1
|
Seo Y, Lee S, Kim M, Kim D, Jeong SB, Das R, Sultana A, Park S, Nhiem NX, Huong PTT, Kwon OB, Namkung W, Woo J. Discovery of a novel natural compound, vitekwangin B, with ANO1 protein reduction properties and anticancer potential. Front Pharmacol 2024; 15:1382787. [PMID: 38659592 PMCID: PMC11041392 DOI: 10.3389/fphar.2024.1382787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
Background: Prostate cancer and non-small cell lung cancer (NSCLC) present significant challenges in the development of effective therapeutic strategies. Hormone therapies for prostate cancer target androgen receptors and prostate-specific antigen markers. However, treatment options for prostatic small-cell neuroendocrine carcinoma are limited. NSCLC, on the other hand, is primarily treated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors but exhibits resistance. This study explored a novel therapeutic approach by investigating the potential anticancer properties of vitekwangin B, a natural compound derived from Vitex trifolia. Methods: Vitekwangin B was chromatographically isolated from the fruits of V. trifolia. ANO1 protein levels in prostate cancer and NSCLC cells were verified and evaluated again after vitekwangin B treatment. Results: Vitekwangin B did not inhibit anoctamin1 (ANO1) channel function but significantly reduced ANO1 protein levels. These results demonstrate that vitekwangin B effectively inhibited cancer cell viability and induced apoptosis in prostate cancer and NSCLC cells. Moreover, it exhibited minimal toxicity to liver cells and did not affect hERG channel activity, making it a promising candidate for further development as an anticancer drug. Conclusion: Vitekwangin B may offer a new direction for cancer therapy by targeting ANO1 protein, potentially improving treatment outcomes in patients with prostate cancer and NSCLC. Further research is needed to explore its full potential and overcome existing drug resistance challenges.
Collapse
Affiliation(s)
- Yohan Seo
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (KMEDIhub), Daegu, Republic of Korea
| | - Sion Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (KMEDIhub), Daegu, Republic of Korea
| | - Minuk Kim
- Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDI Hub), Daegu, Republic of Korea
| | - Dongguk Kim
- Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDI Hub), Daegu, Republic of Korea
| | - Sung Baek Jeong
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (KMEDIhub), Daegu, Republic of Korea
| | - Raju Das
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Armin Sultana
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - SeonJu Park
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul, Republic of Korea
| | - Nguyen Xuan Nhiem
- Institute of Marine and Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Phan Thi Thanh Huong
- Institute of Marine and Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Oh-Bin Kwon
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (KMEDIhub), Daegu, Republic of Korea
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
| | - Joohan Woo
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, Republic of Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Li S, Wang Z, Geng R, Zhang W, Wan H, Kang X, Guo S. TMEM16A ion channel: A novel target for cancer treatment. Life Sci 2023; 331:122034. [PMID: 37611692 DOI: 10.1016/j.lfs.2023.122034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Cancer draws attention owing to the high morbidity and mortality. It is urgent to develop safe and effective cancer therapeutics. The calcium-activated chloride channel TMEM16A is widely distributed in various tissues and regulates physiological functions. TMEM16A is abnormally expressed in several cancers and associate with tumorigenesis, metastasis, and prognosis. Knockdown or inhibition of TMEM16A in cancer cells significantly inhibits cancer development. Therefore, TMEM16A is considered as a biomarker and therapeutic target for some cancers. This work reviews the cancers associated with TMEM16A. Then, the molecular mechanism of TMEM16A overexpression in cancer was analyzed, and the possible signal transduction mechanism of TMEM16A regulating cancer development was summarized. Finally, TMEM16A inhibitors with anticancer effect and their anticancer mechanism were concluded. We hope to provide new ideas for pharmacological studies on TMEM16A in cancer.
Collapse
Affiliation(s)
- Shuting Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Zhichen Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Ruili Geng
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Weiwei Zhang
- School of Basic Medical Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Haifu Wan
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China.
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
3
|
TMEM16A as a potential treatment target for head and neck cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:196. [PMID: 35668455 PMCID: PMC9172006 DOI: 10.1186/s13046-022-02405-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 01/02/2023]
Abstract
Transmembrane protein 16A (TMEM16A) forms a plasma membrane-localized Ca2+-activated Cl- channel. Its gene has been mapped to an area on chromosome 11q13, which is amplified in head and neck squamous cell carcinoma (HNSCC). In HNSCC, TMEM16A overexpression is associated with not only high tumor grade, metastasis, low survival, and poor prognosis, but also deterioration of clinical outcomes following platinum-based chemotherapy. Recent study revealed the interaction between TMEM16A and transforming growth factor-β (TGF-β) has an indirect crosstalk in clarifying the mechanism of TMEM16A-induced epithelial-mesenchymal transition. Moreover, human papillomavirus (HPV) infection can modulate TMEM16A expression along with epidermal growth factor receptor (EGFR), whose phosphorylation has been reported as a potential co-biomarker of HPV-positive cancers. Considering that EGFR forms a functional complex with TMEM16A and is a co-biomarker of HPV, there may be crosstalk between TMEM16A expression and HPV-induced HNSCC. EGFR activation can induce programmed death ligand 1 (PD-L1) synthesis via activation of the nuclear factor kappa B pathway and JAK/STAT3 pathway. Here, we describe an interplay among EGFR, PD-L1, and TMEM16A. Combination therapy using TMEM16A and PD-L1 inhibitors may improve the survival rate of HNSCC patients, especially those resistant to anti-EGFR inhibitor treatment. To the best of our knowledge, this is the first review to propose a biological validation that combines immune checkpoint inhibition with TMEM16A inhibition.
