1
|
Plakoula E, Kalampounias G, Alexis S, Verigou E, Kourakli A, Zafeiropoulou K, Symeonidis A. Prognostic Value of PSMB5 and Correlations with LC3II and Reactive Oxygen Species Levels in the Bone Marrow Mononuclear Cells of Bortezomib-Resistant Multiple Myeloma Patients. Curr Issues Mol Biol 2025; 47:32. [PMID: 39852147 PMCID: PMC11763810 DOI: 10.3390/cimb47010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Proteasome inhibitors (PIs) constitute the most common type of induction treatment for multiple myeloma. Interactions between the proteasome, autophagy, and reactive oxygen species (ROS) have been shown in the past, thus emphasizing the need for a better understanding of the underlying pathophysiology. For this study, bone marrow mononuclear cells from 110 myeloma patients were collected at different disease stages. PSMB5 and LC3I/II protein levels were determined using Western blot, proteasome proteolytic activity (PPA) with spectrofluorometry, and ROS with flow cytometry. PSMB5 accumulation was found to diminish after PI treatment (p-value = 0.014), and the same pattern was observed in PPA (p-value < 0.001). Conversely, LC3II protein levels were elevated at both remission and relapse compared to baseline levels (p-value = 0.041). Patients with a baseline PSMB5 accumulation lower than 1.06 units had longer disease-free survival compared to those with values above 1.06 units (12.0 ± 6.7 vs. 36 ± 12.1 months; p-value < 0.001). Median ROS levels in plasma cells were significantly higher at relapse compared to both baseline and remission levels (p-value < 0.001), implying poor prognosis. Overall, post-treatment PSMB5 reduction could indicate a shift from proteasomal to autophagic degradation as a main proteostatic mechanism, thus explaining resistance. The elevated oxidative stress in PI-treated patients could possibly serve as an additional compensatory mechanism.
Collapse
Affiliation(s)
- Eva Plakoula
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
| | - Georgios Kalampounias
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece;
| | - Spyridon Alexis
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
| | - Evgenia Verigou
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
| | - Alexandra Kourakli
- Department of Hematology, OLYMPION General Hospital, Volou & Meilichou Str., 26443 Patras, Greece;
| | - Kalliopi Zafeiropoulou
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
| | - Argiris Symeonidis
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
- Department of Hematology, OLYMPION General Hospital, Volou & Meilichou Str., 26443 Patras, Greece;
| |
Collapse
|
2
|
Rao M, Nassiri V, Srivastava S, Yang A, Brar S, McDuffie E, Sachs C. Artificial Intelligence and Machine Learning Models for Predicting Drug-Induced Kidney Injury in Small Molecules. Pharmaceuticals (Basel) 2024; 17:1550. [PMID: 39598459 PMCID: PMC11597314 DOI: 10.3390/ph17111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Drug-Induced Kidney Injury (DIKI) presents a significant challenge in drug development, often leading to clinical-stage failures. The early prediction of DIKI risk can improve drug safety and development efficiency. Existing models tend to focus on physicochemical properties alone, often overlooking drug-target interactions crucial for DIKI. This study introduces an AI/ML (artificial intelligence/machine learning) model that integrates both physicochemical properties and off-target interactions to enhance DIKI prediction. METHODS We compiled a dataset of 360 FDA-classified compounds (231 non-nephrotoxic and 129 nephrotoxic) and predicted 6064 off-target interactions, 59% of which were validated in vitro. We also calculated 55 physicochemical properties for these compounds. Machine learning (ML) models were developed using four algorithms: Ridge Logistic Regression (RLR), Support Vector Machine (SVM), Random Forest (RF), and Neural Network (NN). These models were then combined into an ensemble model for enhanced performance. RESULTS The ensemble model achieved an ROC-AUC of 0.86, with a sensitivity and specificity of 0.79 and 0.78, respectively. The key predictive features included 38 off-target interactions and physicochemical properties such as the number of metabolites, polar surface area (PSA), pKa, and fraction of Sp3-hybridized carbons (fsp3). These features effectively distinguished DIKI from non-DIKI compounds. CONCLUSIONS The integrated model, which combines both physicochemical properties and off-target interaction data, significantly improved DIKI prediction accuracy compared to models that rely on either data type alone. This AI/ML model provides a promising early screening tool for identifying compounds with lower DIKI risk, facilitating safer drug development.
