1
|
Zhang X, Wang J, Li S, Chen K, Wang L, Feng C, Gao Y, Yan X, Zhao Q, Li B, Zheng J, Qiu Y. Mechanism of arsenic regulation of mitochondrial damage and autophagy induced synaptic damage through SIRT1 and protective effect of melatonin in HT22 cell. Chem Biol Interact 2025; 412:111461. [PMID: 40081728 DOI: 10.1016/j.cbi.2025.111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Arsenic (As), a widespread environmental pollutant, can induce severe neurological damage worldwide; however, the underlying mechanisms remain unclear. Sirtuin 1 (SIRT1) has been reported to exert neuroprotective effects against various neurological diseases by resisting mitochondrial damage and autophagy through deacetylation. In this study, we established a model of HT22 cells exposed to NaAsO2 and examined the levels of mitochondrial, autophagy, and synaptic damage in HT22 cells and HT22 cells with high expression of SIRT1 (pre-treated with the agonist SRT1720) 24 h after exposure. Our results suggest that NaAsO2 exposure induces down-regulation of SIRT1, causing mitochondrial damage and activation of autophagy, which in turn leads to synaptic damage. Notably, melatonin (Mel) intervention upregulated SIRT1 and attenuated mitochondrial damage and autophagy, restoring synaptic damage. In conclusion, the results of the present study indicate that As causes neurotoxicity by decreasing SIRT1 production, causing mitochondrial damage and activating autophagy, which provides fundamental data for further study of arsenic neurotoxicity. In addition, blocking this pathway attenuated the synaptic damage of arsenic exposure, which provides a new therapeutic avenue for arsenic neurotoxicity.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Department of Microbiology Laboratory, Linfen Central Hospital, Linfen, 041000, Shanxi, China; Section of Occupational Medicine, Department of Special Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Key Laboratory of Shanxi Province for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | - Jing Wang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Shuyuan Li
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Kun Chen
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Longmei Wang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chao Feng
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yi Gao
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoyan Yan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qian Zhao
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ben Li
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jinping Zheng
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Section of Occupational Medicine, Department of Special Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Key Laboratory of Shanxi Province for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi, 046000, Shanxi, China.
| | - Yulan Qiu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
2
|
Wysocki R, Rodrigues JI, Litwin I, Tamás MJ. Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony. Cell Mol Life Sci 2023; 80:342. [PMID: 37904059 PMCID: PMC10616229 DOI: 10.1007/s00018-023-04992-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.
Collapse
Affiliation(s)
- Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland.
| | - Joana I Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden
| | - Ireneusz Litwin
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden.
| |
Collapse
|
4
|
Xu Y, Tokar EJ, Pi J. Arsenic as an environmental toxicant and a therapeutic agent: Foe and friend. Toxicol Appl Pharmacol 2021; 415:115438. [PMID: 33548274 DOI: 10.1016/j.taap.2021.115438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Yuanyuan Xu
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| | - Erik J Tokar
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, NIEHS, 111 TW Alexander Drive, Building 101, Room E-105, RTP, NC 27709, USA.
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| |
Collapse
|