1
|
Park JW, Kang M, Kim G, Hyun SY, Shin J, Kim SY, Lee JH, Choi WS, Lee JH, Lee K, Kim SH, Cho WS, Kim HS. The impact of atmospheric ultrafine particulate matter on IgE-mediated type 1 hypersensitivity reaction. JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136705. [PMID: 39637818 DOI: 10.1016/j.jhazmat.2024.136705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The effect of atmospheric ultrafine particulate matter (UPM) on respiratory allergic diseases has been investigated for decades; however, the precise molecular mechanisms underlying these effects remain poorly understood. In this study, we used a simulated UPM (sUPM) generated via the spark discharge method to refine black carbon, a core particle that closely mimics real-world UPM, including the size (i.e., size of agglomerates: 165 nm) and organic carbon/elemental carbon ratio (i.e., 2.62). When 25 μg/mouse of dispersed sUPM was instilled into the lungs of mice, it promoted the infiltration and degranulation response of pulmonary mast cells, and exposure to sUPM in an immunoglobulin E (IgE)-mediated passive anaphylaxis model intensified the degranulation response of peripheral mast cells. These effects of sUPM were demonstrated to amplify the downstream signaling mechanism of the high-affinity IgE receptor (FcεRI) mediated by IgE when tested using rat basophil leukemia (RBL)-2H3 and mouse bone marrow-derived mast cells (BMMCs) collected from the bone marrow of BALB/c mice. These results indicate that airborne UPM can exacerbate type 1 hypersensitivity reactions by enhancing the IgE-mediated signaling pathways within mast cells. Furthermore, this study provided mechanistic evidence on exacerbated allergic pulmonary diseases induced by UPM inhalation.
Collapse
Affiliation(s)
- Jeong Won Park
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Minseong Kang
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Gyuri Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Seung Yeun Hyun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Juhyun Shin
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Seon Young Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Jun Ho Lee
- Department of Korean Medicine, College of Korean Medicine, Woosuk University, Jeonju 54986, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan 49315, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| | - Hyuk Soon Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
2
|
Li L, Liu C, Wang R, Yang X, Wei X, Chu C, Zhang G, Liu C, Cui W, Xu H, Wang K, An L, Li X. A novel role for WZ3146 in the inhibition of cell proliferation via ERK and AKT pathway in the rare EGFR G719X mutant cells. Sci Rep 2024; 14:22895. [PMID: 39358400 PMCID: PMC11447065 DOI: 10.1038/s41598-024-73293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Mutations in the epidermal growth factor receptor (EGFR) gene are common driver oncogenes in non-small cell lung cancer (NSCLC). Studies have shown that afatinib is beneficial for NSCLC patients with rare EGFR mutations. However, the effectiveness of tyrosine kinase inhibitors (TKIs) against the G719X (G719A, G719C and G719S) mutation has not been fully established. Herein, using the CRISPR method, the EGFR G719X mutant cell lines were constructed to assess the sensitivity of the rare mutation G719X in NSCLC. WZ3146, a novel mutation-selective EGFR inhibitor, was conducted transcriptome sequencing and in vitro experiments. The results showed that WZ3146 induced cytotoxic effects, inhibited growth vitality and proliferation via ERK and AKT pathway in the EGFR G719X mutant cells. Our findings suggest that WZ3146 may be a promising treatment option for NSCLC patients with the EGFR exon 18 substitution mutation G719X.
Collapse
Affiliation(s)
- Lanxin Li
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
- Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Chenyang Liu
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Rui Wang
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Xiaolin Yang
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Xiangkai Wei
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Chunhong Chu
- Institutes of Traditional Chinese Medicine, School of Pharmacy, Henan University, Kaifeng, 475000, Henan, China
| | - Guoliang Zhang
- Institutes of Traditional Chinese Medicine, School of Pharmacy, Henan University, Kaifeng, 475000, Henan, China
| | - Chenxue Liu
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Wenrui Cui
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Huixia Xu
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Ke Wang
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Lei An
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China.
