1
|
Kabeer SW, Sharma S, Sriramdasu S, Tikoo K. MicroRNA-721 regulates gluconeogenesis via KDM2A-mediated epigenetic modulation in diet-induced insulin resistance in C57BL/6J mice. Biol Res 2024; 57:27. [PMID: 38745315 PMCID: PMC11092102 DOI: 10.1186/s40659-024-00495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Aberrant gluconeogenesis is considered among primary drivers of hyperglycemia under insulin resistant conditions, with multiple studies pointing towards epigenetic dysregulation. Here we examine the role of miR-721 and effect of epigenetic modulator laccaic acid on the regulation of gluconeogenesis under high fat diet induced insulin resistance. RESULTS Reanalysis of miRNA profiling data of high-fat diet-induced insulin-resistant mice model, GEO dataset (GSE94799) revealed a significant upregulation of miR-721, which was further validated in invivo insulin resistance in mice and invitro insulin resistance in Hepa 1-6 cells. Interestingly, miR-721 mimic increased glucose production in Hepa 1-6 cells via activation of FOXO1 regulated gluconeogenic program. Concomitantly, inhibition of miR-721 reduced glucose production in palmitate induced insulin resistant Hepa 1-6 cells by blunting the FOXO1 induced gluconeogenesis. Intriguingly, at epigenetic level, enrichment of the transcriptional activation mark H3K36me2 got decreased around the FOXO1 promoter. Additionally, identifying targets of miR-721 using miRDB.org showed H3K36me2 demethylase KDM2A as a potential target. Notably, miR-721 inhibitor enhanced KDM2A expression which correlated with H3K36me2 enrichment around FOXO1 promoter and the downstream activation of the gluconeogenic pathway. Furthermore, inhibition of miR-721 in high-fat diet-induced insulin-resistant mice resulted in restoration of KDM2A levels, concomitantly reducing FOXO1, PCK1, and G6PC expression, attenuating gluconeogenesis, hyperglycemia, and improving glucose tolerance. Interestingly, the epigenetic modulator laccaic acid also reduced the hepatic miR-721 expression and improved KDM2A expression, supporting our earlier report that laccaic acid attenuates insulin resistance by reducing gluconeogenesis. CONCLUSION Our study unveils the role of miR-721 in regulating gluconeogenesis through KDM2A and FOXO1 under insulin resistance, pointing towards significant clinical and therapeutic implications for metabolic disorders. Moreover, the promising impact of laccaic acid highlights its potential as a valuable intervention in managing insulin resistance-associated metabolic diseases.
Collapse
Affiliation(s)
- Shaheen Wasil Kabeer
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Shivam Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Shalemraju Sriramdasu
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
2
|
Ocaña-Paredes B, Rivera-Orellana S, Ramírez-Sánchez D, Montalvo-Guerrero J, Freire MP, Espinoza-Ferrao S, Altamirano-Colina A, Echeverría-Espinoza P, Ramos-Medina MJ, Echeverría-Garcés G, Granda-Moncayo D, Jácome-Alvarado A, Andrade MG, López-Cortés A. The pharmacoepigenetic paradigm in cancer treatment. Front Pharmacol 2024; 15:1381168. [PMID: 38720770 PMCID: PMC11076712 DOI: 10.3389/fphar.2024.1381168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Epigenetic modifications, characterized by changes in gene expression without altering the DNA sequence, play a crucial role in the development and progression of cancer by significantly influencing gene activity and cellular function. This insight has led to the development of a novel class of therapeutic agents, known as epigenetic drugs. These drugs, including histone deacetylase inhibitors, histone acetyltransferase inhibitors, histone methyltransferase inhibitors, and DNA methyltransferase inhibitors, aim to modulate gene expression to curb cancer growth by uniquely altering the epigenetic landscape of cancer cells. Ongoing research and clinical trials are rigorously evaluating the efficacy of these drugs, particularly their ability to improve therapeutic outcomes when used in combination with other treatments. Such combination therapies may more effectively target cancer and potentially overcome the challenge of drug resistance, a significant hurdle in cancer therapy. Additionally, the importance of nutrition, inflammation control, and circadian rhythm regulation in modulating drug responses has been increasingly recognized, highlighting their role as critical modifiers of the epigenetic landscape and thereby influencing the effectiveness of pharmacological interventions and patient outcomes. Epigenetic drugs represent a paradigm shift in cancer treatment, offering targeted therapies that promise a more precise approach to treating a wide spectrum of tumors, potentially with fewer side effects compared to traditional chemotherapy. This progress marks a step towards more personalized and precise interventions, leveraging the unique epigenetic profiles of individual tumors to optimize treatment strategies.