Collapse
Affiliation(s)
- Mohan Rao
- Preclinical and Clinical Pharmacology and Chemistry, Neurocrine Biosciences, San Diego, CA 92130, USA (C.S.)
| | - Vahid Nassiri
- Open Analytics NV, Jupiterstraat 20, 2600 Antwerp, Belgium;
| | - Sanjay Srivastava
- Preclinical and Clinical Pharmacology and Chemistry, Neurocrine Biosciences, San Diego, CA 92130, USA (C.S.)
| | - Amy Yang
- Preclinical and Clinical Pharmacology and Chemistry, Neurocrine Biosciences, San Diego, CA 92130, USA (C.S.)
| | - Satjit Brar
- Preclinical and Clinical Pharmacology and Chemistry, Neurocrine Biosciences, San Diego, CA 92130, USA (C.S.)
| | - Eric McDuffie
- Preclinical and Clinical Pharmacology and Chemistry, Neurocrine Biosciences, San Diego, CA 92130, USA (C.S.)
| | - Clifford Sachs
- Preclinical and Clinical Pharmacology and Chemistry, Neurocrine Biosciences, San Diego, CA 92130, USA (C.S.)
| |
Collapse
|
3
|
Nie Y, Ma Z, Zhang B, Sun M, Zhang D, Li HH, Song X. The role of the immunoproteasome in cardiovascular disease. Pharmacol Res 2024; 204:107215. [PMID: 38744399 DOI: 10.1016/j.phrs.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The ubiquitinproteasome system (UPS) is the main mechanism responsible for the intracellular degradation of misfolded or damaged proteins. Under inflammatory conditions, the immunoproteasome, an isoform of the proteasome, can be induced, enhancing the antigen-presenting function of the UPS. Furthermore, the immunoproteasome also serves nonimmune functions, such as maintaining protein homeostasis and regulating signalling pathways, and is involved in the pathophysiological processes of various cardiovascular diseases (CVDs). This review aims to provide a comprehensive summary of the current research on the involvement of the immunoproteasome in cardiovascular diseases, with the ultimate goal of identifying novel strategies for the treatment of these conditions.
Collapse
Affiliation(s)
- Yifei Nie
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Zhao Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Baoen Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Meichen Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Dongfeng Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
4
|
Pakjoo M, Ahmadi SE, Zahedi M, Jaafari N, Khademi R, Amini A, Safa M. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors. Cell Commun Signal 2024; 22:105. [PMID: 38331801 PMCID: PMC10851565 DOI: 10.1186/s12964-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ATMP department, Breast cancer research center, Motamed cancer institute, ACECR, P.O. BOX:15179/64311, Tehran, Iran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Immunoproteasome Activity in Chronic Lymphocytic Leukemia as a Target of the Immunoproteasome-Selective Inhibitors. Cells 2022; 11:cells11050838. [PMID: 35269460 PMCID: PMC8909520 DOI: 10.3390/cells11050838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
Targeting proteasome with proteasome inhibitors (PIs) is an approved treatment strategy in multiple myeloma that has also been explored pre-clinically and clinically in other hematological malignancies. The approved PIs target both the constitutive and the immunoproteasome, the latter being present predominantly in cells of lymphoid origin. Therapeutic targeting of the immunoproteasome in cells with sole immunoproteasome activity may be selectively cytotoxic in malignant cells, while sparing the non-lymphoid tissues from the on-target PIs toxicity. Using activity-based probes to assess the proteasome activity profile and correlating it with the cytotoxicity assays, we identified B-cell chronic lymphocytic leukemia (B-CLL) to express predominantly immunoproteasome activity, which is associated with high sensitivity to approved proteasome inhibitors and, more importantly, to the immunoproteasome selective inhibitors LU005i and LU035i, targeting all immunoproteasome active subunits or only the immunoproteasome β5i, respectively. At the same time, LU102, a proteasome β2 inhibitor, sensitized B-CLL or immunoproteasome inhibitor-inherently resistant primary cells of acute myeloid leukemia, B-cell acute lymphoblastic leukemia, multiple myeloma and plasma cell leukemia to low doses of LU035i. The immunoproteasome thus represents a novel therapeutic target, which warrants further testing with clinical stage immunoproteasome inhibitors in monotherapy or in combinations.