- Institutes of Traditional Chinese Medicine, School of Pharmacy, Henan University, Kaifeng, 475000, Henan, China.
| | - Xiaodong Li
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China.
| |
Collapse
|
3
|
Chen J, Peng L, Sun J, Liu J, Chu L, Yi B, Gui M, Zhang H, Tang J. Upregulation of the protein kinase Lyn is associated with renal injury in type 2 diabetes patients. Ren Fail 2023; 45:2272717. [PMID: 37870491 PMCID: PMC11001359 DOI: 10.1080/0886022x.2023.2272717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND The role of inflammation in the pathogenesis of type 2 diabetes mellitus (T2DM) is well established. Lyn, a member of the nonreceptor protein tyrosine kinase Src family, has been reported to modulate inflammatory signaling pathways. METHODS Lyn expression was assessed in kidney biopsies of 11 patients with diabetic kidney disease (DKD) and in kidney tissues of streptozotocin (STZ)-induced DKD mice. 102 recruited T2DM patients were divided into three groups: normoalbuminuria, microalbuminuria and macroalbuminuria. Twenty-one healthy volunteers were recruited as a control group. Clinical data, blood and urine samples of all individuals were collected for analysis. RESULTS Lyn expression was augmented in the kidneys of DKD patients and STZ-induced diabetic mice. Compared with control and normoalbuminuria groups, both mRNA and protein expression of Lyn in peripheral blood mononuclear cells (PBMCs) in the macroalbuminuria group were significantly increased (p < .05). Elevated Lyn levels were independently related to urine albumin/urine creatinine ratio and were positively associated with key inflammatory factors, namely interleukin-1β, monocyte chemoattractant protein-1, and tumor necrosis factor-α. Additionally, Lyn exhibited a noteworthy connection with renal tubular injury indicators, specifically urinary neutrophil gelatinase-associated lipocalin and urinary retinol binding protein. ROC curve analysis showed that Lyn could predict albuminuria in diabetic patients with an area under the curve of 0.844 (95% CI: 0.764-0.924). CONCLUSION Lyn levels in PBMCs exhibited a positive correlation with the severity of albuminuria, renal tubular damage, and inflammatory responses. Hence, Lyn may be a compelling candidate for predicting albuminuria levels in diabetes.
Collapse
Affiliation(s)
- Juan Chen
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China and Clinical Research Center for Critical Kidney Disease in Hunan Province
| | - Lingfeng Peng
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China and Clinical Research Center for Critical Kidney Disease in Hunan Province
| | - Jian Sun
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China and Clinical Research Center for Critical Kidney Disease in Hunan Province
| | - Jishi Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China and Clinical Research Center for Critical Kidney Disease in Hunan Province
| | - Ling Chu
- Department of pathology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China and Clinical Research Center for Critical Kidney Disease in Hunan Province
| | - Ming Gui
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China and Clinical Research Center for Critical Kidney Disease in Hunan Province
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China and Clinical Research Center for Critical Kidney Disease in Hunan Province
| | - Juan Tang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China and Clinical Research Center for Critical Kidney Disease in Hunan Province
| |
Collapse
|
4
|
Ling XJ, Wei JF, Zhu Y. Aiming to IgE: Drug development in allergic diseases. Int Immunopharmacol 2023; 121:110495. [PMID: 37348229 DOI: 10.1016/j.intimp.2023.110495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The incidence of allergic disease significantly increases in recent decades, causing it become a major public health problem all over the world. The common allergic diseases such as allergic dermatitis, allergy rhinitis, allergic asthma and food allergy are mediated, at least in part, by immunoglobulin E (IgE), and so IgE acts as a central role in allergic diseases. IgE can interact with its high-affinity receptor (FcεRⅠ) which is primarily expressed on tissue-resident mast cells and circulating basophils, initiating intracellular signal transduction and then causing the activation and degranulation of mast cells and basophils. On the other hand, IgE interaction with its low-affinity receptor (CD23), can regulate various IgE-mediated immune responses including IgE-allergen complex presentation, IgE synthesis, the growth and differentiation of both B and T cells, and the secretion of pro-inflammatory mediators. With the deeper mechanism research for allergic diseases, new therapeutic strategies for interfering IgE are developed and receive a great attention. In this review, we summarize a current profile of therapeutic strategies for interfering IgE in allergic diseases. Besides, we suggest that targeting memory B cells (including long-lived plasma cells and (or) IgE+ memory B cells) may help to completely control allergic diseases, and highlight that the development of drugs synergistically aiming to multiple targets can be a better choice for improving treatment efficacy which results from allergic diseases as the systemic disorders caused by an impaired immune system.