Collapse
Affiliation(s)
- Belén Ocaña-Paredes
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - David Ramírez-Sánchez
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - María Paula Freire
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | | | | | - María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | | | - Andrea Jácome-Alvarado
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - María Gabriela Andrade
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
3
|
Lai KC, Chueh FS, Ma YS, Chou YC, Chen JC, Liao CL, Huang YP, Peng SF. Phenethyl isothiocyanate and irinotecan synergistically induce cell apoptosis in colon cancer HCT 116 cells in vitro. ENVIRONMENTAL TOXICOLOGY 2024; 39:457-469. [PMID: 37792803 DOI: 10.1002/tox.23993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Irinotecan (IRI), an anticancer drug to treat colon cancer patients, causes cytotoxic effects on normal cells. Phenethyl isothiocyanate (PEITC), rich in common cruciferous plants, has anticancer activities (induction of cell apoptosis) in many human cancer cells, including colon cancer cells. However, the anticancer effects of IRI combined with PEITC on human colon cancer cells in vitro were unavailable. Herein, the aim of this study is to focus on the apoptotic effects of the combination of IRI and PEITC on human colon cancer HCT 116 cells in vitro. Propidium iodide (PI) exclusion and Annexin V/PI staining assays showed that IRI combined with PEITC decreased viable cell number and induced higher cell apoptosis than that of IRI or PEITC only in HCT 116 cells. Moreover, combined treatment induced higher levels of reactive oxygen species (ROS) and Ca2+ than that of IRI or PEITC only. Cells pre-treated with N-acetyl-l-cysteine (scavenger of ROS) and then treated with IRI, PEITC, or IRI combined with PEITC showed increased viable cell numbers than that of IRI or PEITC only. IRI combined with PEITC increased higher caspase-3, -8, and -9 activities than that of IRI or PEITC only by flow cytometer assay. IRI combined with PEITC induced higher levels of ER stress-, mitochondria-, and caspase-associated proteins than that of IRI or PEITC treatment only in HCT 116 cells. Based on these observations, PEITC potentiates IRI anticancer activity by promoting cell apoptosis in the human colon HCT 116 cells. Thus, PEITC may be a potential enhancer for IRI in humans as an anticolon cancer drug in the future.
Collapse
Affiliation(s)
- Kuang-Chi Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Department of Surgery, China Medical University Beigang Hospital, Beigang, Yunlin, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Yu-Cheng Chou
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jaw-Chyun Chen
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, Taiwan
| | - Ching-Lung Liao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Pasdaran A, Zare M, Hamedi A, Hamedi A. A Review of the Chemistry and Biological Activities of Natural Colorants, Dyes, and Pigments: Challenges, and Opportunities for Food, Cosmetics, and Pharmaceutical Application. Chem Biodivers 2023; 20:e202300561. [PMID: 37471105 DOI: 10.1002/cbdv.202300561] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Natural pigments are important sources for the screening of bioactive lead compounds. This article reviewed the chemistry and therapeutic potentials of over 570 colored molecules from plants, fungi, bacteria, insects, algae, and marine sources. Moreover, related biological activities, advanced extraction, and identification approaches were reviewed. A variety of biological activities, including cytotoxicity against cancer cells, antioxidant, anti-inflammatory, wound healing, anti-microbial, antiviral, and anti-protozoal activities, have been reported for different pigments. Considering their structural backbone, they were classified as naphthoquinones, carotenoids, flavonoids, xanthones, anthocyanins, benzotropolones, alkaloids, terpenoids, isoprenoids, and non-isoprenoids. Alkaloid pigments were mostly isolated from bacteria and marine sources, while flavonoids were mostly found in plants and mushrooms. Colored quinones and xanthones were mostly extracted from plants and fungi, while colored polyketides and terpenoids are often found in marine sources and fungi. Carotenoids are mostly distributed among bacteria, followed by fungi and plants. The pigments isolated from insects have different structures, but among them, carotenoids and quinone/xanthone are the most important. Considering good manufacturing practices, the current permitted natural colorants are: Carotenoids (canthaxanthin, β-carotene, β-apo-8'-carotenal, annatto, astaxanthin) and their sources, lycopene, anthocyanins, betanin, chlorophyllins, spirulina extract, carmine and cochineal extract, henna, riboflavin, pyrogallol, logwood extract, guaiazulene, turmeric, and soy leghemoglobin.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zare
