1
|
Chen J, Bao J, Jiang X, Yu W, Han Y, Zhang X, Zhang Y, Deng G. Astragaloside IV protects brain cells from ischemia-reperfusion injury by inhibiting ryanodine receptor expression and reducing the expression of P-Src and P-GRK2. Sci Rep 2024; 14:17497. [PMID: 39080440 PMCID: PMC11289356 DOI: 10.1038/s41598-024-68462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Astragaloside IV, a prime active component of Astragalus membranaceus, has potential as a neuroprotectant. We aimed to identify the active ingredients in A. membranaceus and assess if Astragaloside IV can improve cerebral ischemia-reperfusion injury (CIRI) cell apoptosis by reducing P-Src and P-GRK2 via ryanodine receptor (RyR) expression inhibition. We used bioinformatics analysis to examine the effects of A. membranaceus on ischemic stroke. We studied brain samples from middle cerebral artery occlusion (MCAO) mice treated with normal saline, Astragaloside IV, and sham mice for pathology and Western blot tests. We also tested PC12 cells in vitro with or without Astragaloside IV or GSK180736A using Western blotting and fluorescence assays. Our bioinformatics analysis suggested a possible association between A. membranaceus, calcium ion pathways, and apoptosis pathways. Western blot data indicated Astragaloside IV significantly decreased RyR, p-Src, and downstream phosphorylated GRK2, PLC, CaMKII, and IP3R levels in MCAO mice brains. Astragaloside IV also considerably inhibited pro-apoptotic and oxidative stress-associated proteins' expression while boosting anti-apoptotic protein expression. The results suggest Astragaloside IV can inhibit RyR expression, subsequently reducing brain cell apoptosis.
Collapse
Affiliation(s)
- Juan Chen
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518034, Guangdong, China
| | - Jun Bao
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Xiujuan Jiang
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Wentao Yu
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Yunpeng Han
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Xia Zhang
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Ying Zhang
- College of Nursing, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China.
- Hebei Key Laboratory of Health Care with Traditional Chinese Medicine, Shijiazhuang, 050200, Hebei, China.
| | - Guoxing Deng
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China.
| |
Collapse
|
2
|
Gillespie SL, Hanrahan TP, Rockey DC, Majumdar A, Hayes PC. Review article: controversies surrounding the use of carvedilol and other beta blockers in the management of portal hypertension and cirrhosis. Aliment Pharmacol Ther 2023; 57:454-463. [PMID: 36691947 DOI: 10.1111/apt.17380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 12/18/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Advanced chronic liver disease is an increasing cause of premature morbidity and mortality in the UK. Portal hypertension is the primary driver of decompensation, including the development of ascites, hepatic encephalopathy and variceal haemorrhage. Non-selective beta blockers (NSBB) reduce portal pressure and are well established in the prevention of variceal haemorrhage. Carvedilol, a newer NSBB, is more effective at reducing portal pressure due to additional α-adrenergic blockade and has additional anti-oxidant, anti-inflammatory and anti-fibrotic effects. AIM To summarise the available evidence on the use of beta blockers, specifically carvedilol, in cirrhosis, focussing on when and why to start METHODS: We performed a comprehensive literature search of PubMed for relevant publications. RESULTS International guidelines advise the use of NSBB in primary prophylaxis against variceal haemorrhage in those with high-risk varices, with substantial evidence of efficacy comparable with endoscopic band ligation (EBL). NSBB are also well established in secondary prophylaxis, in combination with EBL. More controversial is their use in patients without large varices, but with clinically significant portal hypertension. However, there is gathering evidence that NSBB, particularly carvedilol, reduce the risk of decompensation and improve survival. While caution is advised in patients with advanced cirrhosis and refractory ascites, recent evidence suggests that NSBB can continue to be used safely, and that premature discontinuation may be detrimental. CONCLUSIONS With increasing evidence of benefit independent of variceal bleeding, namely retardation of decompensation and improvement in survival, it is time to consider whether carvedilol should be offered to all patients with advanced chronic liver disease.