Collapse
Affiliation(s)
- Xiao-Jing Ling
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ji-Fu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Ying Zhu
- Department of Blood Transfusion, Ganzhou Key Laboratory of Anesthesiology, Anesthesia and Surgery Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| |
Collapse
|
5
|
Tang D, Wang C, Gu Z, Li J, Jin L, Li J, Wang Z, Jiang RW. Discovery of anti-allergic components in Guomingkang Formula using sensitive HEMT biochips coupled with in vitro and in vivo validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154837. [PMID: 37126969 DOI: 10.1016/j.phymed.2023.154837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) is a prevalent allergic disease, which seriously affects the sufferers' life quality and increases the socioeconomic burden. Guominkang (GMK), a well-known prescription for AR treatment, showed satisfactory effects; while its anti-allergic components remain to be disclosed. AlGaN/GaN HEMT biochip is more sensitive and cost-effective than other binding equipments, indicating its great potential for screening of active ingredients from herbal medicines. METHODS AR mouse models were first established to test the anti-allergic effect of GMK and discover the ingredients absorbed into blood by ultra-high performance liquid chromatography-mass spectra (UHPLC-MS). Then, novel Syk/Lyn/Fyn-functionalized high electron mobility transistor (HEMT) biochips with high sensitivity and specificity were constructed and applied to screen the active components. Finally, the results from HEMT biochips screening were validated via in silico (molecular docking and molecular dynamics simulation), in vitro (RBL-2H3 cells), and in vivo (PCA mice model) assays. RESULTS GMK showed a potent therapeutic effect on AR mice, and fifteen components were identified from the medicated plasma. Furthermore, hamaudol was firstly found to selectively inhibit the Syk and Lyn, and emodin was to selectively inhibit Lyn, which were further confirmed by isothermal titration calorimetry, molecular docking, and molecular dynamics simulation analyses. Suppression of the activation of FcεRI-MAPK signals might be the possible mechanism of the anti-allergic effect of hamaudol. CONCLUSIONS The targets of emodin and hamaudol were discovered by HEMT biochips for the first time. This study provided a novel and effective strategy to discover active components in a complex herbal formula by using AlGaN/GaN HEMT biochips.
Collapse
Affiliation(s)
- Ding Tang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 511436, PR China; Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Chen Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 511436, PR China
| | - Zhiqi Gu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, PR China
| | - Jiadong Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, PR China
| | - Lu Jin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 511436, PR China
| | - Juan Li
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Zhixin Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 511436, PR China.
| | - Ren-Wang Jiang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 511436, PR China.
| |
Collapse
|
6
|
Abstract
Mast cells originate from the CD34+/CD117+ hematopoietic progenitors in the bone marrow, migrate into circulation, and ultimately mature and reside in peripheral tissues. Microbiota/metabolites and certain immune cells (e.g., Treg cells) play a key role in maintaining immune tolerance. Cross-linking of allergen-specific IgE on mast cells activates the high-affinity membrane-bound receptor FcεRI, thereby initiating an intracellular signal cascade, leading to degranulation and release of pro-inflammatory mediators. The intracellular signal transduction is intricately regulated by various kinases, transcription factors, and cytokines. Importantly, multiple signal components in the FcεRI-mast cell–mediated allergic cascade can be targeted for therapeutic purposes. Pharmacological interventions that include therapeutic antibodies against IgE, FcεRI, and cytokines as well as inhibitors/activators of several key intracellular signaling molecues have been used to inhibit allergic reactions. Other factors that are not part of the signal pathway but can enhance an individual’s susceptibility to allergen stimulation are referred to as cofactors. Herein, we provide a mechanistic overview of the FcεRI-mast cell–mediated allergic signaling. This will broaden our scope and visions on specific preventive and therapeutic strategies for the clinical management of mast cell–associated hypersensitivity reactions.