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Gasmi A, Gasmi Benahmed A, Shanaida M, Chirumbolo S, Menzel A, Anzar W, Arshad M, Cruz-Martins N, Lysiuk R, Beley N, Oliinyk P, Shanaida V, Denys A, Peana M, Bjørklund G. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit Rev Food Sci Nutr 2023; 64:8054-8072. [PMID: 37129118 DOI: 10.1080/10408398.2023.2195493] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The use of natural bioactive constituents from various food sources for anticancer purposes has become increasingly popular worldwide. Broccoli (Brassica oleracea var. italica) is on the top of the consumed vegetables by the masses. Its raw matrix contains a plethora of phytochemicals, such as glucosinolates and phenolic compounds, along with rich amounts of vitamins, and minerals. Consumption of broccoli-derived phytochemicals provides strong antioxidant effects, particularly due to its sulforaphane content, while modulating numerous molecules involved in cell cycle regulation, control of apoptosis, and tuning enzyme activity. Thus, the inclusion of broccoli in the daily diet lowers the susceptibility to developing cancers. Numerous studies have underlined the undisputable role of broccoli in the diet as a chemopreventive raw food, owing to the content in sulforaphane, an isothiocyanate produced as a result of hydrolysis of precursor glucosinolates called glucoraphanin. This review will provide evidence supporting the specific role of fresh florets and sprouts of broccoli and its key bioactive constituents in the prevention and treatment of different cancers; a number of studies carried out in the in vitro and in vivo conditions as well as clinical trials were analyzed.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
- International Congress of Nutritional Sciences, Casablanca, Morocco
- Société Marocaine de Micronutrition et de Nutrigénétique Appliquée, Casablanca, Morocco
| | | | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| | | | - Wajiha Anzar
- Dow University of Health Sciences, Karachi, Pakistan
| | - Mehreen Arshad
- National University of Sciences and Technology, Islamabad, Pakistan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, Gandra PRD, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | | | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
6
|
Kabeer SW, Pant R, Sharma S, Tikoo K. Laccaic acid restores epigenetic alterations responsible for high fat diet induced insulin resistance in C57BL/6J mice. Chem Biol Interact 2023; 374:110401. [PMID: 36828244 DOI: 10.1016/j.cbi.2023.110401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Laccaic acid, the major constituent of the food colouring agent-lac dye, possesses antioxidant and anti-inflammatory properties. Here we have evaluated the effects of laccaic acid on the high-fat diet induced insulin resistance in C57BL/6J mice. Insulin resistance was developed in mice by feeding high-fat diet for 12 weeks. 6 week treatment with laccaic acid showed significant improvement in the morphometric, biochemical parameters and liver function. Western blotting experiments showed, laccaic acid increased phosphorylation of IRS1/2/AKT/GSK3β which is suppressed under insulin-resistant conditions in liver. Furthermore, it also attenuated the inflammatory ERK/NFκB signalling, thereby reducing the expression of inflammatory cytokines- TNFα, IL-1β and IL-6. Concomitantly, laccaic acid increased AMPK/AKT-mediated phosphorylation of FOXO1, preventing its nuclear translocation and transcriptional activation of gluconeogenic genes (G6PC and PCK1). Interestingly, treatment with laccaic acid also prevented high-fat diet induced alterations of histone methylation (H3K27me3 and H3K36me2) at global level. Our chromatin-immunoprecipitation data shows high-fat diet induced loss of inactivation mark H3K27me3 at FOXO1 promoter was regained upon laccaic acid treatment. Additionally, the expression of the H3K27 methylating enzyme EZH2 was also upregulated by laccaic acid. Together it all results in the downregulation of FOXO1 gene expression. To the best of our knowledge, we provide first evidence that laccaic acid either directly or indirectly modulates the epigenetic landscape of genes responsible for high-fat diet induced insulin resistance.