Collapse
Affiliation(s)
| | - Timothy P Hanrahan
- Centre for Liver and Digestive Disorders, Royal Infirmary of Edinburgh, Edinburgh, UK.,Department of Gastroenterology and Hepatology, Austin Health, Melbourne, Australia
| | - Don C Rockey
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Avik Majumdar
- Department of Gastroenterology and Hepatology, Austin Health, Melbourne, Australia.,The University of Melbourne, Melbourne, Australia
| | - Peter C Hayes
- Centre for Liver and Digestive Disorders, Royal Infirmary of Edinburgh, Edinburgh, UK.,College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Wang YL, Zhang Y, Cai DS. Hepatoprotective effects of sevoflurane against hepatic ischemia-reperfusion injury by regulating microRNA-124-3p-mediated TRAF3/CREB axis. Cell Death Dis 2022; 8:105. [PMID: 35260558 PMCID: PMC8904859 DOI: 10.1038/s41420-021-00784-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022]
Abstract
The purpose of the present study is to define the role of sevoflurane (SEV) in hepatic ischemia-reperfusion (I/R) injury as well as its underlying mechanism. Initially, hepatic I/R animal models and I/R hepatocyte models were established in C57BL/6 mice and normal mouse hepatocytes (BNL CL.2) after SEV preconditioning, respectively, followed by detection of microRNA-124-3p (miR-124-3p), TRAF3, and CREB expression by RT-qPCR and Western blot analysis. In addition, miR-124-3p, TRAF3 and CREB expression in hepatocytes was altered to identify their roles in modulating the levels of glutathione transferase (GST), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and inflammation-related factors and hepatocyte apoptosis by ELISA and flow cytometry respectively. The effects of SEV on the miR-124-3p/TRAF3/CREB axis were also verified in vitro and in vivo. IP assay was performed to verify the effect of TRAF3 on CREB ubiquitination in BNL CL.2 cells, and the cycloheximide (CHX) intervention experiment to detect the stability of CREB protein. SEV augmented the miR-124-3p expression in I/R animal and cell models. Moreover, SEV was observed to suppress I/R-induced liver damage, GST, ALT, and AST levels, hepatocyte apoptosis and inflammation. Overexpression of miR-124-3p resulted in alleviation of hepatic I/R injury, which was countered by TRAF3 overexpression. miR-124-3p targeted TRAF3, while TRAF3 promoted CREB ubiquitination and reduced protein stability of CREB. SEV could impede I/R-induced liver damage, GST, ALT, and AST levels, hepatocyte apoptosis and inflammation via mediation of the miR-124-3p/TRAF3/CREB axis in vitro and in vivo. Collectively, SEV may upregulate miR-124-3p to inhibit TRAF3 expression, thereby reducing the ubiquitination and degradation of CREB, alleviating hepatic I/R injury.
Collapse
Affiliation(s)
- Yi-Liang Wang
- Department of Anaesthesiology, The First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Ying Zhang
- Department of Thyroid and Breast Surgery, Liaoning Provincial People's Hospital, Shenyang, 110001, PR China
| | - Da-Sheng Cai
- Department of Anaesthesiology, The First Hospital of China Medical University, Shenyang, 110001, PR China.