Collapse
|
7
|
Burchett JR, Dailey JM, Kee SA, Pryor DT, Kotha A, Kankaria RA, Straus DB, Ryan JJ. Targeting Mast Cells in Allergic Disease: Current Therapies and Drug Repurposing. Cells 2022; 11:3031. [PMID: 36230993 PMCID: PMC9564111 DOI: 10.3390/cells11193031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
The incidence of allergic disease has grown tremendously in the past three generations. While current treatments are effective for some, there is considerable unmet need. Mast cells are critical effectors of allergic inflammation. Their secreted mediators and the receptors for these mediators have long been the target of allergy therapy. Recent drugs have moved a step earlier in mast cell activation, blocking IgE, IL-4, and IL-13 interactions with their receptors. In this review, we summarize the latest therapies targeting mast cells as well as new drugs in clinical trials. In addition, we offer support for repurposing FDA-approved drugs to target mast cells in new ways. With a multitude of highly selective drugs available for cancer, autoimmunity, and metabolic disorders, drug repurposing offers optimism for the future of allergy therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
8
|
Regulation of mast cell activation by extracellular vesicles in cow’s milk casein-induced allergic responses. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Jang HY, Ha DH, Rah SY, Lee DH, Lee SM, Park BH. Sirtuin 6 is a negative regulator of FcεRI signaling and anaphylactic responses. J Allergy Clin Immunol 2022; 149:156-167.e7. [PMID: 34051221 DOI: 10.1016/j.jaci.2021.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Binding IgE to a cognate allergen causes aggregation of Fcε receptor I (FcεRI) in mast cells, resulting in activation of receptor-associated Src family tyrosine kinases, including Lyn and Syk. Protein tyrosine phosphatase, receptor type C (PTPRC), also known as CD45, has emerged as a positive regulator of FcεRI signaling by dephosphorylation of the inhibitory tyrosine of Lyn. OBJECTIVE Sirtuin 6 (Sirt6), a NAD+-dependent deacetylase, exhibits an anti-inflammatory property. It remains to be determined, however, whether Sirt6 attenuates mast cell-associated diseases, including anaphylaxis. METHODS FcεRI signaling and mast cell degranulation were measured after IgE cross-linking in murine bone marrow-derived mast cells (BMMCs) and human cord blood-derived mast cells. To investigate the function of Sirt6 in mast cell activation in vivo, we used mast cell-dependent animal models of passive systemic anaphylaxis (PSA) and passive cutaneous anaphylaxis (PCA). RESULTS Sirt6-deficient BMMCs augmented IgE-FcεRI-mediated signaling and degranulation compared to wild-type BMMCs. Reconstitution of mast cell-deficient KitW-sh/W-sh mice with BMMCs received from Sirt6 knockout mice developed more severe PSA and PCA compared to mice engrafted with wild-type BMMCs. Similarly, genetic overexpression or pharmacologic activation of Sirt6 suppressed mast cell degranulation and blunted responses to PCA. Mechanistically, Sirt6 deficiency increased PTPRC transcription via acetylating histone H3, leading to enhanced aggregation of FcεRI in BMMCs. Finally, we recapitulated the Sirt6 regulation of PTPRC and FcεRI signaling in human mast cells. CONCLUSIONS Sirt6 acts as a negative regulator of FcεRI signaling cascade in mast cells by suppressing PTPRC transcription. Activation of Sirt6 may therefore represent a promising and novel therapeutic strategy for anaphylaxis.
Collapse
Affiliation(s)
- Hyun-Young Jang
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Korea
| | - Do Hyun Ha
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Korea
| | - So-Young Rah
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Korea
| | - Dong-Hyun Lee
- Department of Obstetrics and Gynecology, Chonbuk National University Medical School, Jeonju, Korea
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea.
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Korea.