Collapse
Affiliation(s)
- Shaheen Wasil Kabeer
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Rajat Pant
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Shivam Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
7
|
Shoaib S, Ansari MA, Ghazwani M, Hani U, Jamous YF, Alali Z, Wahab S, Ahmad W, Weir SA, Alomary MN, Yusuf N, Islam N. Prospective Epigenetic Actions of Organo-Sulfur Compounds against Cancer: Perspectives and Molecular Mechanisms. Cancers (Basel) 2023; 15:cancers15030697. [PMID: 36765652 PMCID: PMC9913804 DOI: 10.3390/cancers15030697] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Major epigenetic alterations, such as chromatin modifications, DNA methylation, and miRNA regulation, have gained greater attention and play significant roles in oncogenesis, representing a new paradigm in our understanding of cancer susceptibility. These epigenetic changes, particularly aberrant promoter hypermethylation, abnormal histone acetylation, and miRNA dysregulation, represent a set of epigenetic patterns that contribute to inappropriate gene silencing at every stage of cancer progression. Notably, the cancer epigenome possesses various HDACs and DNMTs, which participate in the histone modifications and DNA methylation. As a result, there is an unmet need for developing the epigenetic inhibitors against HDACs and DNMTs for cancer therapy. To date, several epigenetically active synthetic inhibitors of DNA methyltransferases and histone deacetylases have been developed. However, a growing body of research reports that most of these synthetic inhibitors have significant side effects and a narrow window of specificity for cancer cells. Targeting tumor epigenetics with phytocompounds that have the capacity to modulate abnormal DNA methylation, histone acetylation, and miRNAs expression is one of the evolving strategies for cancer prevention. Encouragingly, there are many bioactive phytochemicals, including organo-sulfur compounds that have been shown to alter the expression of key tumor suppressor genes, oncogenes, and oncogenic miRNAs through modulation of DNA methylation and histones in cancer. In addition to vitamins and microelements, dietary phytochemicals such as sulforaphane, PEITC, BITC, DADS, and allicin are among a growing list of naturally occurring anticancer agents that have been studied as an alternative strategy for cancer treatment and prevention. Moreover, these bioactive organo-sulfur compounds, either alone or in combination with other standard cancer drugs or phytochemicals, showed promising results against many cancers. Here, we particularly summarize and focus on the impact of specific organo-sulfur compounds on DNA methylation and histone modifications through targeting the expression of different DNMTs and HDACs that are of particular interest in cancer therapy and prevention.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Yahya F. Jamous
- Vaccine and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Zahraa Alali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Sydney A. Weir
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
- Correspondence: (M.N.A.); (N.I.)
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Najmul Islam
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India
- Correspondence: (M.N.A.); (N.I.)
| |
Collapse
|
8
|
Permatasari HK, Wewengkang DS, Tertiana NI, Muslim FZ, Yusuf M, Baliulina SO, Daud VPA, Setiawan AA, Nurkolis F. Anti-cancer properties of Caulerpa racemosa by altering expression of Bcl-2, BAX, cleaved caspase 3 and apoptosis in HeLa cancer cell culture. Front Oncol 2022; 12:964816. [PMID: 36203436 PMCID: PMC9530281 DOI: 10.3389/fonc.2022.964816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
The main cause of cervical cancer is infection with Human Papilloma Virus (HPV). Loss of apoptotic control allows cancer cells to survive longer and allows time for mutation accumulation thereby increasing the ability to invade during tumor development. Treatment options for cervical cancer today are surgery, radiotherapy, and chemotherapy. Toxicity to normal cells, adverse side effects, and drug resistance are the main barriers to the use of chemotherapy. Among marine organisms such as bacteria, fungi, actinobacteria, and seaweed have been used for the treatment of cancer. Caulerpa has bioactive metabolites, namely alkaloids, terpenoids, flavonoids, steroids and tannins and its bioactivity has been reported against many diseases including cancer. This study aimed to evaluate the anticancer activity of C. racemosa on HeLa cervical cancer cells. The study used a true experimental post-test only control group design to determine the effect of C. racemosa extract on HeLa cancer cells. C. racemosa extract was given in doses of 50 μg/mL, 100 μg/mL, 200 μg/mL, and 0 μg/mL as controls. Quantitative measurement of apoptosis was measured using flowcytometry and the expression of Bcl-2, BAX, and cleaved-caspase 3 as pro and anti-apoptotic proteins was measured using immunofluorescence. Trypan blue exclusion test was performed to measure cell viability. C. racemosa extract significantly increased the expression of pro-apoptotic proteins BAX and cleaved caspase-3 compared to controls. Annexin V-PI analysis showed the induction of apoptosis in treated cells and decreased HeLa cell viability at 24 hours and 48 hours post-treatment (p-value <0.05). C. racemosa extract has potential as an anti-cancer with pro-apoptotic and anti-proliferative activity on HeLa cancer cells and can be explored further as a cervical cancer therapy.
