1
|
Gao L, Xu M, Zhao W, Zou T, Wang F, Da J, Wang Y, Wang L. Ultrathin, elastic, and self-adhesive nanofiber bio-tape: An intraoperative drug-loading module for ureteral stents with localized and controlled drug delivery properties for customized therapy. Bioact Mater 2022; 18:128-137. [PMID: 35387174 PMCID: PMC8961457 DOI: 10.1016/j.bioactmat.2022.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
During the postoperative management of urinary diseases, oral or intravenous administration of drugs and implanting ureteral stents are usually required, making localized drug delivery by ureteral stent a precise and effective medication strategy. In the traditional drug loading method, the drug was premixed in the implants in production lines and the versatility of drugs was restricted. However, the complex situation in the urinary system fails the possibility of finding a “one fits all” medication plan, and the intraoperative drug-loading of implants is highly desired to support customized therapy. Here, we designed an ultrathin (8 μm), elastic, and self-adhesive nanofiber bio-tape (NFBT) that can easily encapsulate drugs on the stent surface for controllable localized drug delivery. The NFBT exhibited high binding strength to a ureteral stent, a sustained release over 7 d in PBS for hydrophilic drug, and a zero-order release curve over 28 days for the hydrophobic drug nitrofurantoin (NFT). Further in vivo experiments using a porcine ureteral tract infection model demonstrated that NFBT loaded with NFT could significantly reduce the bacterial concentration in urine. The total amount of NFT delivered by the NFBT was about 2.68 wt% of the recommended dose for the systemic administration. An intra operation drug-loading strategy and drug carrier for personalized post-operation management of urinary disease. The NFBT is ultrathin (∼8 μm) with enough binding stress to resist displacement bought by ureteral peristalsis. In vivo antibacterial rate >99.9% for 28 d (porcine UTI model), with 2.68 wt% of the systemically administration dosage.
Collapse
|
2
|
Wang Y, Li J, do Vale GD, Chaudhary J, Anwar A, McDonald JG, Qin T, Zhang H, Corbin IR. Repeated trans-arterial treatments of LDL-DHA nanoparticles induce multiple pathways of tumor cell death in hepatocellular carcinoma bearing rats. Front Oncol 2022; 12:1052221. [PMID: 36505796 PMCID: PMC9730405 DOI: 10.3389/fonc.2022.1052221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction Repeated hepatic arterial delivery of therapeutic agents to the liver by percutaneously implanted port-catheter systems has been widely used to treat unresectable liver cancer. This approach is applied to assess the therapeutic efficacy of repeated low-density lipoprotein-docosahexaenoic acid (LDL-DHA) nanoparticle treatments in a rat model of hepatocellular carcinoma. Methods N1S1 hepatoma bearing rats underwent placement of a percutaneously implanted hepatic artery port-catheter system and were allocated to untreated, control LDL-triolein (LDL-TO) or LDL-DHA nanoparticle infusions groups. Treatments were performed every three days over a nine day study period. MRI was performed at baseline and throughout the study. At the end of the study tissue samples were collected for analyses. Results and Discussion Implantation of the port catheters was successful in all rats. MRI showed that repeated infusions of LDL-DHA nanoparticles significantly impaired the growth of the rat hepatomas eventually leading to tumor regression. The tumors in the LDL-TO treated group showed delayed growth, while the untreated tumors grew steadily throughout the study. Histopathology and MRI support these findings demonstrating extensive tumor necrosis in LDL-DHA treated groups while the control groups displayed minor necrosis. Molecular and biochemical analyses also revealed that LDL-DHA treated tumors had increased levels of nuclear factor-kappa B and lipid peroxidation and depletion of glutathione peroxidase 4 relative to the control groups. Evidence of both ferroptosis and apoptosis tumor cell death was observed following LDL-DHA treatments. In conclusion repeated transarterial infusions of LDL-DHA nanoparticles provides sustained repression of tumor growth in a rat hepatoma model.
Collapse
Affiliation(s)
- Yuzhu Wang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Junjie Li
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Goncalo Dias do Vale
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Jaideep Chaudhary
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Arnida Anwar
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Jeffrey G. McDonald
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Tao Qin
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Hongwei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Ian R. Corbin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
- Internal Medicine Division of Liver and Digestive Diseases, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
- Radiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| |
Collapse
|