on HCs has been shown. OBJECTIVES The objective of this study was to investigate the effects of telmisartan on gentamicin-induced ototoxicity in vitro. METHODS Cochlear explants were exposed to gentamicin with or without telmisartan, and/or GW9662, an irreversible PPAR-γ antagonist. RESULTS Telmisartan protected auditory HCs against gentamicin-induced ototoxicity. GW9662 completely blocked this protective effect, suggesting that it was mediated by PPAR-γ signaling. Exposure to GW9662 or telmisartan alone was not toxic to auditory HCs. CONCLUSIONS We found that telmisartan, via PPAR-γ signaling, protects auditory HCs from gentamicin-induced ototoxicity. Therefore, telmisartan could potentially be used in the future to prevent or treat sensorineural hearing loss.
Collapse
Affiliation(s)
- Maurizio Cortada
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Eric Wei
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Neha Jain
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Soledad Levano
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daniel Bodmer
- Clinic for Otolaryngology, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland,
| |
Collapse
|
18
|
Yin H, Zhang H, Kong Y, Wang C, Guo Y, Gao Y, Yuan L, Yang X, Chen J. Apelin protects auditory cells from cisplatin-induced toxicity in vitro by inhibiting ROS and apoptosis. Neurosci Lett 2020; 728:134948. [DOI: 10.1016/j.neulet.2020.134948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
|
19
|
Shi HH, Wang CC, Guo Y, Xue CH, Zhang TT, Wang YM. DHA-PC protects kidneys against cisplatin-induced toxicity and its underlying mechanisms in mice. Food Funct 2019; 10:1571-1581. [DOI: 10.1039/c8fo02386g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DHA-PC protected the kidney against cisplatin-induced toxicity through sirtuin 1 activation, the inhibition of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Hao-Hao Shi
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
| | - Ying Guo
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
| | - Chang-Hu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology
| | - Tian-Tian Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
| | - Yu-Ming Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology
| |
Collapse
|