Collapse
Affiliation(s)
| | | | - Nur Iedha Tertiana
- Medical School, Faculty of Medicine, UIN Maulana Malik Ibrahim Malang, Malang, Indonesia
| | | | - Muhammad Yusuf
- Medical Programme, Faculty of Medicine Universitas Brawijaya, Malang, Indonesia
| | | | | | | | - Fahrul Nurkolis
- Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| |
Collapse
|
9
|
Emergence of dyestuff chemistry-encoded signal tracers in immunochromatographic assays: Fundamentals and recent food applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Natural Bioactive Compounds Targeting Histone Deacetylases in Human Cancers: Recent Updates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082568. [PMID: 35458763 PMCID: PMC9027183 DOI: 10.3390/molecules27082568] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
Cancer is a complex pathology that causes a large number of deaths worldwide. Several risk factors are involved in tumor transformation, including epigenetic factors. These factors are a set of changes that do not affect the DNA sequence, while modifying the gene’s expression. Histone modification is an essential mark in maintaining cellular memory and, therefore, loss of this mark can lead to tumor transformation. As these epigenetic changes are reversible, the use of molecules that can restore the functions of the enzymes responsible for the changes is therapeutically necessary. Natural molecules, mainly those isolated from medicinal plants, have demonstrated significant inhibitory properties against enzymes related to histone modifications, particularly histone deacetylases (HDACs). Flavonoids, terpenoids, phenolic acids, and alkaloids exert significant inhibitory effects against HDAC and exhibit promising epi-drug properties. This suggests that epi-drugs against HDAC could prevent and treat various human cancers. Accordingly, the present study aimed to evaluate the pharmacodynamic action of different natural compounds extracted from medicinal plants against the enzymatic activity of HDAC.
Collapse
|
11
|
Gutiérrez JR, Salgadoa ARM, Arias MDÁ, Vergara HSJ, Rada WR, Gómez CMM. Epigenetic Modulators as Treatment Alternative to Diverse Types of Cancer. Curr Med Chem 2021; 29:1503-1542. [PMID: 34963430 DOI: 10.2174/0929867329666211228111036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/17/2021] [Accepted: 10/21/2021] [Indexed: 01/10/2023]
Abstract
DNA is packaged in rolls in an octamer of histones forming a complex of DNA and proteins called chromatin. Chromatin as a structural matrix of a chromosome and its modifications are nowadays considered relevant aspects for regulating gene expression, which has become of high interest in understanding genetic mechanisms regulating various diseases, including cancer. In various types of cancer, the main modifications are found to be DNA methylation in the CpG dinucleotide as a silencing mechanism in transcription, post-translational histone modifications such as acetylation, methylation and others that affect the chromatin structure, the ATP-dependent chromatin remodeling and miRNA-mediated gene silencing. In this review we analyze the main alterations in gene expression, the epigenetic modification patterns that cancer cells present, as well as the main modulators and inhibitors of each epigenetic mechanism and the molecular evolution of the most representative inhibitors, which have opened a promising future in the study of HAT, HDAC, non-glycoside DNMT inhibitors and domain inhibitors.
Collapse
Affiliation(s)
- Jorseth Rodelo Gutiérrez
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| | - Arturo René Mendoza Salgadoa
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| | - Marcio De Ávila Arias
- Department of Medicine, Biotechnology Research Group, Health Sciences Division, Universidad del Norte, Barranquilla, Colombia
| | - Homero San- Juan- Vergara
- Department of Medicine, Biotechnology Research Group, Health Sciences Division, Universidad del Norte, Barranquilla, Colombia
| | - Wendy Rosales Rada
- Advanced Biomedicine Research Group. Faculty of Exact and Natural Sciences, Universidad Libre Seccional, Barranquilla, Colombia
- Advanced Biomedicine Research Group. Faculty of Exact and Natural Sciences, Universidad Libre Seccional, Barranquilla, Colombia
| | - Carlos Mario Meléndez Gómez
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| |
Collapse
|
12
|
Natural Bioactive Compounds Targeting Epigenetic Pathways in Cancer: A Review on Alkaloids, Terpenoids, Quinones, and Isothiocyanates. Nutrients 2021; 13:nu13113714. [PMID: 34835969 PMCID: PMC8621755 DOI: 10.3390/nu13113714] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most complex and systemic diseases affecting the health of mankind, causing major deaths with a significant increase. This pathology is caused by several risk factors, of which genetic disturbances constitute the major elements, which not only initiate tumor transformation but also epigenetic disturbances which are linked to it and which can induce transcriptional instability. Indeed, the involvement of epigenetic disturbances in cancer has been the subject of correlations today, in addition to the use of drugs that operate specifically on different epigenetic pathways. Natural molecules, especially those isolated from medicinal plants, have shown anticancer effects linked to mechanisms of action. The objective of this review is to explore the anticancer effects of alkaloids, terpenoids, quinones, and isothiocyanates.