| |
Collapse
|
10
|
Wang Y, Ding Y, Li C, Gao J, Wang X, An H. Alpha-linolenic acid inhibits IgE-mediated anaphylaxis by inhibiting Lyn kinase and suppressing mast cell activation. Int Immunopharmacol 2021; 103:108449. [PMID: 34929479 DOI: 10.1016/j.intimp.2021.108449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/28/2021] [Accepted: 12/05/2021] [Indexed: 12/11/2022]
Abstract
Excessive reactions to allergens can induce systemic, life-threatening physiological dysfunction (anaphylaxis) in humans. The surface of mast cells expresses high-affinity IgE receptors that play a vital role during anaphylaxis. Alpha-linolenic acid (ALA) is an essential non-toxic fatty acid in humans. Since it has been reported having potential to regulate pro-inflammatory reactions, we postulated that ALA could inhibit anaphylaxis by down-regulating Lyn kinase phosphorylation. We found that local and systematic inflammation induced by albumin from chicken egg white (OVA) were attenuated by ALA in vivo. Furthermore, ALA inhibited IgE-mediated Ca2+ mobilization, degranulation, and cytokine release in Laboratory of Allergic Disease 2 (LAD2) cells. The western blot results showed that ALA down-regulate the FcεRI/Lyn/Syk signaling pathway by suppressing Lyn kinase activity. Therefore, ALA could serve as a therapeutic drug candidate for preventing IgE-mediated anaphylaxis.
Collapse
Affiliation(s)
- Yuejin Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; College of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Ding
- College of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chaomei Li
- College of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiapan Gao
- College of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaodong Wang
- Shaanxi Institute of Medical Device Quality Inspection, Xi'an, Shaanxi 712046, China
| | - Hongli An
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
11
|
Zhang Z, Kurashima Y. Two Sides of the Coin: Mast Cells as a Key Regulator of Allergy and Acute/Chronic Inflammation. Cells 2021; 10:cells10071615. [PMID: 34203383 PMCID: PMC8308013 DOI: 10.3390/cells10071615] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
It is well known that mast cells (MCs) initiate type I allergic reactions and inflammation in a quick response to the various stimulants, including—but not limited to—allergens, pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs). MCs highly express receptors of these ligands and proteases (e.g., tryptase, chymase) and cytokines (TNF), and other granular components (e.g., histamine and serotonin) and aggravate the allergic reaction and inflammation. On the other hand, accumulated evidence has revealed that MCs also possess immune-regulatory functions, suppressing chronic inflammation and allergic reactions on some occasions. IL-2 and IL-10 released from MCs inhibit excessive immune responses. Recently, it has been revealed that allergen immunotherapy modulates the function of MCs from their allergic function to their regulatory function to suppress allergic reactions. This evidence suggests the possibility that manipulation of MCs functions will result in a novel approach to the treatment of various MCs-mediated diseases.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- CU-UCSD Center for Mucosal Immunology, Department of Pathology/Medicine, Allergy and Vaccines, University of California, San Diego, CA 92093-0063, USA
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Correspondence: ; Tel.: +81-43-226-2848; Fax: +81-43-226-2183
| |
Collapse
|
12
|
Lertnimitphun P, Zhang W, Fu W, Yang B, Zheng C, Yuan M, Zhou H, Zhang X, Pei W, Lu Y, Xu H. Safranal Alleviated OVA-Induced Asthma Model and Inhibits Mast Cell Activation. Front Immunol 2021; 12:585595. [PMID: 34093515 PMCID: PMC8173045 DOI: 10.3389/fimmu.2021.585595] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Asthma is a chronic and recurring airway disease, which related to mast cell activation. Many compounds derived from Chinese herbal medicine has promising effects on stabilizing mast cells and decreasing inflammatory mediator production. Safranal, one of the active compounds from Crocus sativus, shows many anti-inflammatory properties. In this study, we evaluated the effect of safranal in ovalbumin (OVA)-induced asthma model. Furthermore, we investigate the effectiveness of safranal on stabilizing mast cell and inhibiting the production of inflammatory mediators in passive systemic anaphylaxis (PSA) model. Methods OVA-induced asthma and PSA model were used to evaluate the effect of safranal in vivo. Lung tissues were collected for H&E, TB, IHC, and PAS staining. ELISA were used to determine level of IgE and chemokines (IL-4, IL-5, TNF-α, and IFN-γ). RNA sequencing was used to uncovers genes that safranal regulate. Bone marrow-derived mast cells (BMMCs) were used to investigate the inhibitory effect and mechanism of safranal. Cytokine production (IL-6, TNF-α, and LTC4) and NF-κB and MAPKs signaling pathway were assessed. Results Safranal reduced the level of serum IgE, the number of mast cells in lung tissue were decreased and Th1/Th2 cytokine levels were normalized in OVA-induced asthma model. Furthermore, safranal inhibited BMMCs degranulation and inhibited the production of LTC4, IL-6, and TNF-α. Safranal inhibits NF-κB and MAPKs pathway protein phosphorylation and decreases NF-κB p65, AP-1 nuclear translocation. In the PSA model, safranal reduced the levels of histamine and LTC4 in serum. Conclusions Safranal alleviates OVA-induced asthma, inhibits mast cell activation and PSA reaction. The possible mechanism occurs through the inhibition of the MAPKs and NF-κB pathways.