| |
Collapse
|
4
|
Mohamed RMSM, Elshazly SM, Mahmoud NM. Amlexanox Exhibits Cardioprotective Effects in 5/6 Nephrectomized Rats. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
5
|
Ahmed HMS, Mohamed SG, Ibrahim WS, Rezk AM, Mahmoud AAA, Mahmoud MF, Ibrahim IAAEH. Acute and chronic metabolic effects of carvedilol in high-fructose, high-fat diet-fed mice: implication of β-arrestin2 pathway. Can J Physiol Pharmacol 2021; 100:68-77. [PMID: 34570983 DOI: 10.1139/cjpp-2021-0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We aimed to investigate the acute and chronic effects of carvedilol on insulin resistance in high-fructose, high-fat diet (HFrHFD) - fed mice and the implication of the β-arrestin2 pathway. The acute effect of carvedilol (10 mg/kg, i.p.) on glucose tolerance and hepatic lipid signaling in normal and insulin resistant mice was investigated. Then, the chronic effect of carvedilol on insulin resistance and dyslipidemia in HFrHFD-fed mice was examined. Changes in β-arrestin2 and its downstream signals in liver, skeletal muscle, and adipose tissue were measured. This involved measuring phosphatidylinositol 4,5-bisphosphate (PIP2) and diacylglycerol (DAG) levels and protein kinase B (AKT) activity. Carvedilol acutely reduced fasting blood glucose levels in both normal and insulin resistant mice without significantly affecting the glucose tolerance. These acute effects were associated with increased hepatic PIP2 but decreased hepatic DAG levels. Chronic administration of carvedilol significantly ameliorated insulin resistance and dyslipidemia in HFrHFD-fed mice. These chronic effects were associated with increased β-arrestin2, PIP2, and AKT activity levels but decreased DAG levels in the classical insulin target tissues. In conclusion, carvedilol acutely maintains glucose homeostasis and chronically ameliorates insulin resistance and dyslipidemia in HFrHFD-fed mice. The insulin sensitizing effects of carvedilol are highly correlated with the upregulation of β-arrestin2 pathway.
Collapse
Affiliation(s)
- Hoda M S Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt.,Medical Supply Chain, Abo-Hammad Health Administration, Ministry of Health, Egypt
| | - Samar G Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt.,Department of Toxic and Narcotic Drugs, Forensic Medicine, Cairo Laboratory, Medicolegal Organization, Ministry of Justice, Cairo, Egypt
| | - Wael S Ibrahim
- Department of Pharmacology and Toxicology, School of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Asmaa M Rezk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt.,Department of Pharmacy, Benha University Hospitals, Benha, Egypt
| | - Amr A A Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt
| | - Islam A A E-H Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt
| |
Collapse
|
6
|
Rivero CV, Martínez SJ, Novick P, Cueto JA, Salassa BN, Vanrell MC, Li X, Labriola CA, Polo LM, Engman DM, Clos J, Romano PS. Repurposing Carvedilol as a Novel Inhibitor of the Trypanosoma cruzi Autophagy Flux That Affects Parasite Replication and Survival. Front Cell Infect Microbiol 2021; 11:657257. [PMID: 34476220 PMCID: PMC8406938 DOI: 10.3389/fcimb.2021.657257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
T. cruzi, the causal agent of Chagas disease, is a parasite able to infect different types of host cells and to persist chronically in the tissues of human and animal hosts. These qualities and the lack of an effective treatment for the chronic stage of the disease have contributed to the durability and the spread of the disease around the world. There is an urgent necessity to find new therapies for Chagas disease. Drug repurposing is a promising and cost-saving strategy for finding new drugs for different illnesses. In this work we describe the effect of carvedilol on T. cruzi. This compound, selected by virtual screening, increased the accumulation of immature autophagosomes characterized by lower acidity and hydrolytic properties. As a consequence of this action, the survival of trypomastigotes and the replication of epimastigotes and amastigotes were impaired, resulting in a significant reduction of infection and parasite load. Furthermore, carvedilol reduced the whole-body parasite burden peak in infected mice. In summary, in this work we present a repurposed drug with a significant in vitro and in vivo activity against T. cruzi. These data in addition to other pharmacological properties make carvedilol an attractive lead for Chagas disease treatment.