Collapse
|
13
|
Wang Q, Bao Y. Nanodelivery of natural isothiocyanates as a cancer therapeutic. Free Radic Biol Med 2021; 167:125-140. [PMID: 33711418 DOI: 10.1016/j.freeradbiomed.2021.02.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/31/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Natural isothiocyanates (ITCs) are phytochemicals abundant in cruciferous vegetables with the general structure, R-NCS. They are bioactive organosulfur compounds derived from the hydrolysis of glucosinolates by myrosinase. A significant number of isothiocyanates have been isolated from different plant sources that include broccoli, Brussels sprouts, cabbage, cauliflower, kale, mustard, wasabi, and watercress. Several ITCs have been demonstrated to possess significant pharmacological properties including: antioxidant, anti-inflammatory, anti-cancer and antimicrobial activities. Due to their chemopreventive effects on many types of cancer, ITCs have been regarded as a promising anti-cancer therapeutic agent without major toxicity concerns. However, their clinical application has been hindered by several factors including their low aqueous solubility, low bioavailability, instability as well as their hormetic effect. Moreover, the typical dietary uptake of ITCs consumed for promotion of good health may be far from their bioactive (or cytotoxic) dose necessary for cancer prevention and/or treatment. Nanotechnology is one of best options to attain enhanced efficacy and minimize hormetic effect for ITCs. Nanoformulation of ITCs leads to enhance stability of ITCs in plasma and emphasize on their chemopreventive effects. This review provides a summary of the potential bioactivities of ITCs, their mechanisms of action for the prevention and treatment of cancer, as well as the recent research progress in their nanodelivery strategies to enhance solubility, bioavailability, and anti-cancer efficacy.
Collapse
Affiliation(s)
- Qi Wang
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK.
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK.
| |
Collapse
|
14
|
Dietary isothiocyanates inhibit cancer progression by modulation of epigenome. Semin Cancer Biol 2021; 83:353-376. [PMID: 33434642 DOI: 10.1016/j.semcancer.2020.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 12/15/2022]
Abstract
Cell cycle, growth, survival and metabolism are tightly regulated together and failure in cellular regulation leads to carcinogenesis. Several signaling pathways like the PI3K, WNT, MAPK and NFKb pathway exhibit aberrations in cancer and help achieve hallmark capabilities. Clinical research and in vitro studies have highlighted the role of epigenetic alterations in cancer onset and development. Altered gene expression patterns enabled by changes in DNA methylation, histone modifications and RNA processing have proven roles in cancer hallmark acquisition. The reversible nature of epigenetic processes offers robust therapeutic targets. Dietary bioactive compounds offer a vast compendium of effective therapeutic moieties. Isothiocyanates (ITCs) sourced from cruciferous vegetables demonstrate anti-proliferative, pro-apoptotic, anti-inflammatory, anti-migratory and anti-angiogenic effect against several cancers. ITCs also modulate the redox environment, modulate signaling pathways including PI3K, MAPK, WNT, and NFkB. They also modulate the epigenetic machinery by regulating the expression and activity of DNA methyltransferases, histone modifiers and miRNA. This further enhances their transcriptional modulation of key cellular regulators. In this review, we comprehensively assess the impact of ITCs such as sulforaphane, phenethyl isothiocyanate, benzyl isothiocyanate and allyl isothiocyanate on cancer and document their effect on various molecular targets. Overall, this will facilitate consolidation of the current understanding of the anti-cancer and epigenetic modulatory potential of these compounds and recognize the gaps in literature. Further, we discuss avenues of future research to develop these compounds as potential therapeutic entities.