Collapse
Affiliation(s)
- Peeraphong Lertnimitphun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Acupuncture and Moxibustion, Huachiew TCM Hospital, Bangkok, Thailand
| | - Wenhui Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenwei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baican Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Zhang
- Saffron Department and International Trade Department, Shanghai Traditional Chinese Medicine Co., Ltd., Shanghai, China
| | - Weizhong Pei
- Saffron Department and International Trade Department, Shanghai Traditional Chinese Medicine Co., Ltd., Shanghai, China
| | - Yue Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Dispenza MC, Krier-Burris RA, Chhiba KD, Undem BJ, Robida PA, Bochner BS. Bruton's tyrosine kinase inhibition effectively protects against human IgE-mediated anaphylaxis. J Clin Invest 2021; 130:4759-4770. [PMID: 32484802 DOI: 10.1172/jci138448] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/28/2020] [Indexed: 01/30/2023] Open
Abstract
No known therapies can prevent anaphylaxis. Bruton's tyrosine kinase (BTK) is an enzyme thought to be essential for high-affinity IgE receptor (FcεRI) signaling in human cells. We tested the hypothesis that FDA-approved BTK inhibitors (BTKis) would prevent IgE-mediated responses including anaphylaxis. We showed that irreversible BTKis broadly prevented IgE-mediated degranulation and cytokine production in primary human mast cells and blocked allergen-induced contraction of isolated human bronchi. To address their efficacy in vivo, we created and used what we believe to be a novel humanized mouse model of anaphylaxis that does not require marrow ablation or human tissue implantation. After a single intravenous injection of human CD34+ cells, NSG-SGM3 mice supported the population of mature human tissue-resident mast cells and basophils. These mice showed excellent responses during passive systemic anaphylaxis using human IgE to selectively evoke human mast cell and basophil activation, and response severity was controllable by alteration of the amount of allergen used for challenge. Remarkably, pretreatment with just 2 oral doses of the BTKi acalabrutinib completely prevented moderate IgE-mediated anaphylaxis in these mice and also significantly protected against death during severe anaphylaxis. Our data suggest that BTKis may be able to prevent anaphylaxis in humans by inhibiting FcεRI-mediated signaling.
Collapse
Affiliation(s)
- Melanie C Dispenza
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rebecca A Krier-Burris
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Krishan D Chhiba
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bradley J Undem
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piper A Robida
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
14
|
Dispenza MC, Bochner BS, MacGlashan DW. Targeting the FcεRI Pathway as a Potential Strategy to Prevent Food-Induced Anaphylaxis. Front Immunol 2021; 11:614402. [PMID: 33391286 PMCID: PMC7773654 DOI: 10.3389/fimmu.2020.614402] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022] Open
Abstract
Despite attempts to halt it, the prevalence of food allergy is increasing, and there is an unmet need for strategies to prevent morbidity and mortality from food-induced allergic reactions. There are no known medications that can prevent anaphylaxis, but several novel therapies show promise for the prevention of food-induced anaphylaxis through targeting of the high-affinity IgE receptor (FcϵRI) pathway. This pathway includes multiple candidate targets, including tyrosine kinases and the receptor itself. Small molecule inhibitors of essential kinases have rapid onset of action and transient efficacy, which may be beneficial for short-term use for immunotherapy buildup or desensitizations. Short courses of FDA-approved inhibitors of Bruton’s tyrosine kinase can eliminate IgE-mediated basophil activation and reduce food skin test size in allergic adults, and prevent IgE-mediated anaphylaxis in humanized mice. In contrast, biologics may provide longer-lasting protection, albeit with slower onset. Omalizumab is an anti-IgE antibody that sequesters IgE, thereby reducing FcϵRI expression on mast cells and basophils. As a monotherapy, it can increase the clinical threshold dose of food allergen, and when used as an adjunct for food immunotherapy, it decreases severe reactions during buildup phase. Finally, lirentelimab, an anti-Siglec-8 antibody currently in clinical trials, can prevent IgE-mediated anaphylaxis in mice through mast cell inhibition. This review discusses these and other emerging therapies as potential strategies for preventing food-induced anaphylaxis. In contrast to other food allergy treatments which largely focus on individual allergens, blockade of the FcϵRI pathway has the advantage of preventing clinical reactivity from any food.