Collapse
|
6
|
Malacrida A, Cavalloro V, Martino E, Costa G, Ambrosio FA, Alcaro S, Rigolio R, Cassetti A, Miloso M, Collina S. Anti-Multiple Myeloma Potential of Secondary Metabolites from Hibiscus sabdariffa-Part 2. Molecules 2021; 26:molecules26216596. [PMID: 34771006 PMCID: PMC8588054 DOI: 10.3390/molecules26216596] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple Myeloma (MM) is an aggressive tumor causing millions of deaths every year and currently available therapies are often unsuccessful or correlated with severe side effects. In our previous work we demonstrated that the Hibiscus sabdariffa hydroalcoholic extract inhibits the growth of the MM cell line and we isolated two metabolites responsible for the activity: Hib-ester and Hib-carbaldehyde. Herein we report their interaction with proteasome, one of the main targets in the fight against MM. The molecular modelling study outlined a good interaction of both compounds with the target and these results prompted us to investigate their potential to inhibit proteasome. Metabolites were then isolated from the calyces and an extract with a high content of Hib-ester and Hib-carbaldehyde was prepared. An anticancer profile was drawn, evaluating apoptosis, autophagy and proteasome inhibition, with the anticancer properties being mainly attributed to the Hib-ester and Hib-carbaldehyde, while the proteasome inhibition of the extract could also be ascribed to the presence of anthocyanins, a class of secondary metabolites already known for their proteasome inhibitory activity.
Collapse
Affiliation(s)
- Alessio Malacrida
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy; (A.M.); (R.R.)
- Experimental Neurology Unit, University of Milano-Bicocca, 20900 Monza, Italy
| | - Valeria Cavalloro
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Emanuela Martino
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy;
- Correspondence: (E.M.); (M.M.)
| | - Giosuè Costa
- Department of Health Sciences, Campus “S. Venuta”, “Magna Græcia” University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.C.); (F.A.A.); (S.A.)
- Net4Science Academic Spin-Off, Campus “S. Venuta”, “Magna Græcia” University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Località Condoleo di Belcastro (CZ), 88050 Belcastro, Italy
| | - Francesca Alessandra Ambrosio
- Department of Health Sciences, Campus “S. Venuta”, “Magna Græcia” University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.C.); (F.A.A.); (S.A.)
| | - Stefano Alcaro
- Department of Health Sciences, Campus “S. Venuta”, “Magna Græcia” University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.C.); (F.A.A.); (S.A.)
- Net4Science Academic Spin-Off, Campus “S. Venuta”, “Magna Græcia” University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Località Condoleo di Belcastro (CZ), 88050 Belcastro, Italy
| | - Roberta Rigolio
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy; (A.M.); (R.R.)
- Experimental Neurology Unit, University of Milano-Bicocca, 20900 Monza, Italy
| | - Arianna Cassetti
- CREA, Research Centre for Vegetable and Ornamental Crops, 18038 Sanremo, Italy;
| | - Mariarosaria Miloso
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy; (A.M.); (R.R.)
- Experimental Neurology Unit, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: (E.M.); (M.M.)
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|