Collapse
|
15
|
Gwon MH, Im YS, Seo AR, Kim KY, Moon HR, Yun JM. Phenethyl Isothiocyanate Protects against High Fat/Cholesterol Diet-Induced Obesity and Atherosclerosis in C57BL/6 Mice. Nutrients 2020; 12:nu12123657. [PMID: 33261070 PMCID: PMC7761196 DOI: 10.3390/nu12123657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
This study concerns obesity-related atherosclerosis, hyperlipidemia, and chronic inflammation. We studied the anti-obesity and anti-atherosclerosis effects of phenethyl isothiocyanate (PEITC) and explored their underlying mechanisms. We established an animal model of high fat/cholesterol-induced obesity in C57BL/6 mice fed for 13 weeks. We divided the mice into five groups: control (CON), high fat/cholesterol (HFCD), HFCD with 3 mg/kg/day gallic acid (HFCD + G), and HFCD with PEITC (30 and 75 mg/kg/day; HFCD + P30 and P75). The body weight, total cholesterol, and triglyceride were significantly lower in the HFCD + P75 group than in the HFCD group. Hepatic lipid accumulation and atherosclerotic plaque formation in the aorta were significantly lower in both HFCD + PEITC groups than in the HFCD group, as revealed by hematoxylin and eosin (H&E) staining. To elucidate the mechanism, we identified the expression of genes related to inflammation, reverse cholesterol transport, and lipid accumulation pathway in the liver. The expression levels of peroxisome proliferator activated receptor gamma (PPARγ), liver-X-receptor α (LXR-α), and ATP binding cassette subfamily A member 1 (ABCA1) were increased, while those of scavenger receptor A (SR-A1), cluster of differentiation 36 (CD36), and nuclear factor-kappa B (NF-κB) were decreased in the HFCD + P75 group compared with those in the HFCD group. Moreover, PEITC modulated H3K9 and H3K27 acetylation, H3K4 dimethylation, and H3K27 di-/trimethylation in the HFCD + P75 group. We, therefore, suggest that supplementation with PEITC may be a potential candidate for the treatment and prevention of atherosclerosis and obesity.
Collapse
Affiliation(s)
- Min-Hee Gwon
- Nutrition Education Major, Graduate School of Education, Chonnam National University, Gwangju 61186, Korea;
| | - Young-Sun Im
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - A-Reum Seo
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Kyoung Yun Kim
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Ha-Rin Moon
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
- Correspondence: ; Tel.: +82-62-530-1332
| |
Collapse
|
16
|
Liu C, Fang S, Tian Y, Ma J, Wang Z, Xu D, Li Y, Hou D, Liu Q. Rapid detection of
Escherichia coli
O157
:
H7
in milk, bread, and jelly by lac dye
coloration‐based
bidirectional lateral flow immunoassay strip. J Food Saf 2020. [DOI: 10.1111/jfs.12862] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cheng Liu
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Shuiqin Fang
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Yachen Tian
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Junfei Ma
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Zheng Wang
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Dongpo Xu
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Ying Li
- Animal Product Quality Control Department China Animal Disease Control Centre Beijing China
| | - Dongjun Hou
- Animal Product Quality Control Department China Animal Disease Control Centre Beijing China
| | - Qing Liu
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
- Laboratory for Marine Fisheries Science and Food Production Processes Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
17
|
Kumari A, Bhawal S, Kapila S, Yadav H, Kapila R. Health-promoting role of dietary bioactive compounds through epigenetic modulations: a novel prophylactic and therapeutic approach. Crit Rev Food Sci Nutr 2020; 62:619-639. [PMID: 33081489 DOI: 10.1080/10408398.2020.1825286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The epigenome is an overall epigenetic state of an organism, which is as important as that of the genome for normal development and functioning of an individual. Epigenetics involves heritable but reversible changes in gene expression through alterations in DNA methylation, histone modifications and regulation of non-coding RNAs in cells, without any change in the DNA sequence. Epigenetic changes are owned by various environmental factors including pollution, microbiota and diet, which have profound effects on epigenetic modifiers. The bioactive compounds present in the diet mainly include curcumin, resveratrol, catechins, quercetin, genistein, sulforaphane, epigallocatechin-3-gallate, alkaloids, vitamins, and peptides. Bioactive compounds released during fermentation by the action of microbes also have a significant effect on the host epigenome. Besides, recent studies have explored the new insights in vitamin's functions through epigenetic regulation. These bioactive compounds exert synergistic, preventive and therapeutic effects when combined as well as when used with chemotherapeutic agents. Therefore, these compounds have potential of therapeutic agents that could be used as "Epidrug" to treat many inflammatory diseases and various cancers where chemotherapy results have many side effects. In this review, the effect of diet derived bioactive compounds through epigenetic modulations on in vitro and in vivo models is discussed.