Collapse
Affiliation(s)
- Melanie C Dispenza
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Donald W MacGlashan
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
STAT3 Differentially Regulates TLR4-Mediated Inflammatory Responses in Early or Late Phases. Int J Mol Sci 2020; 21:ijms21207675. [PMID: 33081347 PMCID: PMC7589049 DOI: 10.3390/ijms21207675] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptor 4 (TLR4) signaling is an important therapeutic target to manage lipopolysaccharide (LPS)-induced inflammation. The transcription factor signal transducer and activator of transcription 3 (STAT3) has been identified as an important regulator of various immune-related diseases and has generated interest as a therapeutic target. Here, we investigated the time-dependent roles of STAT3 in LPS-stimulated RAW264.7 macrophages. STAT3 inhibition induced expression of the pro-inflammatory genes iNOS and COX-2 at early time points. STAT3 depletion resulted in regulation of nuclear translocation of nuclear factor (NF)-κB subunits p50 and p65 and IκBα/Akt/PI3K signaling. Moreover, we found that one Src family kinase, Lyn kinase, was phosphorylated in STAT3 knockout macrophages. In addition to using pharmacological inhibition of NF-κB, we found out that STAT3KO activation of NF-κB subunit p50 and p65 and expression of iNOS was significantly inhibited; furthermore, Akt tyrosine kinase inhibitors also inhibited iNOS and COX-2 gene expression during early time points of LPS stimulation, demonstrating an NF-κB- Akt-dependent mechanism. On the other hand, iNOS expression was downregulated after prolonged treatment with LPS. Activation of NF-κB signaling was also suppressed, and consequently, nitric oxide (NO) production and cell invasion were repressed. Overall, our data indicate that STAT3 differentially regulates early- and late-phase TLR4-mediated inflammatory responses.
Collapse
|
16
|
Caffeoyl-Prolyl-Histidine Amide Inhibits Fyn and Alleviates Atopic Dermatitis-Like Phenotypes via Suppression of NF-κB Activation. Int J Mol Sci 2020; 21:ijms21197160. [PMID: 32998341 PMCID: PMC7582254 DOI: 10.3390/ijms21197160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 11/26/2022] Open
Abstract
Caffeic acid (CA) is produced from a variety of plants and has diverse biological functions, including anti-inflammation activity. It has been recently demonstrated that caffeoyl-prolyl-histidine amide (CA-PH), which is CA conjugated with proline-histidine dipeptide, relieves atopic dermatitis (AD)-like phenotypes in mouse. In this study, we investigated the molecular mechanism underlying CA-PH-mediated alleviation of AD-like phenotypes using cell line and AD mouse models. We confirmed that CA-PH suppresses AD-like phenotypes, such as increased epidermal thickening, infiltration of mast cells, and dysregulated gene expression of cytokines. CA-PH suppressed up-regulation of cytokine expression through inhibition of nuclear translocation of NF-κB. Using a CA-PH affinity pull-down assay, we found that CA-PH binds to Fyn. In silico molecular docking and enzyme kinetic studies revealed that CA-PH binds to the ATP binding site and inhibits Fyn competitively with ATP. CA-PH further suppressed spleen tyrosine kinase (SYK)/inhibitor of nuclear factor kappa B kinase (IKK)/inhibitor of nuclear factor kappa B (IκB) signaling, which is required for nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. In addition, chronic application of CA-PH, in contrast with that of glucocorticoids, did not induce up-regulation of regulated in development and DNA damage response 1 (REDD1), reduction of mammalian target of rapamycin (mTOR) signaling, or skin atrophy. Thus, our study suggests that CA-PH treatment may help to reduce skin inflammation via down-regulation of NF-κB activation, and Fyn may be a new therapeutic target of inflammatory skin diseases, such as AD.
Collapse
|