Collapse
Affiliation(s)
- Cynthia Vanesa Rivero
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina.,Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Santiago José Martínez
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina.,Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Paul Novick
- Department of Chemistry, Stanford University, San Francisco, CA, United States
| | - Juan Agustín Cueto
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Betiana Nebaí Salassa
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Xiaomo Li
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Carlos Alberto Labriola
- Laboratorio de Biología estructural y celular, Fundación Instituto Leloir (FIL-CONICET), Buenos Aires, Argentina
| | - Luis Mariano Polo
- Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - David M Engman
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Joachim Clos
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
7
|
Hassan MI, Ali FE, Shalkami AGS. Role of TLR-4/IL-6/TNF-α, COX-II and eNOS/iNOS pathways in the impact of carvedilol against hepatic ischemia reperfusion injury. Hum Exp Toxicol 2021; 40:1362-1373. [PMID: 33655798 DOI: 10.1177/0960327121999442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIM Hepatic ischemia/reperfusion (I/R) injury is a syndrome involved in allograft dysfunction. This work aimed to elucidate carvedilol (CAR) role in hepatic I/R injury. METHODS Male rats were allocated to Sham group, CAR group, I/R group and CAR plus I/R group. Rats subjected to hepatic ischemia for 30 minutes then reperfused for 60 minutes. Oxidative stress markers, inflammatory cytokines and nitric oxide synthases were measured in hepatic tissues. RESULTS Hepatocyte injury following I/R was confirmed by a marked increase in liver enzymes. Also, hepatic I/R increased the contents of malondialdehyde however decreased glutathione contents and activities of antioxidant enzymes. Furthermore, hepatic I/R caused elevation of toll-like receptor-4 (TLR-4) expression and inflammatory mediators levels such as tumor necrosis factor-α, interleukin-6 and cyclooxygenase-II. Hepatic I/R caused down-regulation of endothelial nitric oxide synthase and upregulation of inducible nitric oxide synthase expressions. CAR treatment before hepatic I/R resulted in the restoration of liver enzymes. Administration of CAR caused a significant correction of oxidative stress and inflammation markers as well as modulates the expression of endothelial and inducible nitric oxide synthase. CONCLUSIONS CAR protects liver from I/R injury through reduction of the oxidative stress and inflammation, and modulates endothelial and inducible nitric oxide synthase expressions.
Collapse
Affiliation(s)
- Mohamed Ia Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 195495Al-Azhar University, Assiut, Egypt
| | - Fares Em Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 195495Al-Azhar University, Assiut, Egypt
| | - Abdel-Gawad S Shalkami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 195495Al-Azhar University, Assiut, Egypt
| |
Collapse
|
8
|
El Sayed NF, Abdallah DM, Awad AS, Ahmed KA, El-Abhar HS. Novel peripheral role of Nurr-1/GDNF/AKT trajectory in carvedilol and/or morin hydrate hepatoprotective effect in a model of hepatic ischemia/reperfusion. Life Sci 2021; 273:119235. [PMID: 33607152 DOI: 10.1016/j.lfs.2021.119235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
Although the central role of Nurr-1/GDNF has been reviewed amply, scarce data are available on their peripheral impact. Carvedilol and morin hydrate have previously conferred their hepatic anti-fibrotic action. AIM Thus, our aim was to unveil the potential hepatoprotective role of carvedilol (CR) and/or morin hydrate (MH) using a hepatic 70% partial warm ischemia/reperfusion (I/R) rat model. MAIN METHOD Rats were allocated into sham-operated, hepatic I/R, and I/R preceded by oral administration of CR (10 and 30 mg/kg; CR10/CR30), MH (30 mg/kg), or CR10 + MH for one week. KEY FINDINGS On the molecular level, pretreatment with CR and/or MH increased the hepatic contents of Nurr-1, GDNF, and the protein expression of active/p-AKT. On the other hand, they inactivated GSK3β and NF-κB to increase the antioxidant enzymes (GPx, SOD, CAT). All regimens also enhanced the autophagy/lysosomal function and boosted the protein expression of beclin-1, LC3II, and TFEB. Moreover, their antiapoptotic effect was signified by increasing the anti-apoptotic molecule Bcl2 and inhibiting Bax, Bax/Bcl2 ratio, and caspase-3, effects that were confirmed by the TUNEL assay. These improvements were reflected on liver function, as they decreased serum aminotransferases and liver structural alterations induced by I/R. Despite its mild impact, CR10 showed marked improvements when combined with MH; this synergistic interaction overrides the effect of either regimen alone. SIGNIFICANCE In conclusion, CR, MH, and especially the combination regimen, conferred hepatoprotection against I/R via activating the Nurr-1/GDNF/AKT trajectory to induce autophagy/lysosomal biogenesis, inhibit GSK3β/NF-кB hub and apoptosis, and amend redox balance.