Collapse
Affiliation(s)
- Ankita Kumari
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Shalaka Bhawal
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hariom Yadav
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
18
|
Xiao J, Zhou N, Li Y, Xiao Y, Chen W, Ye J, Ma T, Zhang Y. PEITC inhibits the invasion and migration of colorectal cancer cells by blocking TGF-β-induced EMT. Biomed Pharmacother 2020; 130:110743. [PMID: 34321176 DOI: 10.1016/j.biopha.2020.110743] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
AIM Tumor metastasis is the leading cause of death in patients with colorectal cancer (CRC), in which epithelial-mesenchymal transition(EMT) plays a vital role. However, the exact mechanisms of this process remain largely unknown. The aim of the present study was to determine the role of phenethyl isothiocyanate (PEITC) in CRC metastasis by regulating EMT. MAIN METHODS Wound healing assays and Transwell matrix assays were used to evaluate the potential of PEITC to inhibit CRC cells invasion and migration in vitro. Western blotting, light microscopy and immunofluorescence assays were used to detect the occurrence of EMT. Luciferase activity assay, real time-PCR and western blotting were used to investigate TGF-β1/Smad signaling activity. KEY FINDINGS We observed that PEITC, an isothiocyanate compound from crucifer with chemopreventive potential, inhibited the invasion and migration of CRC cells. Moreover, we showed that PEITC regulated the EMT of CRC cells. Additionally, we demonstrated that PEITC blocked the activation of the TGF-β1/Smad pathway and significantly suppressed TGF-β1-induced EMT. SIGNIFICANCE Our results suggested that PEITC plays a crucial role in inhibiting the invasion and migration of CRC cells by regulating TGF-β1-induced EMT. The results of the present study provide a theoretical basis for the use of PEITC to treat CRC.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Medicine Oncology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| | - Ningning Zhou
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yin Li
- Department of Endoscopy, Sun Yat-sen University Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yunyun Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wei Chen
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Junwen Ye
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Tenghui Ma
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Yan Zhang
- Department of Medicine Oncology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|
19
|
Phanus-Umporn C, Prachayasittikul V, Nantasenamat C, Prachayasittikul S, Prachayasittikul V. QSAR-driven rational design of novel DNA methyltransferase 1 inhibitors. EXCLI JOURNAL 2020; 19:458-475. [PMID: 32398970 PMCID: PMC7214779 DOI: 10.17179/excli2020-1096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/24/2020] [Indexed: 01/30/2023]
Abstract
DNA methylation, an epigenetic modification, is mediated by DNA methyltransferases (DNMTs), a family of enzymes. Inhibitions of these enzymes are considered a promising strategy for the treatment of several diseases. In this study, a quantitative structure-activity relationship (QSAR) modeling was employed to understand the structure-activity relationship (SAR) of currently available non-nucleoside DNMT1 inhibitors (i.e., indole and oxazoline/1,2-oxazole scaffolds). Two QSAR models were successfully constructed using multiple linear regression (MLR) and provided good predictive performance (R2Tr = 0.850-0.988 and R2CV = 0.672-0.869). Bond information content index (BIC1) and electronegativity (R6e+) are the most influential descriptors governing the activity of compounds. The constructed QSAR models were further applied for guiding a rational design of novel inhibitors. A novel set of 153 structurally modified compounds were designed in silico according to the important descriptors deduced from the QSAR finding, and their DNMT1 inhibitory activities were predicted. This result demonstrated that 86 newly designed inhibitors were predicted to elicit enhanced DNMT1 inhibitory activity when compared to their parent compounds. Finally, a set of promising compounds as potent DNMT1 inhibitors were highlighted to be further developed. The key SAR findings may also be beneficial for structural optimization to improve properties of the known inhibitors.
Collapse
Affiliation(s)
- Chuleeporn Phanus-Umporn
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Veda Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|