Collapse
|
4
|
Meng X, Nan G, Li Y, Du Y, Zhao H, Zheng H, Li W, Liu H, Li Y, Yang G. Study on the interaction between nimodipine and five proteinases and the effects of naringin and vitamin C on these interactions by spectroscopic and molecular docking methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120982. [PMID: 35139470 DOI: 10.1016/j.saa.2022.120982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
The interaction mechanisms of nimodipine with pepsin, trypsin, α-chymotrypsin, lysozyme and human serum albumin were investigated by multispectral and molecular docking methods. Vitamin C and naringin were the main active components of grapefruit juice, and nimodipine was the typical drug that interacts with this juice. Fluorescence spectroscopy was used to study the interaction of nimodipine with five proteinases (pepsin, trypsin, α-chymotrypsin, lysozyme and human serum albumin) and the effects of vitamin C and naringin on these interactions. The fluorescence quenching results showed that nimodipine can quench the intrinsic fluorescence of these five proteinases by a static quenching procedure. Nimodipine binds to pepsin and α-chymotrypsin, through hydrogen bonding and van der Waals forces, whereas it binds to trypsin, lysozyme and human serum albumin mainly by hydrophobic interactions. The microenvironment of the five proteinases changed. The probability of nonradiative energy transfer between the five proteinases and nimodipine was high. Both vitamin C and naringin reduced the binding constant of nimodipine to the four proteinases (except α-chymotrypsin) and might increase the concentration of free nimodipine. Thus, vitamin C or naringin in fruits or foods could increase the blood concentration of free nimodipine and perhaps a reduction in nimodipine dose was needed.
Collapse
Affiliation(s)
- Xianxin Meng
- School of Pharmacy, Xi'an Jiaotong University, Shaanxi 710061, P.R. China
| | - Guanjun Nan
- School of Pharmacy, Xi'an Jiaotong University, Shaanxi 710061, P.R. China
| | - Yunzhe Li
- School of Pharmacy, Xi'an Jiaotong University, Shaanxi 710061, P.R. China
| | - Yan Du
- School of Pharmacy, Xi'an Jiaotong University, Shaanxi 710061, P.R. China
| | - Hongwen Zhao
- School of Pharmacy, Xi'an Jiaotong University, Shaanxi 710061, P.R. China
| | - Hongxia Zheng
- School of Pharmacy, Xi'an Jiaotong University, Shaanxi 710061, P.R. China
| | - Wanlu Li
- School of Pharmacy, Xi'an Jiaotong University, Shaanxi 710061, P.R. China
| | - Henglin Liu
- School of Pharmacy, Xi'an Jiaotong University, Shaanxi 710061, P.R. China
| | - Yiping Li
- School of Pharmacy, Xi'an Jiaotong University, Shaanxi 710061, P.R. China
| | - Guangde Yang
- School of Pharmacy, Xi'an Jiaotong University, Shaanxi 710061, P.R. China.
| |
Collapse
|
5
|
Yu Y, Li Y, Jin Z, Zhao S, Xie X, Chen F. Nimodipine reduces delayed cerebral vasospasm after intracranial tumour surgery: A Retrospective Study. Clin Exp Pharmacol Physiol 2021; 48:1613-1620. [PMID: 34343357 DOI: 10.1111/1440-1681.13564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/18/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022]
Abstract
Cerebral vasospasm (CVS) is a frequent and serious neurosurgical complication, without sufficient therapy. This retrospective study was performed to analyze if nimodipine can improve prognosis and reduce ischaemia secondary to delayed CVS after intracranial tumour surgery. A retrospective review was performed over the years 2011 to 2012 for patients with an anterior cranial fossa tumour and underwent intracranial tumour surgery. The surgical field was soaked with nimodipine solution or normal saline. Transcranial Doppler ultrasonography was used to measure velocity in the middle cerebral artery (MCA) and the distal extracranial internal carotid artery (eICA). Follow-up was performed using the Glasgow Outcome Scale (GOS) after discharge. There were 94 patients that met the inclusion criteria. They included 50 males and 44 females, with a mean age of 49.6 years. In the nimodipine group, CVS occurred in 13 patients; 9 patients had CVS between 4 and 7 days, and 4 had CVS between 8 and 14 days. In the normal saline group, 19 patients had CVS, 3 presented with CVS within 3 days, 11 between 4-7 days and 5 between 8-14 days. A significant difference in the occurrence of CVS was observed between the two groups. Preoperative and postoperative the MCA velocities were compared, revealing a significant change in the normal saline group but not in the nimodipine group. Nimodipine markedly improves prognosis and significantly reduces ischaemia secondary to delayed CVS after intracranial tumour surgery, as well as the risks of mortality and morbidity.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurosurgery, First Hospital of Jilin University, Jilin, China
| | - Yunqian Li
- Department of Neurosurgery, First Hospital of Jilin University, Jilin, China
| | - Zheng Jin
- Department of Neurosurgery, First Hospital of Jilin University, Jilin, China
| | - Shuai Zhao
- Department of Anesthesiology, First Hospital of Jilin University, Jilin, China
| | - Xuan Xie
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Fan Chen
- Department of Neurosurgery, First Hospital of Jilin University, Jilin, China
| |
Collapse
|