Collapse
Affiliation(s)
- Nermein F El Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology &Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Azza S Awad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), 11835 Cairo, Egypt
| |
Collapse
|
9
|
Li F, Zhang L, Xue H, Xuan J, Rong S, Wang K. SIRT1 alleviates hepatic ischemia-reperfusion injury via the miR-182-mediated XBP1/NLRP3 pathway. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:1066-1077. [PMID: 33664991 PMCID: PMC7887305 DOI: 10.1016/j.omtn.2020.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
The hepatoprotection of histone deacetylase sirtuin 1 (SIRT1) has been identified to attenuate ischemia-reperfusion (IR)-triggered inflammation and liver damage. This study was performed to characterize the function of SIRT1 in hepatic IR injury. In in vivo assays on liver-specific knockout mice of SIRT1, we first validated the effect of SIRT1 knockout on liver damage and XBP1/NLRP3 inflammasome activation. Next, we examined whether knockdown of XBP1/NLRP3 or miR-182 agomir could reverse the effect of SIRT1 knockout. In in vitro assays, NCTC1469 cells subjected to hypoxia/reoxygenation (H/R) were transduced with small interfering RNA (siRNA)/activator of SIRT1 or miR-182 agomir to confirm the effect of SIRT1 on NCTC1469 cell behaviors as well as the regulation of miR-182 and the XBP1/NLRP3 signaling pathway. Hepatic IR injury was appreciably aggravated in SIRT1 knockout mice, and SIRT1 knockdown abolished the inhibition of XBP1/NLRP3 inflammasome activation, which was reversed by NLRP3 knockdown, XBP1 knockdown, or miR-182 agomir. Mechanistically, miR-182 expression was positively regulated by SIRT1 in hepatic IR injury in mice, and miR-182 inhibited the expression of XBP1 by binding to the 3' untranslated region (UTR) of XBP1. The histone deacetylase SIRT1 inhibits the downstream XBP1/NLRP3 inflammatory pathway by activating miR-182, thus alleviating hepatic IR injury in mice.
Collapse
Affiliation(s)
- Fengwei Li
- Department of Hepatic Surgery (II), Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, P.R. China
| | - Lei Zhang
- Department of Hepatic Surgery (II), Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, P.R. China
| | - Hui Xue
- Department of Hepatic Surgery (II), Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, P.R. China
| | - Jianbing Xuan
- Department of Hepatic Surgery (II), Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, P.R. China
| | - Shu Rong
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Kui Wang
- Department of Hepatic Surgery (II), Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, P.R. China
| |
Collapse
|
10
|
Rezk AM, Ibrahim IAAEH, Mahmoud MF, Mahmoud AAA. Quercetin and lithium chloride potentiate the protective effects of carvedilol against renal ischemia-reperfusion injury in high-fructose, high-fat diet-fed Swiss albino mice independent of renal lipid signaling. Chem Biol Interact 2020; 333:109307. [PMID: 33159969 DOI: 10.1016/j.cbi.2020.109307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
Renal ischemia-reperfusion injury (R-IRI) is the main cause of acute renal failure. Carvedilol has been shown to protect against R-IRI. However, the underlying mechanisms are still not completely clarified. This study aimed to investigate the role of lipid signaling in mediating carvedilol protective effects against R-IRI in insulin-resistant mice by using two different lipid signaling modulators, quercetin and lithium chloride (LiCl). Mice were fed high-fructose, high-fat diet (HFrHFD) for 16 weeks to induce insulin resistance. At the end of feeding period, mice were randomly distributed into five groups; Sham, R-IRI, Carvedilol (20 mg/kg, i.p.), Carvedilol + Quercetin (10 mg/kg, i.p.), Carvedilol + LiCl (200 mg/kg, i.p.). R-IRI was performed by applying 30 min of unilateral renal ischemia followed by one hour of reperfusion. Quercetin and LiCl were administered 30 min before carvedilol administration and carvedilol was administered 30 min before ischemia. Changes in kidney function tests, histopathology, fibrosis area, lipid signaling, inflammatory, apoptosis and oxidative stress markers in the kidney were measured. Results showed that R-IRI decreased kidney function, impaired renal tissue integrity, modulated lipid signaling and increased renal inflammation, apoptosis and oxidative stress. Carvedilol treatment decreased the detrimental effects induced by R-IRI. In addition, pre-injection of both quercetin and LiCl potentiated the reno-protective effects of carvedilol against R-IRI independent of changes in lipid mediators like phosphatidyl inositol 4,5 bisphosphate (PIP2) and diacylglycerol (DAG). In conclusion, quercetin and LiCl potentiate the protective effects of carvedilol against R-IRI in HFrHFD-fed mice by reducing inflammation and oxidative stress independent of lipid signaling.
Collapse
Affiliation(s)
- Asmaa M Rezk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt; Department of Pharmacies, Benha University Hospitals, Benha, Egypt
| | - Islam A A E-H Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amr A A Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
11
|
Ibrahim WS, Ibrahim IAAEH, Mahmoud MF, Mahmoud AAA. Carvedilol Diminishes Cardiac Remodeling Induced by High-Fructose/High-Fat Diet in Mice via Enhancing Cardiac β-Arrestin2 Signaling. J Cardiovasc Pharmacol Ther 2020; 25:354-363. [PMID: 32052660 DOI: 10.1177/1074248420905683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Insulin resistance (IR) is a well-known risk factor for cardiovascular complications. This study aimed to investigate the effect of a dietary model of IR in mice on cardiac remodeling, cardiac β-arrestin2 signaling, and the protective effects of carvedilol as a β-arrestin-biased agonist. METHODS AND RESULTS Insulin resistance was induced by feeding mice high-fructose/high-fat diet (HFrHFD) for 16 weeks. Carvedilol was adiministered for 4 weeks starting at week 13. At the end of the experiment, body weight, heart weight, left and right ventricular thickness, visceral fat weight, fasting blood glucose (FBG), serum insulin, IR index, and serum endothelin-1 were measured. In addition, cardiac tissue samples were histopathologically examined. Also, cardiac levels of cardiotrophin-1, β-arrestin2, phosphatidylinositol 4,5 bisphosphate (PIP2), diacylglycerol (DAG), and phosphoserine 473 Akt (pS473 Akt) were measured. Results showed significant increases in the FBG, serum insulin, IR index, serum endothelin-1, cardiac DAG, cardiac fibrosis, and degenerated cardiac myofibrils in HFrHFD-fed mice associated with a significant reduction in cardiac levels of cardiotrophin-1, β-arrestin2, PIP2, and pS473 Akt. On the other hand, carvedilol significantly reduced the heart weight, FBG, serum insulin, IR index, serum endothelin-1, cardiac DAG, left ventricular thickness, right ventricular fibrosis, and degeneration of cardiac myofibrils. In addition, carvedilol significantly increased cardiac levels of cardiotrophin-1, β-arrestin2, PIP2, and pS473 Akt. CONCLUSION Carvedilol enhances cardiac β-arrestin2 signaling and reduces cardiac remodeling in HFrHFD-fed mice.
Collapse
Affiliation(s)
- Wael S Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Pharmacology, School of Pharmacy, Badr University, Cairo, Egypt
| | - Islam A A E-H Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Amr A A Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Pharmacology, Pharmacy Program, Oman College of Health Sciences, Muscat, Oman
| |
Collapse
|